Simultaneously Acquiring Optical and Acoustic Properties of Individual Microalgae Cells Suspended in Water
Abstract
:1. Introduction
2. Methods
2.1. Samples
2.2. Experiment Setup
2.3. Optical and Acoustic Signal Analysis
3. Results
3.1. Discriminations between Cryptophyta and Euglena
3.2. Fine Classification between Two Species of Spirulina
3.3. Classification among Two States of Microcystis
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bárbara, R.B.; Viviane, M.C.; Marcelo, P. Microplastics and freshwater microalgae: What do we know so far? Aquat. Ecol. 2021, 55, 363–377. [Google Scholar]
- Neukermans, G.; Stramski, D. Optical classification and characterization of marine particle assemblages within the western Arctic Ocean. Limnol. Oceanogr. 2016, 61, 1472–1494. [Google Scholar] [CrossRef]
- Hallegraeff, G.M. Ocean climate change, phytoplankton community responses, and harmful algal blooms: A formidable predictive challenge. J. Phycol. 2010, 46, 220–235. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Y.; Chen, Y.; Liu, K. Remote sensing approach for the estimation of particulate organic carbon in coastal waters based on suspended particulate concentration and particle median size. Mar. Pollut. Bull. 2020, 158, 111382. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Devred, E.; Fujiwara, A.; Qiu, Z.; Liu, X. Estimation of phytoplankton taxonomic groups in the Arctic Ocean using phytoplankton absorption properties: Implication for ocean-color remote sensing. Opt. Express 2018, 26, 32280–32301. [Google Scholar] [CrossRef]
- Göröcs, Z.; Tamamitsu, M.; Bianco, V.; Wolf, P.; Roy, S.; Shindo, K.; Yanny, K.; Wu, Y.; Koydemir, H.C.; Rivenson, Y.; et al. A deep learning-enabled portable imaging flow cytometer for cost-effective, high-throughput, and label-free analysis of natural water samples. Light Sci. Appl. 2018, 7, 66. [Google Scholar] [CrossRef]
- Olson, R.J.; Shalapyonok, A.; Kalb, D.J.; Graves, S.W.; Sosik, H.M. Imaging FlowCytobot modified for high throughput by in-line acoustic focusing of sample particles. Limnol. Oceanogr. 2017, 15, 867–874. [Google Scholar] [CrossRef] [Green Version]
- Merz, E.; Kozakiewicz, T.; Reyes, M.; Ebi, C.; Isles, P.; Jesi, M.; Roberts, P.; Jaffe, J.; Dennis, S.; Hardeman, T.; et al. Underwater dual-magnification imaging for automated lake plankton monitoring. Water Res. 2021, 203, 117524. [Google Scholar] [CrossRef]
- Huseynov, E.; Garibov, A.; Mehdiyeva, R. TEM and SEM study of nano SiO2 particles exposed to influence of neutron flux. J. Mater. Res. Technol. 2016, 5, 213–218. [Google Scholar] [CrossRef] [Green Version]
- David, U.S.; Sergio, R.; Víctor, H.; Rosa, V.G.; Maríadel, C.R.; José, C.; Angel, V. A simple spectrophotometric method for biomass measurement of important microalgae species in aquaculture. Aquaculture 2015, 448, 87–92. [Google Scholar]
- Ostrovsky, I.; Wu, S.; Li, L.; Song, L. Bloom-forming toxic cyanobacterium Microcystis: Quantification and monitoring with a high-frequency echosounder. Water Res. 2020, 183, 116091. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Duan, X.; Tu, X.; Jiang, S.; Song, C. The Fusion of Microfluidics and Optics for On-Chip Detection and Characterization of Microalgae. Micromachines 2021, 12, 1137. [Google Scholar] [CrossRef] [PubMed]
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; Wiley: New York, NY, USA, 1983. [Google Scholar]
- Koestner, D.; Stramski, D.; Reynolds, R.A. Polarized light scattering measurements as a means to characterize particle size and composition of natural assemblages of marine particles. Appl. Opt. 2020, 59, 8314–8334. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Liao, R.; Zeng, N.; Li, P.; Chen, Z.; Liu, X.; Ma, H. Mueller matrix polarimetry—An emerging new tool for characterizing the microstructural feature of complex biological specimen. J. Lightwave Technol. 2018, 37, 2534–2548. [Google Scholar] [CrossRef]
- Li, D.; Zeng, N.; Zhan, D.; Chen, Y.; Zeng, M.; Ma, H. Differentiation of soot particulates in air using polarized light scattering method. Appl. Opt. 2017, 56, 4123–4129. [Google Scholar] [CrossRef]
- Wang, Y.; Liao, R.; Dai, J.; Liu, Z.; Xiong, Z.; Zhang, T.; Chen, H.; Ma, H. Differentiation of suspended particles by polarized light scattering at 120 degrees. Opt. Express 2018, 26, 22419–22431. [Google Scholar] [CrossRef]
- Stramski, D. Corrigendum to “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans. Biogeosciences 2008, 4, 93–99. [Google Scholar]
- Coltelli, P.; Barsanti, L.; Evangelista, V.; Frassanito, A.M.; Passarelli, V.; Gualtieri, P. Automatic and real time recognition of microalgae by means of pigment signature and shape. Environ. Sci. Processes Impacts 2013, 15, 1397–1410. [Google Scholar] [CrossRef]
- Ye, Z.P. Nonlinear optical absorption of photosynthetic pigment molecules in leaves. Photosynth. Res. 2012, 112, 31–37. [Google Scholar] [CrossRef]
- Zhao, N.; Zhang, X.; Yang, R.; Yin, G.; Hu, L.; Chen, S.; Liu, J.; Liu, W. On-line analysis of algae in water by discrete three-dimensional fluorescence spectroscopy. Opt. Express 2018, 26, 251–259. [Google Scholar] [CrossRef]
- Wang, L.V.; Hu, S. Photoacoustic tomography: In vivo imaging from organelles to organs. Science 2012, 335, 1458–1462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Deán-Ben, X.L.; Gottschalk, S.; Razansky, D. Performance of optoacoustic and fluorescence imaging in detecting deep-seated fluorescent agents. Biomed. Opt. Express 2018, 9, 2229–2239. [Google Scholar] [CrossRef] [PubMed]
- Nedosekin, D.A.; Fahmi, T.; Nima, Z.A.; Nolan, J.; Cai, C.; Sarimollaoglu, M.; Dervishi, E.; Basnakian, A.; Biris, A.S.; Zharov, V.P. Photoacoustic in vitro flow cytometry for nanomaterial research. Photoacoustics 2017, 6, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Galanzha, E.I.; Shashkov, E.V.; Spring, P.M.; Suen, J.Y.; Zharov, V.P. In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser. Cancer Res. 2009, 69, 7926–7934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zharov, V.P.; Galanzha, E.I.; Shashkov, E.V.; Hlebtsov, N.G.; Tuchin, V.V. In vivo photoacoustic flow cytometry for monitoring of circulating single cancer cells and contrast agents. Opt. Lett. 2006, 31, 3623. [Google Scholar] [CrossRef]
- Cvjetinovic, J.; Salimon, A.I.; Novoselova, M.V.; Sapozhnikov, P.V.; Shirshin, E.A.; Yashchenok, A.M.; Kalinina, O.Y.; Korsunsky, A.M.; Gorin, D.A. Photoacoustic and fluorescence lifetime imaging of diatoms. Photoacoustics 2020, 18, 100171. [Google Scholar] [CrossRef]
- Seeger, M.; Stiel, A.C.; Ntziachristos, V. In vitro optoacoustic flow cytometry with light scattering referencing. Sci. Rep. 2021, 11, 2181. [Google Scholar] [CrossRef]
- Pinchasov, Y.; Porat, R.; Zur, B.; Dubinsky, Z. Photoacoustics: A novel tool for the determination of photosynthetic energy storage efficiency in phytoplankton. Hydrobiologia 2007, 579, 251–256. [Google Scholar] [CrossRef]
- Xiong, Z.; Wang, H.; Li, J.; Liao, R.; Mai, H.; Guan, C.; Guo, Z.; Yang, S.; Chen, Y.; Liu, B.; et al. Probing Individual Particles in Aquatic Suspensions by Simultaneously Measuring Polarized Light Scattering and Fluorescence. Biosensors 2021, 11, 416. [Google Scholar] [CrossRef]
- Nakatsu, C.; Hutchinson, T.C. Extreme metal and acid tolerance of Euglena mutabilis and an associated yeast from Smoking Hills, Northwest Territories, and their apparent mutualism. Microb. Ecol. 1988, 16, 213–231. [Google Scholar] [CrossRef]
- Azizullah, A.; Richter, P.; PeterHäder, D. Photosynthesis and photosynthetic pigments in the flagellate Euglena gracilis—As sensitive endpoints for toxicity evaluation of liquid detergents. J. Photochem. Photobiol. B 2014, 133, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Grujcic, V.; Nuy, J.K.; Salcher, M.M.; Shabarova, T.; Kasalicky, V.; Boenigk, J.; Jensen, M.; Simek, K. Cryptophyta as major bacterivores in freshwater summer plankton. ISME J. 2018, 12, 1668–1681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, D.E.; Farmer, F.H. Extraction, identification, and quantitation of phycobiliprotein pigments from phototrophic plankton. Limnol. Oceanogr. 1984, 29, 392–397. [Google Scholar] [CrossRef]
- Ciferri, O. Spirulina, the edible microorganism. Microbiol. Rev. 1983, 47, 551–578. [Google Scholar] [CrossRef] [PubMed]
- Hanaa, H.; Abd, E.B. Over Production of Phycocyanin Pigment in Blue Green Alga Spirulina sp. and It’s Inhibitory Effect on Growth of Ehrlich Ascites Carcinoma Cells. J. Med. Sci. 2003, 3, 314–324. [Google Scholar]
- Wang, H.; Li, J.; Liao, R.; Tao, Y.; Peng, L.; Li, H.; Deng, H.; Ma, H. Early warning of cyanobacterial blooms based on polarized light scattering powered by machine learning. Meas 2021, 184, 109902. [Google Scholar] [CrossRef]
- Liu, S.; Li, Q.; Shang, D.; Tang, R.; Zhang, Q. Measurement of Underwater Acoustic Energy Radiated by Single Raindrops. Sensors 2021, 21, 2687. [Google Scholar] [CrossRef]
- Merzlyak, M.N.; Chivkunova, O.B.; Maslova, I.P.; Naqvi, K.R.; Solovchenko, A.E.; Klyachko-Gurvich, G.L. Light absorption and scattering by cell suspensions of some cyanobacteria and microalgae. Russ. J. Plant Physiol. 2008, 55, 420. [Google Scholar] [CrossRef]
- Gualtieri, P.; Barsanti, L.; Passarelli, V. Absorption spectrum of a single isolated paraflagellar swelling of Euglena gracilis. BBA-Gen. Subj. 1989, 993, 293–296. [Google Scholar] [CrossRef]
- Azizullah, A.; Richter, P.; Jamil, M.; Häder, D.P. Chronic toxicity of a laundry detergent to the freshwater flagellate Euglena gracilis. Ecotoxicology 2012, 21, 1957–1964. [Google Scholar] [CrossRef]
Group 1 | Group 2 | Group 3 | ||||
---|---|---|---|---|---|---|
Euglena | Cryptophyta | Spirulina platensis | Spirulina maxima | Microcystis | Microcystis (S.T.) | |
34.76 25.59 | 50.14 5.59 | 3318.90 415.22 | 454.80 137.09 | 271.30 118.10 | 479.44 147.36 | |
26.19 1.56 | 11.51 1.23 | 5308.18 106.23 | 17.71 5.71 | 1116.67 838.85 | 296.72 277.51 | |
1.33 | 4.36 | 0.63 | 25.68 | 0.24 | 1.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Liao, R.; Xiong, Z.; Wang, Z.; Li, J.; Zhou, Q.; Tao, Y.; Ma, H. Simultaneously Acquiring Optical and Acoustic Properties of Individual Microalgae Cells Suspended in Water. Biosensors 2022, 12, 176. https://doi.org/10.3390/bios12030176
Wang H, Liao R, Xiong Z, Wang Z, Li J, Zhou Q, Tao Y, Ma H. Simultaneously Acquiring Optical and Acoustic Properties of Individual Microalgae Cells Suspended in Water. Biosensors. 2022; 12(3):176. https://doi.org/10.3390/bios12030176
Chicago/Turabian StyleWang, Hongjian, Ran Liao, Zhihang Xiong, Zhao Wang, Jiajin Li, Qian Zhou, Yi Tao, and Hui Ma. 2022. "Simultaneously Acquiring Optical and Acoustic Properties of Individual Microalgae Cells Suspended in Water" Biosensors 12, no. 3: 176. https://doi.org/10.3390/bios12030176
APA StyleWang, H., Liao, R., Xiong, Z., Wang, Z., Li, J., Zhou, Q., Tao, Y., & Ma, H. (2022). Simultaneously Acquiring Optical and Acoustic Properties of Individual Microalgae Cells Suspended in Water. Biosensors, 12(3), 176. https://doi.org/10.3390/bios12030176