Droplet Manipulation under a Magnetic Field: A Review
Abstract
:1. Introduction
2. Droplet Manipulation in a Magnetic Field
2.1. Droplet Generation
2.2. Droplet Deformation
2.3. Droplet Transportation
2.4. Droplet Sorting
2.5. Droplet Coalescence and Splitting
2.6. Droplet Levitation
3. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiang, N.; Ni, Z.J.T. Electricity-free hand-held inertial microfluidic sorter for size-based cell sorting. Talanta 2021, 235, 122807. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Zhu, Z.; Xiang, N.; Wang, H.; Zhang, J.J.S.; Chemical, A.B. Multiplexed serpentine microchannels for high-throughput sorting of disseminated tumor cells from malignant pleural effusion. Sens. Actuators B Chem. 2021, 337, 129758. [Google Scholar] [CrossRef]
- Xi, H.D.; Zheng, H.; Guo, W.; Ganan-Calvo, A.M.; Ai, Y.; Tsao, C.W.; Zhou, J.; Li, W.H.; Huang, Y.Y.; Nguyen, N.T.; et al. Active droplet sorting in microfluidics: A review. Lab Chip 2017, 17, 751–771. [Google Scholar] [CrossRef] [PubMed]
- Haswell, S.J.; Middleton, R.J.; Sullivan, B.O.; Skelton, V.; Watts, P.; Styring, P. The application of micro reactors to synthetic chemistry. Chem. Commun. 2001, 32, 391–398. [Google Scholar] [CrossRef]
- Ghazimirsaeed, E.; Madadelahi, M.; Dizani, M.; Shamloo, A. Secondary Flows, Mixing, and Chemical Reaction Analysis of Droplet-Based Flow inside Serpentine Microchannels with Different Cross Sections. Langmuir 2021, 37, 5118–5130. [Google Scholar] [CrossRef] [PubMed]
- Hung, L.H.; Choi, K.M.; Tseng, W.Y.; Tan, Y.C.; Shea, K.J.; Lee, A.P. Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis. Lab Chip 2006, 6, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Eustace, D.; Merten, C.A. Efficient cell pairing in droplets using dual-color sorting. Lab Chip 2015, 15, 3989–3993. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Chen, D.; Yingsong, F.; Xiaojun, L.; Bi, F. Encapsulation of single cells on a microfluidic device integrating;droplet generation with fluorescence-activated droplet sorting. Biomed. Microdevices 2013, 15, 553–560. [Google Scholar] [CrossRef]
- Yoon, S.; Kim, J.A.; Lee, S.H.; Kim, M.; Park, T.H. Droplet-based microfluidic system to form and separate multicellular spheroids using magnetic nanoparticles. Lab Chip 2013, 13, 1522–1528. [Google Scholar] [CrossRef]
- Alegret, S. Integrated Analytical Systems. Ind. Relat. J. 2003, 43, 195–196. [Google Scholar]
- Mielczarek, W.S.; Obaje, E.A.; Bachmann, T.T.; Kersaudy-Kerhoas, M. Microfluidic blood plasma separation for medical diagnostics: Is it worth it? Lab Chip 2016, 16, 3441–3448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seemann, R.; Brinkmann, M.; Pfohl, T.; Herminghaus, S. Droplet based microfluidics. Rep. Prog. Phys. 2012, 75. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.P.; Nguyen, N.T.; Ramanujan, R.V.; Huang, X.Y. Nonlinear deformation of a ferrofluid droplet in a uniform magnetic field. Langmuir 2011, 27, 14834–14841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghaffari, A.; Hashemabadi, S.H.; Bazmi, M. CFD simulation of equilibrium shape and coalescence of ferrofluid droplets subjected to uniform magnetic field. Colloid Surf. A 2015, 481, 186–198. [Google Scholar] [CrossRef]
- Afkhami, S.; Tyler, A.J.; Renardy, Y.; Renardy, M.; Pierre, T.S.; Woodward, R.C.; Riffle, J.S. Deformation of a hydrophobic ferrofluid droplet suspended in a viscous medium under uniform magnetic fields. J. Fluid Mech. 2010, 663, 358–384. [Google Scholar] [CrossRef] [Green Version]
- Capobianchi, P.; Lappa, M.; Oliveira, M.S.N. Deformation of a ferrofluid droplet in a simple shear flow under the effect of a constant magnetic field. Comput. Fluids 2018, 173, 313–323. [Google Scholar] [CrossRef] [Green Version]
- Filali, Y.; Er-Riani, M.; El Jarroudi, M. The deformation of a ferrofluid drop under a uniform magnetic field. Int. J. Non-Linear Mech. 2018, 99, 173–181. [Google Scholar] [CrossRef]
- Zhang, K.; Liang, Q.; Ma, S.; Mu, X.; Hu, P.; Wang, Y.; Luo, G. On-chip manipulation of continuous picoliter-volume superparamagnetic droplets using a magnetic force. Lab Chip 2009, 9, 2992. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, S.; Yuan, D.; Zhao, Q.; Tan, S.H.; Nguyen, N.T.; Li, W. A novel viscoelastic-based ferrofluid for continuous sheathless microfluidic separation of nonmagnetic microparticles. Lab Chip 2016, 16, 3947–3956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, G.; Baraban, L.; Han, L.; Karnaushenko, D.; Makarov, D.; Cuniberti, G.; Schmidt, O.G. Magnetoresistive Emulsion Analyzer. Sci. Rep. 2013, 3, 2548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teste, B.; Jamond, N.; Ferraro, D.; Viovy, J.-L.; Malaquin, L. Selective handling of droplets in a microfluidic device using magnetic rails. Microfluid. Nanofluidics 2015, 19, 141–153. [Google Scholar] [CrossRef]
- Varma, V.B.; Ray, A.; Wang, Z.M.; Wang, Z.P.; Ramanujan, R.V. Droplet Merging on a Lab-on-a-Chip Platform by Uniform Magnetic Fields. Sci. Rep. 2016, 6, 37671. [Google Scholar] [CrossRef] [PubMed]
- Ray, A.; Varma, V.B.; Jayaneel, P.J.; Sudharsan, N.M.; Wang, Z.P.; Ramanujan, R.V. On demand manipulation of ferrofluid droplets by magnetic fields. Sens. Actuat. B-Chem. 2017, 242, 760–768. [Google Scholar] [CrossRef]
- Misuk, V.; Mai, A.; Giannopoulos, K.; Alobaid, F.; Epple, B.; Loewe, H. Micro magnetofluidics: Droplet manipulation of double emulsions based on paramagnetic ionic liquids. Lab Chip 2013, 13, 4542–4548. [Google Scholar] [CrossRef]
- Ray, A.; Varma, V.B.; Wang, Z.; Wang, Z.; Jayaneel, P.J.; Sudharsan, N.M.; Ramanujan, R.V. Magnetic Droplet Merging by Hybrid Magnetic Fields. IEEE Magn. Lett. 2016, 7, 1–5. [Google Scholar] [CrossRef]
- Wu, Y.; Fu, T.; Ma, Y.; Li, H.Z. Active control of ferrofluid droplet breakup dynamics in a microfluidic T-junction. Microfluid. Nanofluidics 2014, 18, 19–27. [Google Scholar] [CrossRef]
- Li, H.; Wu, Y.; Wang, X.; Zhu, C.; Fu, T.; Ma, Y. Magnetofluidic control of the breakup of ferrofluid droplets in a microfluidic Y-junction. RSC Adv. 2016, 6, 778–785. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Chen, C.H.; Lee, W.F. Experiments on breakups of a magnetic fluid drop through a micro-orifice. J. Magn. Magn. Mater. 2009, 321, 3520–3525. [Google Scholar] [CrossRef]
- Lee, C.P.; Tsai, H.Y.; Lai, M.F. Field evolution of self-assembled lattice structures of ferrofluid microdroplets on magnetic disc arrays. Soft Matter 2012, 8, 11537. [Google Scholar] [CrossRef]
- Saroj, S.K.; Asfer, M.; Sunderka, A.; Panigrahi, P.K. Two-fluid mixing inside a sessile micro droplet using magnetic beads actuation. Sens. Actuators A: Phys. 2016, 244, 112–120. [Google Scholar] [CrossRef]
- Alorabi, A.Q.; Tarn, M.D.; Gomez-Pastora, J.; Bringas, E.; Ortiz, I.; Paunov, V.N.; Pamme, N. On-chip polyelectrolyte coating onto magnetic droplets—Towards continuous flow assembly of drug delivery capsules. Lab Chip 2017, 17, 3785–3795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, H.-C.; Xu, S.; Liu, Y.; Levi, S.; Wu, S.-T. Adaptive mechanical-wetting lens actuated by ferrofluids. Optics Commun. 2011, 284, 2118–2121. [Google Scholar] [CrossRef]
- Pamme, N. Magnetism and microfluidics. Lab Chip 2006, 6, 24–38. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.; Kim, E.S.; Park, S.; Daigle, H.; Milner, T.E.; Huh, C.; Bennetzen, M.V.; Geremia, G.A. Amine functionalized magnetic nanoparticles for removal of oil droplets from produced water and accelerated magnetic separation. J. Nanoparticle Res. 2017, 19, 132. [Google Scholar] [CrossRef]
- Simonsen, G.; Strand, M.; Øye, G. Potential applications of magnetic nanoparticles within separation in the petroleum industry. J. Pet. Sci. Eng. 2018, 165, 488–495. [Google Scholar] [CrossRef]
- Zarei, A.R.; Nedaei, M.; Ghorbanian, S.A. Ferrofluid of magnetic clay and menthol based deep eutectic solvent: Application in directly suspended droplet microextraction for enrichment of some emerging contaminant explosives in water and soil samples. J. Chromatogr. A 2018, 1533, 32–42. [Google Scholar] [CrossRef]
- Gharehbaghi, M.; Farahani, M.D.; Shemirani, F. Dispersive magnetic solid phase extraction based on an ionic liquid ferrofluid. Anal. Methods 2014, 6, 9258–9266. [Google Scholar] [CrossRef]
- Hung, P.-Y.; Jiang, P.-S.; Lee, E.-F.; Fan, S.-K.; Lu, Y.-W. Genomic DNA extraction from whole blood using a digital microfluidic (DMF) platform with magnetic beads. Microsyst. Technol. 2015, 23, 313–320. [Google Scholar] [CrossRef]
- Lehmann, U.; Vandevyver, C.; Parashar, V.K.; Gijs, M.A. Droplet-based DNA purification in a magnetic lab-on-a-chip. Angew. Chem. Int. Ed. Engl. 2006, 45, 3062–3067. [Google Scholar] [CrossRef]
- Ferraro, D.; Champ, J.; Teste, B.; Serra, M.; Malaquin, L.; Viovy, J.L.; Cremoux, P.D.; Descroix, S. Microfluidic platform combining droplets and magnetic tweezers: Application to HER2 expression in cancer diagnosis. Sci. Rep. 2016, 6, 25540. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Chen, C.H.; Gao, W.; Chao, S.H.; Meldrum, D.R. Parallel RNA extraction using magnetic beads and a droplet array. Lab Chip 2015, 15, 1059–1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowalczyk, A.; Matysiak-Brynda, E.; Bystrzejewski, M.; Sutherland, D.S.; Stojek, Z.; Nowicka, A.M. Conformational control of human transferrin covalently anchored to carbon-coated iron nanoparticles in presence of a magnetic field. Acta Biomater 2016, 45, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Ostafe, R.; Prodanovic, R.; Lloyd Ung, W.; Weitz, D.A.; Fischer, R. A high-throughput cellulase screening system based on droplet microfluidics. Biomicrofluidics 2014, 8, 041102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Najah, M.; Calbrix, R.; Mahendra-Wijaya, I.P.; Beneyton, T.; Griffiths, A.D.; Drevelle, A. Droplet-based microfluidics platform for ultra-high-throughput bioprospecting of cellulolytic microorganisms. Chem. Biol. 2014, 21, 1722–1732. [Google Scholar] [CrossRef] [Green Version]
- Pipper, J.; Inoue, M.; Ng, L.F.; Neuzil, P.; Zhang, Y.; Novak, L. Catching bird flu in a droplet. Nat. Med. 2007, 13, 1259. [Google Scholar] [CrossRef] [PubMed]
- Agiotis, L.; Theodorakos, I.; Samothrakitis, S.; Papazoglou, S.; Zergioti, I.; Raptis, Y.S. Magnetic manipulation of superparamagnetic nanoparticles in a microfluidic system for drug delivery applications. J. Magn. Magn. Mater. 2016, 401, 956–964. [Google Scholar] [CrossRef]
- Liu, Y.M.; Wu, W.; Ju, X.J.; Wang, W.; Xie, R.; Mou, C.L.; Zheng, W.C.; Liu, Z.; Chu, L.Y. Smart microcapsules for direction-specific burst release of hydrophobic drugs. Rsc Adv. 2014, 4, 46568–46575. [Google Scholar] [CrossRef]
- Chen, P.; Huang, Y.Y.; Hoshino, K.; Zhang, J.X. Microscale magnetic field modulation for enhanced capture and distribution of rare circulating tumor cells. Sci. Rep. 2015, 5, 8745. [Google Scholar] [CrossRef] [Green Version]
- Alexiou, C.; Arnold, W.; Klein, R.J.; Parak, F.G.; Hulin, P.; Bergemann, C.; Erhardt, W.; Wagenpfeil, S.; Lubbe, A.S. Locoregional cancer treatment with magnetic drug targeting. Cancer Res. 2000, 60, 6641–6648. [Google Scholar]
- Lin, G.G.; Makarov, D.; Schmidt, O.G. Magnetic sensing platform technologies for biomedical applications. Lab Chip 2017, 17, 1884–1912. [Google Scholar] [CrossRef]
- Leidong, M.; Hur, K. Towards ferrofluidics for μ-TAS and lab on-a-chip applications. Nanotechnology 2006, 17, S34. [Google Scholar]
- Nethe, A.; Schöppe, T.; Stahlmann, H.-D. Ferrofluid driven actuator for a left ventricular assist device. J. Magn. Magn. Mater. 1999, 201, 423–426. [Google Scholar] [CrossRef]
- Melikhov, Y.; Lee, S.J.; Jiles, D.C.; Schmidt, D.H.; Porter, M.D.; Shinar, R. Microelectromagnetic ferrofluid-based actuator. J. Appl. Phys. 2003, 93, 8438–8440. [Google Scholar] [CrossRef] [Green Version]
- Volder, M.D.; Reynaerts, D. Development of a hybrid ferrofluid seal technology for miniature pneumatic and hydraulic actuators. Sens. Actuators A Phys. 2009, 152, 234–240. [Google Scholar] [CrossRef]
- Torres-Diaz, I.; Rinaldi, C. Recent progress in ferrofluids research: Novel applications of magnetically controllable and tunable fluids. Soft Matter 2014, 10, 8584–8602. [Google Scholar] [CrossRef]
- Chakrabarty, D.; Dutta, S.; Chakraborty, N.; Ganguly, R. Magnetically actuated transport of ferrofluid droplets over micro-coil array on a digital microfluidic platform. Sens. Actuators B Chem. 2016, 236, 367–377. [Google Scholar] [CrossRef]
- Elmore, W.C. The magnetization of ferromagnetic colloids. Phys. Rev. 1938, 54, 1092–1095. [Google Scholar] [CrossRef]
- Rosensweig, R.E. Ferrohydrodynamics; Cambridge University Press: New York, NY, USA, 1985. [Google Scholar]
- Nacev, A.; Komaee, A.; Sarwar, A.; Probst, R. Towards Control of Magnetic Fluids in Patients: Directing Therapeutic Nanoparticles to Disease Locations. Control Syst. IEEE 2012, 32, 32–74. [Google Scholar] [CrossRef]
- Hu, L.; Zhang, R.; Chen, Q. Synthesis and assembly of nanomaterials under magnetic fields. Nanoscale 2014, 6, 14064–14105. [Google Scholar] [CrossRef]
- Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Osher, S.; Fedkiw, R.P. Level Set Methods: An Overview and Some Recent Results. J. Comput. Phys. 2001, 169, 463–502. [Google Scholar] [CrossRef] [Green Version]
- White, F.M.; Majdalani, J. Viscous Fluid Flow; McGraw-Hill: New York, NY, USA, 2006. [Google Scholar]
- Brackbill, J.U.; Kothe, D.B.; Zemach, C. A continuum method for modeling surface tension. J. Comput. Phys. 1992, 100, 335–354. [Google Scholar] [CrossRef]
- Dixit, S.; Faris, G. Optically Controlled Droplet Adhesion and Coalescence: A New and Versatile Microfluidic Technique. In Biomedical Optics; Optica Publishing Group: Washington, DC, USA, 2008; p. BTuF59. [Google Scholar]
- Huang, S.; Yin, S.; Chen, F.; Luo, H.; Tang, Q.; Song, J. Directional transport of droplets on wettability patterns at high temperature. Appl. Surf. Sci. 2018, 428, 432–438. [Google Scholar] [CrossRef]
- Laurent, M.; Ricard, J.-L.; Bahain, J.-J.; Voinchet, P.; Rousseau, L. Datation du site Paléolithique moyen de la Butte d’Arvigny (Moissy-Cramayel, Seine-et-Marne). Comptes Rendus De L’académie Des Sci.-Ser. IIA-Earth Planet. Sci. 2000, 330, 581–583. [Google Scholar] [CrossRef]
- Nelson, W.C.; Kim, C.-J.C. Droplet Actuation by Electrowetting-on-Dielectric (EWOD): A Review. J. Adhes. Sci. Technol. 2012, 26, 1747–1771. [Google Scholar] [CrossRef] [Green Version]
- Shin, D.J.; Wang, T.H. Magnetic droplet manipulation platforms for nucleic acid detection at the point of care. Ann. Biomed. Eng. 2014, 42, 2289–2302. [Google Scholar] [CrossRef]
- Brouzes, E.; Kruse, T.; Kimmerling, R.; Strey, H.H. Rapid and continuous magnetic separation in droplet microfluidic devices. Lab Chip 2015, 15, 908–919. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, T.H. Full-range magnetic manipulation of droplets via surface energy traps enables complex bioassays. Adv. Mater. 2013, 25, 2903–2908. [Google Scholar] [CrossRef]
- Yang, C.; Ning, Y.; Ku, X.; Zhuang, G.; Li, G. Automatic magnetic manipulation of droplets on an open surface using a superhydrophobic electromagnet needle. Sens. Actuators B Chem. 2018, 257, 409–418. [Google Scholar] [CrossRef]
- Long, Z.; Shetty, A.M.; Solomon, M.J.; Larson, R.G. Fundamentals of magnet-actuated droplet manipulation on an open hydrophobic surface. Lab Chip 2009, 9, 1567–1575. [Google Scholar] [CrossRef]
- Park, Y.; Jeon, J.; Chung, S.K. Three-dimensional (3D) magnetic droplet manipulation for biomedical applications. In Proceedings of the 2018 IEEE Micro Electro Mechanical Systems (MEMS), Belfast, UK, 21–25 January 2018. [Google Scholar]
- Yang, C.; Zhang, Z.; Li, G. Programmable droplet manipulation by combining a superhydrophobic magnetic film and an electromagnetic pillar array. Sens. Actuators B Chem. 2018, 262, 892–901. [Google Scholar] [CrossRef]
- Chong, Z.Z.; Tan, S.H.; Ganan-Calvo, A.M.; Tor, S.B.; Loh, N.H.; Nguyen, N.T. Active droplet generation in microfluidics. Lab Chip 2016, 16, 35–58. [Google Scholar] [CrossRef] [Green Version]
- Sattari, A.; Hanafizadeh, P.; Hoorfar, M.J.A.i.C.; Science, I. Multiphase flow in microfluidics: From droplets and bubbles to the encapsulated structures. Adv. Colloid Interface Sci. 2020, 282, 102208. [Google Scholar] [CrossRef] [PubMed]
- Amirifar, L.; Besanjideh, M.; Nasiri, R.; Shamloo, A.; Nasrollahi, F.; de Barros, N.R.; Davoodi, E.; Erdem, A.; Mahmoodi, M.; Hosseini, V.; et al. Droplet-based microfluidics in biomedical applications. Biofabrication 2022, 14, 022001. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Ma, P.; Zhu, C.; Fu, T.; Luo, G.J.I.; Research, E.C. Manipulable Formation of Ferrofluid Droplets in Y-Shaped Flow-Focusing Microchannels. Ind. Eng. Chem. Res. 2019, 58, 19226–19238. [Google Scholar] [CrossRef]
- Huang, J.-P.; Ge, X.-H.; Xu, J.-H.; Luo, G.-S. Controlled formation and coalescence of paramagnetic ionic liquid droplets under magnetic field in coaxial microfluidic devices. Chem. Eng. Sci. 2016, 152, 293–300. [Google Scholar] [CrossRef]
- Kahkeshani, S.; Carlo, D.D. Drop formation using ferrofluids driven magnetically in a step emulsification device. Lab Chip 2016, 16, 2474–2480. [Google Scholar] [CrossRef] [PubMed]
- Ghaderi, A.; Kayhani, M.H.; Nazari, M.; Fallah, K. Drop formation of ferrofluid at co-flowing microcahnnel under uniform magnetic field. Eur. J. Mech. B-Fluid 2018, 67, 87–96. [Google Scholar] [CrossRef]
- Tan, S.H.; Nguyen, N.T. Generation and manipulation of monodispersed ferrofluid emulsions: The effect of a uniform magnetic field in flow-focusing and T-junction configurations. Phys. Rev. E Stat. Nonlin Soft Matter Phys. 2011, 84, 036317. [Google Scholar] [CrossRef] [Green Version]
- Tan, S.-H.; Nguyen, N.-T.; Yobas, L.; Kang, T.G. Formation and manipulation of ferrofluid droplets at a microfluidicT-junction. J. Micromech. Microeng. 2010, 20, 045004. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Li, H.; Zhu, C.; Fu, T.; Ma, Y.; Li, H.Z. Micro-magnetofluidics of ferrofluid droplet formation in a T-junction. Colloids Surf. A Physicochem. Eng. Asp. 2018, 537, 572–579. [Google Scholar] [CrossRef]
- Liu, J.; Yap, Y.F.; Nguyen, N.T. Numerical study of the formation process of ferrofluid droplets. Phys. Fluids 2011, 23, 395. [Google Scholar] [CrossRef] [Green Version]
- Yan, Q.; Xuan, S.; Ruan, X.; Wu, J.; Gong, X. Magnetically controllable generation of ferrofluid droplets. Microfluid. Nanofluidics 2015, 19, 1377–1384. [Google Scholar] [CrossRef]
- Liu, J.; Tan, S.-H.; Yap, Y.F.; Ng, M.Y.; Nguyen, N.-T. Numerical and experimental investigations of the formation process of ferrofluid droplets. Microfluid. Nanofluidics 2011, 11, 177–187. [Google Scholar] [CrossRef] [Green Version]
- Fabian, M.; Burda, P.; Šviková, M.; Huňady, R. The Influence of magnetic field on the separation of droplets from ferrofluid jet. J. Magn. Magn. Mater. 2017, 431, 196–200. [Google Scholar] [CrossRef]
- Wu, Y.; Fu, T.; Ma, Y.; Li, H.Z. Ferrofluid droplet formation and breakup dynamics in a microfluidic flow-focusing device. Soft Matter 2013, 9, 9792. [Google Scholar] [CrossRef]
- Varma, V.B.; Ray, A.; Wang, Z.; Wang, Z.; Wu, R.; Jayaneel, P.J.; Sudharsan, N.M.; Ramanujan, R.V. Control of Ferrofluid Droplets in Microchannels by Uniform Magnetic Fields. IEEE Magn. Lett. 2016, 7, 1–5. [Google Scholar] [CrossRef]
- Katsikis, G.; Breant, A.; Rinberg, A.; Prakash, M. Synchronous magnetic control of water droplets in bulk ferrofluid. Soft Matter 2018, 14, 681–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khoshmanesh, K.; Tang, S.Y.; Zhu, J.Y.; Schaefer, S.; Mitchell, A.; Kalantar-Zadeh, K.; Dickey, M.D. Liquid metal enabled microfluidics. Lab Chip 2017, 17, 974–993. [Google Scholar] [CrossRef] [PubMed]
- Jamin, T.; Py, C.; Falcon, E. Instability of the origami of a ferrofluid drop in a magnetic field. Phys. Rev. Lett. 2011, 107, 204503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.-P.; Yang, S.-T.; Wei, Z.-H. Field dependent shape variation of magnetic fluid droplets on magnetic dots. J. Magn. Magn. Mater. 2012, 324, 4133–4135. [Google Scholar] [CrossRef]
- Latikka, M.; Backholm, M.; Timonen, J.V.I.; Ras, R.H.A. Wetting of ferrofluids: Phenomena and control. Curr. Opin. Colloid Interface Sci. 2018, 36, 118–129. [Google Scholar] [CrossRef] [Green Version]
- Mats, L.; Young, R.; Gibson, G.T.T.; Oleschuk, R.D. Magnetic droplet actuation on natural (Colocasia leaf) and fluorinated silica nanoparticle superhydrophobic surfaces. Sens. Actuators B Chem. 2015, 220, 5–12. [Google Scholar] [CrossRef]
- Berim, G.O.; Ruckenstein, E. Nanodrop of an Ising magnetic fluid on a solid surface. Langmuir 2011, 27, 8753–8760. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Ristenpart, W.D.; Stroeve, P. Magnetically induced decrease in droplet contact angle on nanostructured surfaces. Langmuir 2011, 27, 11747–11751. [Google Scholar] [CrossRef] [PubMed]
- Saha, A.K.; Das, D.; Srivastava, R.; Panigrahi, P.K.; Muralidhar, K. Fluid Mechanics and Fluid Power–Contemporary Research. In Proceedings of the 5th International and 41st National Conference on FMFP 2014; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Nguyen, N.-T.; Zhu, G.; Chua, Y.-C.; Phan, V.-N.; Tan, S.-H. Magnetowetting and Sliding Motion of a Sessile Ferrofluid Droplet in the Presence of a Permanent Magnet. Langmuir 2010, 26, 12553–12559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, U.; Sen, A. Shape evolution and splitting of ferrofluid droplets on a hydrophobic surface in the presence of a magnetic field. Soft Matter 2018, 14. [Google Scholar] [CrossRef] [PubMed]
- Ghaderi, A.; Kayhani, M.H.; Nazari, M. Numerical investigation on falling ferrofluid droplet under uniform magnetic field. Eur. J. Mech. -B/Fluids 2018, 72, 1–11. [Google Scholar] [CrossRef]
- Habera, M.; Hron, J. Modelling of a free-surface ferrofluid flow. J. Magn. Magn. Mater. 2017, 431, 157–160. [Google Scholar] [CrossRef]
- Shi, D.; Bi, Q.; He, Y.; Zhou, R. Experimental investigation on falling ferrofluid droplets in vertical magnetic fields. Exp. Therm. Fluid Sci. 2014, 54, 313–320. [Google Scholar] [CrossRef]
- Jackson, B.A.; Terhune, K.J.; King, L.B. Ionic liquid ferrofluid interface deformation and spray onset under electric and magnetic stresses. Phys. Fluids 2017, 29. [Google Scholar] [CrossRef] [Green Version]
- Bashtovoi, V.; Reks, A.; Baev, A.; Mansoor, A.-J.T.M. Topological instability of a semi-bounded magnetic fluid drop under influence of magnetic and ultrasound fields. J. Magn. Magn. Mater. 2017, 431, 42–45. [Google Scholar] [CrossRef]
- Oh, D.W.; Jin, J.S.; Choi, J.H.; Kim, H.Y.; Lee, J.S. A microfluidic chaotic mixer using ferrofluid. J. Micromech. Microeng. 2007, 17, 2077–2083. [Google Scholar] [CrossRef]
- Lee, C.P.; Chen, Y.H.; Lai, M.F. Fabrication of Microlens Arrays by Utilizing Magnetic Hydrodynamic Instability of Ferrofluid Droplets. IEEE Trans. Magn. 2014, 50, 1–4. [Google Scholar] [CrossRef]
- Xiao, W.; Hardt, S. An adaptive liquid microlens driven by a ferrofluidic transducer. J. Micromech. Microeng. 2010, 20, 055032. [Google Scholar] [CrossRef]
- Malouin Jr, B.A.; Vogel, M.J.; Olles, J.D.; Cheng, L.; Hirsa, A.H. Electromagnetic liquid pistons for capillarity-based pumping. Lab Chip 2011, 11, 393–397. [Google Scholar] [CrossRef]
- Schultheis, T.; Molella, L.S.; Reithmeier, E.; Rissing, L.; Hardt, S. Performance of an adaptive liquid microlens controlled by a microcoil actuator. Microfluid. Nanofluidics 2012, 13, 299–308. [Google Scholar] [CrossRef]
- Ahn, J.; Oh, J.G.; Choi, B. A novel type of a microfluidic system using ferrofluids for an application of µ-tas. Microsyst. Technol. 2004, 10, 622–627. [Google Scholar] [CrossRef]
- Greivell, N.E.; Hannaford, B. The design of a ferrofluid magnetic pipette. Biomed. Eng. IEEE Trans. 1997, 44, 129–135. [Google Scholar] [CrossRef] [Green Version]
- Hatch, A.; Kamholz, A.E.; Holman, G.; Yager, P. A ferrofluidic magnetic micropump. Microelectromech. Syst. J. 2001, 10, 215–221. [Google Scholar] [CrossRef] [Green Version]
- Lung-Ming, F.; Wei-Ching, F.; Ting-Fu, H.; Chia-Yen, L. A Magnetic Micropump Based on Ferrofluidic Actuation. Int. J. Autom. Smart Technol. 2014, 4, 77–82. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, N.T.; Chai, M.F. A Stepper Micropump for Ferrofluid Driven Microfluidic Systems. Micro Nanosyst. 2009, 1, 17–21. [Google Scholar] [CrossRef]
- Ohashi, T.; Kuyama, H.; Hanafusa, N.; Togawa, Y. A simple device using magnetic transportation for droplet-based PCR. Biomed. Microdevices 2007, 9, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Lok, K.S.; Kwok, Y.C.; Lee, P.P.F.; Nguyen, N.-T. Ferrofluid plug as valve and actuator for whole-cell PCR on chip. Sens. Actuators B Chem. 2012, 166–167, 893–897. [Google Scholar] [CrossRef] [Green Version]
- Hartshorne, H.; Backhouse, C.J.; Lee, W.E. Ferrofluid-based microchip pump and valve. Sens. Actuators B Chem. 2004, 99, 592–600. [Google Scholar] [CrossRef]
- Bijarchi, M.A.; Favakeh, A.; Sedighi, E.; Shafii, M.B.J.S.; Physical, A.A. Ferrofluid droplet manipulation using an adjustable alternating magnetic field. Sens. Actuators A Phys. 2020, 301, 111753. [Google Scholar] [CrossRef]
- Beyzavi, A.; Nguyen, N.-T. One-dimensional actuation of a ferrofluid droplet by planar microcoils. J. Phys. D Appl. Phys. 2009, 42, 015004. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, N.T.; Ng, K.M.; Huang, X.J.A.P.L. Manipulation of ferrofluid droplets using planar coils. Appl. Phys. Lett. 2006, 89, 648. [Google Scholar] [CrossRef]
- Probst, R.; Lin, J.; Komaee, A.; Nacev, A.; Cummins, Z.; Shapiro, B. Planar Steering of a Single Ferrofluid Drop by Optimal Minimum Power Dynamic Feedback Control of Four Electromagnets at a Distance. J. Magn. Magn. Mater. 2011, 323, 885–896. [Google Scholar] [CrossRef] [Green Version]
- Khaw, M.K.; Ooi, C.H.; Mohd-Yasin, F.; Nguyen, A.V.; Evans, G.M.; Nguyen, N.-T. Dynamic behaviour of a magnetically actuated floating liquid marble. Microfluid. Nanofluidics 2017, 21, 1–12. [Google Scholar] [CrossRef]
- Shu, J.; Tang, S.Y.; Feng, Z.; Li, W.; Li, X.; Zhang, S. Unconventional locomotion of liquid metal droplets driven by magnetic fields. Soft Matter 2018, 14, 7113–7118. [Google Scholar] [CrossRef] [Green Version]
- Vialetto, J.; Hayakawa, M.; Kavokine, N.; Takinoue, M.; Varanakkottu, S.N.; Rudiuk, S.; Anyfantakis, M.; Morel, M.; Baigl, D. Magnetic Actuation of Drops and Liquid Marbles Using a Deformable Paramagnetic Liquid Substrate. Angew. Chem. Int. Ed. Engl. 2017, 56, 16565–16570. [Google Scholar] [CrossRef] [PubMed]
- Damodara, S.; Sen, A.K. Magnetic field assisted droplet manipulation on a soot-wax coated superhydrophobic surface of a PDMS-iron particle composite substrate. Sens. Actuators B Chem. 2017, 239, 816–823. [Google Scholar] [CrossRef]
- Seo, K.S.; Wi, R.; Im, S.G.; Kim, D.H. A superhydrophobic magnetic elastomer actuator for droplet motion control. Polym. Adv. Technol. 2013, 24, 1075–1080. [Google Scholar] [CrossRef]
- Lin, Y.; Hu, Z.; Zhang, M.; Xu, T.; Feng, S.; Jiang, L.; Zheng, Y. Magnetically Induced Low Adhesive Direction of Nano/Micropillar Arrays for Microdroplet Transport. Adv. Funct. Mater. 2018. [Google Scholar] [CrossRef]
- Wang, L.; Gao, C.; Hou, Y.; Zheng, Y.; Jiang, L. Magnetic field-guided directional rebound of a droplet on a superhydrophobic flexible needle surface. J. Mater. Chem. A 2016, 4, 18289–18293. [Google Scholar] [CrossRef]
- Sajeesh, P.; Sen, A.K. Particle separation and sorting in microfluidic devices: A review. Microfluid. Nanofluidics 2013, 17, 1–52. [Google Scholar] [CrossRef]
- Movafaghi, S.; Wang, W.; Metzger, A.; Williams, D.D.; Williams, J.D.; Kota, A.K. Tunable superomniphobic surfaces for sorting droplets by surface tension. Lab Chip 2016, 16, 3204–3209. [Google Scholar] [CrossRef] [PubMed]
- Joensson, H.N.; Uhlen, M.; Svahn, H.A. Droplet size based separation by deterministic lateral displacement-separating droplets by cell--induced shrinking. Lab Chip 2011, 11, 1305–1310. [Google Scholar] [CrossRef]
- Hatch, A.C.; Patel, A.; Beer, N.R.; Lee, A.P. Passive droplet sorting using viscoelastic flow focusing. Lab Chip 2013, 13, 1308–1315. [Google Scholar] [CrossRef]
- Al-Hetlani, E.; Hatt, O.J.; Vojtíšek, M.; Tarn, M.D.; Iles, A.; Pamme, N.; Häfeli, U.; Schütt, W.; Zborowski, M. Sorting and Manipulation of Magnetic Droplets in Continuous Flow. AIP Conf. Proc. 2010. [Google Scholar] [CrossRef]
- Zhang, K.; Liang, Q.; Ai, X.; Hu, P.; Wang, Y.; Luo, G. On-demand microfluidic droplet manipulation using hydrophobic ferrofluid as a continuous-phase. Lab Chip 2011, 11, 1271–1275. [Google Scholar] [CrossRef] [PubMed]
- Toner, M.; Irimia, D. Blood-on-a-chip. Annu. Rev. Biomed. Eng. 2005, 7, 77–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolosnjaj-Tabi, J.; Wilhelm, C.; Clément, O.; Gazeau, F. Cell labeling with magnetic nanoparticles: Opportunity for magnetic cell imaging and cell manipulation. J. Nanobiotechnol. 2013, 11, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Sung, Y.J.; Kim, J.Y.H.; Choi, H.I.; Kwak, H.S.; Sim, S.J. Magnetophoretic sorting of microdroplets with different microalgal cell densities for rapid isolation of fast growing strains. Sci. Rep. 2017, 7, 10390. [Google Scholar] [CrossRef] [Green Version]
- Borlido, L.; Azevedo, A.M.; Roque, A.C.; Aires-Barros, M.R. Magnetic separations in biotechnology. Biotechnol. Adv. 2013, 31, 1374–1385. [Google Scholar] [CrossRef]
- He, J.; Huang, M.; Wang, D.; Zhang, Z.; Li, G. Magnetic separation techniques in sample preparation for biological analysis: A review. J. Pharm. Biomed. Anal. 2014, 101, 84–101. [Google Scholar] [CrossRef]
- Aboutalebi, M.; Bijarchi, M.A.; Shafii, M.B.; Kazemzadeh Hannani, S. Numerical investigation on splitting of ferrofluid microdroplets in T-junctions using an asymmetric magnetic field with proposed correlation. J. Magn. Magn. Mater. 2018, 447, 139–149. [Google Scholar] [CrossRef]
- Ma, R.; Fu, T.; Zhang, Q.; Zhu, C.; Ma, Y.; Li, H.Z. Breakup dynamics of ferrofluid droplet in a microfluidic T-junction. J. Ind. Eng. Chem. 2017, 54, 408–420. [Google Scholar] [CrossRef]
- Leshansky, A.M.; Pismen, L.M. Breakup of drops in a microfluidic T junction. Phys. Fluids 2009, 21, 023303. [Google Scholar] [CrossRef] [Green Version]
- Menetrier-Deremble, L.; Tabeling, P. Droplet breakup in microfluidic junctions of arbitrary angles. Phys. Rev. E Stat. Nonlin Soft Matter Phys. 2006, 74, 035303. [Google Scholar] [CrossRef] [PubMed]
- Yamada, M.; Doi, S.; Maenaka, H.; Yasuda, M.; Seki, M. Hydrodynamic control of droplet division in bifurcating microchannel and its application to particle synthesis. J. Colloid Interface Sci. 2008, 321, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Stark, A.; Shin, D.J.; Wang, T.H.J.B.M. A sample-to-answer droplet magnetofluidic assay platform for quantitative methylation-specific PCR. Biomed. Microdevices 2018, 20, 31. [Google Scholar] [CrossRef]
- Hang Koh, W.; Seng Lok, K.; Nguyen, N.-T. A Digital Micro Magnetofluidic Platform For Lab-on-a-Chip Applications. J. Fluids Eng. 2013, 135, 021302. [Google Scholar] [CrossRef]
- Feng, H.; Xu, X.; Hao, W.; Du, Y.; Tian, D.; Jiang, L. Magnetic field actuated manipulation and transfer of oil droplets on a stable underwater superoleophobic surface. Phys. Chem. Chem. Phys. 2016, 18, 16202–16207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varma, V.B.; Wu, R.G.; Wang, Z.P.; Ramanujan, R.V. Magnetic Janus particles synthesized using droplet micro-magnetofluidic techniques for protein detection. Lab Chip 2017, 17, 3514–3525. [Google Scholar] [CrossRef]
- Nisisako, T. Recent advances in microfluidic production of Janus droplets and particles. Curr. Opin. Colloid Interface Sci. 2016, 25, 1–12. [Google Scholar] [CrossRef]
- Lone, S.; Cheong, I.W. Fabrication of polymeric Janus particles by droplet microfluidics. Rsc Adv. 2014, 4, 13322–13333. [Google Scholar] [CrossRef]
- Potts, H.E.; Barrett, R.K.; Diver, D.A. Dynamics of freely-suspended drops. J. Phys. D Appl. Phys. 2001, 34, 2529–2536. [Google Scholar] [CrossRef]
- Beaugnon, E.; Tournier, R. Levitation of organic materials. Nature 1991, 349, 470. [Google Scholar] [CrossRef]
- Simon, M.D.; Geim, A.K. Diamagnetic levitation: Flying frogs and floating magnets (invited). J. Appl. Phys. 2000, 87, 6200–6204. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhu, D.M.; Strayer, D.M.; Israelsson, U.E. Magnetic levitation of large water droplets and mice. Adv. Space Res. 2010, 45, 208–213. [Google Scholar] [CrossRef]
- Berry, M.V.; Geim, A.K. Of flying frogs and levitrons. Eur. J. Phys. 1997, 18, 307–313. [Google Scholar] [CrossRef]
- Geim, A.K.; Simon, M.D.; Boamfa, M.I.; Heflinger, L.O. Magnet levitation at your fingertips. Nature 1999, 400, 323–324. [Google Scholar] [CrossRef]
- Pang, X.F.; Zhong, L.S. The Suspension of Water Using a Superconductive Magnetic-Field and Its Features. IEEE Trans. Appl. Supercond. 2016, 26, 1–4. [Google Scholar] [CrossRef]
- Feng, L.; Shi, W.-Y. The influence of Marangoni effect on flow and deformation of an electromagnetically levitated molten droplet under static magnetic fields. Int. J. Heat Mass Transf. 2016, 101, 629–636. [Google Scholar] [CrossRef]
- Feng, L.; Shi, W.-Y. The Influence of Eddy Effect of Coils on Flow and Temperature Fields of Molten Droplet in Electromagnetic Levitation Device. Metall. Mater. Trans. B 2015, 46, 1895–1901. [Google Scholar] [CrossRef]
- Bojarevics, V.; Hyers, R.W. Levitated Liquid Dynamics in Reduced Gravity and Gravity-Compensating Magnetic Fields. JOM 2012, 64, 1089–1096. [Google Scholar] [CrossRef] [Green Version]
- Bojarevics, V.; Pericleous, K. Droplet Oscillations in High Gradient Static Magnetic Field. Microgravity Sci. Technol. 2008, 21, 119–122. [Google Scholar] [CrossRef]
- Yu, J.; Koshikawa, N.; Arai, Y.; Yoda, S.; Saitou, H. Containerless solidification of oxide material using an electrostatic levitation furnace in microgravity. J. Cryst. Growth 2001, 231, 568–576. [Google Scholar] [CrossRef]
- Kitahara, T.; Tanada, K.; Ueno, S.; Sugioka, K.-I.; Kubo, M.; Tsukada, T.; Uchikoshi, M.; Fukuyama, H. Effect of Static Magnetic Field on Recalescence and Surface Velocity Field in Electromagnetically Levitated Molten CuCo Droplet in Undercooled State. Metall. Mater. Trans. B 2015, 46, 2706–2712. [Google Scholar] [CrossRef]
- Sun, Q.; Li, J.; Liu, Y.; Jiang, Y.; Kang, K.; Feng, J. Arc characteristics and droplet transfer process in CMT welding with a magnetic field. J. Manuf. Processes 2018, 32, 48–56. [Google Scholar] [CrossRef]
Dimensionless Number | Formula and Physical Description |
---|---|
Reynolds number | |
Capillary number | |
Weber number | |
Bond number | |
Magnet Bond number |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, G.-P.; Wang, Q.-Y.; Ma, Z.-K.; Wu, S.-H.; Guo, Y.-P. Droplet Manipulation under a Magnetic Field: A Review. Biosensors 2022, 12, 156. https://doi.org/10.3390/bios12030156
Zhu G-P, Wang Q-Y, Ma Z-K, Wu S-H, Guo Y-P. Droplet Manipulation under a Magnetic Field: A Review. Biosensors. 2022; 12(3):156. https://doi.org/10.3390/bios12030156
Chicago/Turabian StyleZhu, Gui-Ping, Qi-Yue Wang, Zhao-Kun Ma, Shi-Hua Wu, and Yi-Pan Guo. 2022. "Droplet Manipulation under a Magnetic Field: A Review" Biosensors 12, no. 3: 156. https://doi.org/10.3390/bios12030156
APA StyleZhu, G.-P., Wang, Q.-Y., Ma, Z.-K., Wu, S.-H., & Guo, Y.-P. (2022). Droplet Manipulation under a Magnetic Field: A Review. Biosensors, 12(3), 156. https://doi.org/10.3390/bios12030156