Graphene Quantum Dots-Based Electrochemical Biosensing Platform for Early Detection of Acute Myocardial Infarction
Abstract
:1. Introduction
2. GQDs-Based Electrochemical Biosensing for Early Diagnosis of Acute Myocardial Infarction
3. Conclusions and Future Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Westermann, D.; Neumann, J.T.; Sörensen, N.A.; Blankenberg, S. High-sensitivity assays for troponin in patients with cardiac disease. Nat. Rev. Cardiol. 2017, 14, 472. [Google Scholar] [CrossRef] [PubMed]
- Ito, H. No-reflow phenomenon and prognosis in patients with acute myocardial infarction. Nat. Clin. Pract. Cardiovasc. Med. 2006, 3, 499–506. [Google Scholar] [CrossRef] [PubMed]
- De Couto, G.; Ouzounian, M.; Liu, P.P. Early detection of myocardial dysfunction and heart failure. Nat. Rev. Cardiol. 2010, 7, 334. [Google Scholar] [CrossRef] [PubMed]
- Zanato, N.; Talamini, L.; Zapp, E.; Brondani, D.; Vieira, I.C. Label-free electrochemical immunosensor for cardiac troponin T based on exfoliated graphite nanoplatelets decorated with gold nanoparticles. Electroanalysis 2017, 29, 1820–1827. [Google Scholar] [CrossRef]
- Africa, S.; Gmbh, H.; Diagnostics, R.; Coulter, B.; Scientifc, T.F. Cardiac Biomarkers Market to Reach $13.3 Billion by 2024. Available online: https://www.globenewswire.com/fr/news-release/2016/09/05/869370/29442/en/Cardiac-Biomarkers-Market-To-Reach-13-3-Billion-By-2024-Grand-View-Research-Inc.html (accessed on 25 January 2022).
- Negahdary, M.; Behjati-Ardakani, M.; Sattarahmady, N.; Yadegari, H.; Heli, H. Electrochemical aptasensing of human cardiac troponin I based on an array of gold nanodumbbells-Applied to early detection of myocardial infarction. Sens. Actuators B Chem. 2017, 252, 62–71. [Google Scholar] [CrossRef]
- Painter, P.C.; Van Meter, S.; Dabbs, R.L.; Clement, G.E. Analytical evaluation and comparison of dupont aca® Lactate Dehydrogenase-1 (LD1) isoenzyme assay diagnostic efficiency for acute myocardial infarction detection with other LD1 methods and aca@ CK-MB: A two-site study. Angiology 1994, 45, 585–595. [Google Scholar] [CrossRef]
- de Winter, R.J.; Lijmer, J.G.; Koster, R.W.; Hoek, F.J.; Sanders, G.T. Diagnostic accuracy of myoglobin concentration for the early diagnosis of acute myocardial infarction. Ann. Emerg. Med. 2000, 35, 113–120. [Google Scholar] [CrossRef]
- Chiu, A.; Chan, W.K.; Cheng, S.H.; Leung, C.K.; Choi, C.H. Troponin-I, myoglobin, and mass concentration of creatine kinase-MB in acute myocardial infarction. QJM 1999, 92, 711–718. [Google Scholar] [CrossRef]
- Anzai, T.; Yoshikawa, T.; Shiraki, H.; Asakura, Y.; Akaishi, M.; Mitamura, H.; Ogawa, S. C-reactive protein as a predictor of infarct expansion and cardiac rupture after a first Q-wave acute myocardial infarction. Circulation 1997, 96, 778–784. [Google Scholar] [CrossRef]
- Pinto, J.R.; Gomes, A.V.; Jones, M.A.; Liang, J.; Nguyen, S.; Miller, T.; Parvatiyar, M.S.; Potter, J.D. The functional properties of human slow skeletal troponin T isoforms in cardiac muscle regulation. J. Biol. Chem. 2012, 287, 37362–37370. [Google Scholar] [CrossRef] [Green Version]
- Babuin, L.; Jaffe, A.S. Troponin: The biomarker of choice for the detection of cardiac injury. CMAJ 2005, 173, 1191–1202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasile, V.; Jaffe, A. High-sensitivity cardiac troponin in the evaluation of possible AMI. In American College of Cardiology: Latest in Cardiology; American College of Cardiology Foundation: Washington, DC, USA, 2018. [Google Scholar]
- Pedrero, M.; Campuzano, S.; Pingarrón, J.M. Electrochemical biosensors for the determination of cardiovascular markers: A review. Electroanalysis 2014, 26, 1132–1153. [Google Scholar] [CrossRef]
- Kwon, Y.C.; Kim, M.G.; Kim, E.M.; Shin, Y.B.; Lee, S.K.; Lee, S.D.; Ro, H.S. Development of a surface plasmon resonance-based immunosensor for the rapid detection of cardiac troponin I. Biotechnol. Lett. 2011, 33, 921–927. [Google Scholar] [CrossRef]
- Lee, T.; Ahn, J.H.; Choi, J.; Lee, Y.; Kim, J.M.; Park, C.; Lee, M.H. Development of the troponin detection system based on the nanostructure. Micromachines 2019, 10, 203. [Google Scholar] [CrossRef] [Green Version]
- Kaya, I.; Sämfors, S.; Levin, M.; Borén, J.; Fletcher, J.S. Multimodal MALDI imaging mass spectrometry reveals spatially correlated lipid and protein changes in mouse heart with acute myocardial infarction. J. Am. Soc. Mass Spectrom. 2020, 31, 2133–2142. [Google Scholar] [CrossRef] [PubMed]
- Streng, A.S.; de Boer, D.; van Doorn, W.P.; Bouwman, F.G.; Mariman, E.C.; Bekers, O.; van Dieijen-Visser, M.P.; Wodzig, W.K. Identification and characterization of cardiac troponin T fragments in serum of patients suffering from acute myocardial infarction. Clin. Chem. 2017, 63, 563–572. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, C.; Jin, J.; Huang, L.; Yu, W.; Su, B.; Hu, J. Ratiometric Fluorescent Lateral Flow Immunoassay for Point-of-Care Testing of Acute Myocardial Infarction; Angewandte Chemie International Edition: Chem, Germany, 2021. [Google Scholar]
- Tabish, T.A.; Abbas, A.; Narayan, R.J. Graphene nanocomposites for transdermal biosensing. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnology 2021, 13, e1699. [Google Scholar] [CrossRef]
- Clark, L.C., Jr.; Lyons, C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29–45. [Google Scholar] [CrossRef]
- Chen, K.; Chou, W.; Liu, L.; Cui, Y.; Xue, P.; Jia, M. Electrochemical sensors fabricated by electrospinning technology: An overview. Sensors 2019, 19, 3676. [Google Scholar] [CrossRef]
- Zhang, S.; Geryak, R.; Geldmeier, J.; Kim, S.; Tsukruk, V.V. Synthesis, assembly, and applications of hybrid nanostructures for biosensing. Chem. Rev. 2017, 117, 12942–13038. [Google Scholar] [CrossRef]
- Li, J.; Zhang, S.; Zhang, L.; Zhang, Y.; Zhang, H.; Zhang, C.; Yuan, Y. A novel graphene-based nanomaterial modified electrochemical sensor for the detection of cardiac troponin I. Front. Chem. 2021, 9, 680593. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Q.; Qiao, X.; Zhou, M.; Zheng, J. Recent progress in electrochemical sensing of cardiac troponin by using nanomaterial-induced signal amplification. Microchim. Acta 2017, 184, 1573–1585. [Google Scholar] [CrossRef]
- Meng, Y.; Zhang, H.; Li, M.; Lu, W.; Liu, Y.; Gong, X.; Shuang, S.; Dong, C. A facile synthesis of long-wavelength emission nitrogen-doped carbon dots for intracellular pH variation and hypochlorite sensing. Biomater. Sci. 2021, 9, 2255–2261. [Google Scholar] [CrossRef] [PubMed]
- Hao, B.; Song, T.; Ye, M.; Liu, X.; Qiu, J.; Huang, X.; Lu, G.; Qian, W. Gold/SH-functionalized nanographene oxide/polyamidamine/poly (ethylene glycol) nanocomposites for enhanced non-enzymatic hydrogen peroxide detection. Biomater. Sci. 2020, 8, 6037–6044. [Google Scholar] [CrossRef] [PubMed]
- Ghanei-Motlagh, M.; Taher, M.A. Novel imprinted polymeric nanoparticles prepared by sol–gel technique for electrochemical detection of toxic cadmium (II) ions. Chem. Eng. J. 2017, 327, 135–141. [Google Scholar] [CrossRef]
- Mahle, R.; Mandal, D.; Kumbhakar, P.; Chandra, A.; Tiwary, C.S.; Banerjee, R. A study of microbially fabricated bio-conjugated quantum dots for pico-molar sensing of H2 O2 and glucose. Biomater. Sci. 2021, 9, 157–166. [Google Scholar] [CrossRef]
- Tabish, T.A.; Scotton, C.J.; Ferguson, D.C.J.; Lin, L.; der Veen, A.V.; Lowry, S.; Ali, M.; Jabeen, F.; Winyard, P.G.; Zhang, S. Biocompatibility and toxicity of graphene quantum dots for potential application in photodynamic therapy. Nanomedicine 2018, 13, 1923–1937. [Google Scholar] [CrossRef] [Green Version]
- Tabish, T.A.; Lin, L.; Ali, M.; Jabeen, F.; Ali, M.; Iqbal, R.; Horsell, D.W.; Winyard, P.G.; Zhang, S. Investigating the bioavailability of graphene quantum dots in lung tissues via Fourier transform infrared spectroscopy. Interface Focus 2018, 8, 20170054. [Google Scholar] [CrossRef]
- Tabish, T.A. Graphene-based materials: The missing piece in nanomedicine? Biochem. Biophys. Res. Commun. 2018, 504, 686–689. [Google Scholar] [CrossRef]
- Tabish, T.A.; Hayat, H.; Abbas, A.; Narayan, R.J. Graphene quantum dot-based electrochemical biosensing for early cancer detection. Curr. Opin. Electrochem. 2021, 30, 100786. [Google Scholar] [CrossRef]
- Hasan, M.T.; Gonzalez-Rodriguez, R.; Ryan, C.; Pota, K.; Green, K.; Coffer, J.L.; Naumov, A.V. Nitrogen-doped graphene quantum dots: Optical properties modification and photovoltaic applications. Nano Res. 2019, 12, 1041–1047. [Google Scholar] [CrossRef]
- Yin, L.; Zhou, J.; Li, W.; Zhang, J.; Wang, L. Yellow fluorescent graphene quantum dots as a phosphor for white tunable light-emitting diodes. RSC Adv. 2019, 9, 9301–9307. [Google Scholar] [CrossRef] [Green Version]
- Tabish, T.A.; Narayan, R.J. Crossing the blood–brain barrier with graphene nanostructures. Mater. Today 2021, 51, 393–401. [Google Scholar] [CrossRef]
- Tabish, T.A.; Zhang, S.; Winyard, P.G. Developing the next generation of graphene-based platforms for cancer therapeutics: The potential role of reactive oxygen species. Redox Biol. 2018, 15, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Tabish, T.A.; Zhang, S. Graphene quantum dots: Syntheses, properties, and biological applications. In Comprehensive Nanoscience and Nanotechnology, 2nd ed.; Andrews, D., Nann, T., Lipson, R.H., Eds.; Elsevier: Oxford, UK, 2019; pp. 170–192. [Google Scholar]
- Centeno, L.; Romero-García, J.; Alvarado-Canché, C.; Gallardo-Vega, C.; Télles-Padilla, G.; Barriga-Castro, E.D.; Cabrera-Álvarez, E.N.; Ledezma-Pérez, A.; de León, A. Green synthesis of graphene quantum dots from Opuntia sp. extract and their application in phytic acid detection. Sens. Bio-Sens. Res. 2021, 32, 100412. [Google Scholar] [CrossRef]
- Strong, M.E.; Richards, J.R.; Torres, M.; Beck, C.M.; La Belle, J.T. Faradaic electrochemical impedance spectroscopy for enhanced analyte detection in diagnostics. Biosens. Bioelectron. 2021, 177, 112949. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, G.; Zhu, L.; Li, G. Graphene quantum dots-based platform for the fabrication of electrochemical biosensors. Electrochem. Commun. 2011, 13, 31–33. [Google Scholar] [CrossRef]
- Bhatnagar, D.; Kaur, I.; Kumar, A. Ultrasensitive cardiac troponin I antibody based nanohybrid sensor for rapid detection of human heart attack. Int. J. Biol. Macromol. 2017, 95, 505–510. [Google Scholar] [CrossRef]
- Mansuriya, B.D.; Altintas, Z. Enzyme-free electrochemical nano-immunosensor based on graphene quantum dots and gold nanoparticles for cardiac biomarker determination. Nanomaterials 2021, 11, 578. [Google Scholar] [CrossRef]
- Fan, D.; Bao, C.; Khan, M.S.; Wang, C.; Zhang, Y.; Liu, Q.; Wei, Q. A novel label-free photoelectrochemical sensor based on N, S-GQDs and CdS co-sensitized hierarchical Zn2SnO4 cube for detection of cardiac troponin I. Biosens. Bioelectron. 2018, 106, 14–20. [Google Scholar] [CrossRef]
- Lakshmanakumar, M.; Nesakumar, N.; Sethuraman, S.; Rajan, K.S.; Krishnan, U.M.; Rayappan, J.B.B. Functionalized graphene quantum dot interfaced electrochemical detection of cardiac Troponin I: An antibody free approach. Sci. Rep. 2019, 9, 17348. [Google Scholar] [CrossRef] [PubMed]
- Tuteja, S.K.; Chen, R.; Kukkar, M.; Song, C.K.; Mutreja, R.; Singh, S.; Suri, C.R. A label-free electrochemical immunosensor for the detection of cardiac marker using graphene quantum dots (GQDs). Biosens. Bioelectron. 2016, 86, 548–556. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, S.K.; Singh, E.; Singh, P.; Meyyappan, M.; Nalwa, H.S. A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv. 2019, 9, 8778–8881. [Google Scholar] [CrossRef]
- Tabish, T.A.; Narayan, R.J. Mitochondria-targeted graphene for advanced cancer therapeutics. Acta Biomater. 2021, 129, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Ahammad, A.S.; Choi, Y.H.; Koh, K.; Kim, J.H.; Lee, J.J.; Lee, M. Electrochemical detection of cardiac biomarker troponin I at gold nanoparticle-modified ITO electrode by using open circuit potential. Int. J. Electrochem. Sci. 2011, 6, 1906–1916. [Google Scholar]
- Sandil, D.; Kumar, S.; Arora, K.; Srivastava, S.; Malhotra, B.D.; Sharma, S.C.; Puri, N.K. Biofunctionalized nanostructured tungsten trioxide-based sensor for cardiac biomarker detection. Mater. Lett. 2017, 186, 202–205. [Google Scholar] [CrossRef]
- Yuan, Z.; Wang, L.; Chen, J.; Su, W.; Li, A.; Su, G.; Liu, P.; Zhou, X. Electrochemical strategies for detection of cTnI. Analyst 2021, 146, 5474–5495. [Google Scholar] [CrossRef]
- Szunerits, S.; Mishyn, V.; Grabowska, I.; Boukherroub, R. Electrochemical cardiovascular platforms: Current state of the art and beyond. Biosens. Bioelectron. 2019, 131, 287–298. [Google Scholar] [CrossRef]
- Wang, B.; Jing, R.; Qi, H.; Gao, Q.; Zhang, C. Label-free electrochemical impedance peptide-based biosensor for the detection of cardiac troponin I incorporating gold nanoparticles modified carbon electrode. J. Electroanal. Chem. 2016, 781, 212–217. [Google Scholar] [CrossRef]
- Shanmugam, N.R.; Muthukumar, S.; Chaudhry, S.; Anguiano, J.; Prasad, S. Ultrasensitive nanostructure sensor arrays on flexible substrates for multiplexed and simultaneous electrochemical detection of a panel of cardiac biomarkers. Biosens. Bioelectron. 2017, 89, 764–772. [Google Scholar] [CrossRef]
- Singal, S.; Srivastava, A.K.; Gahtori, B. Immunoassay for troponin I using a glassy carbon electrode modified with a hybrid film consisting of graphene and multiwalled carbon nanotubes and decorated with platinum nanoparticles. Microchim. Acta 2016, 183, 1375–1384. [Google Scholar] [CrossRef]
- Sun, L.; Li, W.; Wang, M.; Ding, W.; Ji, Y. Development of an electrochemical impedance immunosensor for myoglobin determination. Int. J. Electrochem. Sci. 2017, 7, 6170–6179. [Google Scholar] [CrossRef]
- Wang, Y.; Han, M.; Ye, X.; Wu, K.; Wu, T.; Li, C. Voltammetric myoglobin sensor based on a glassy carbon electrode modified with a composite film consisting of carbon nanotubes and a molecularly imprinted polymerized ionic liquid. Microchim. Acta 2017, 184, 195–202. [Google Scholar] [CrossRef]
- Singh, S.; Tuteja, S.K.; Sillu, D.; Deep, A.; Suri, C.R. Gold nanoparticles-reduced graphene oxide based electrochemical immunosensor for the cardiac biomarker myoglobin. Microchim. Acta 2016, 183, 1729–1738. [Google Scholar] [CrossRef]
Class of Nanomaterials | Biomarker | Sample Source | Electrochemical Method | Limit of Detection | Refs. |
---|---|---|---|---|---|
Gold nanoparticles | cTnI | Serum | Electrical impedance spectroscopy | 1 pg mL−1 | [53] |
ZnO nanoparticles | cTnI | Serum | Electrical impedance spectroscopy | 1 pg mL−1 | [54] |
Pt nanoparticles/G-carbon nanotubes | cTnI | Serum | Electrical impedance spectroscopy | 1.0 pg mL−1 | [55] |
Gold nanodumbbells | cTnI | Serum | Differential pulse voltammetry | 8.0 pg mL−1 | [6] |
Acetic acid functionalized GQDs | cTnI | Serum | Cyclic voltammetry and amperometry | 0.02 ng mL−1 | [45] |
GQDs/polyamidoamine nanohybrid | cTnI | Serum | Cyclic voltammetry and Differential pulse voltammetry | 20 fg mL−1 | [42] |
Gold nanoparticles | Myoglobin | Serum | Electrical impedance spectroscopy | 2.7 ng mL−1 | [56] |
Multiwalled carbon nanotubes | Myoglobin | Serum | Cyclic voltammetry | 0.171 pg mL−1 | [57] |
Gold nanoparticles @reduced graphene oxide | Myoglobin | Serum | Differential pulse voltammetry | 0.67 ng mL−1 | [58] |
GQDs | Myoglobin | Serum | Electrical impedance spectroscopy | 0.01 ng mL−1 | [46] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tabish, T.A.; Hayat, H.; Abbas, A.; Narayan, R.J. Graphene Quantum Dots-Based Electrochemical Biosensing Platform for Early Detection of Acute Myocardial Infarction. Biosensors 2022, 12, 77. https://doi.org/10.3390/bios12020077
Tabish TA, Hayat H, Abbas A, Narayan RJ. Graphene Quantum Dots-Based Electrochemical Biosensing Platform for Early Detection of Acute Myocardial Infarction. Biosensors. 2022; 12(2):77. https://doi.org/10.3390/bios12020077
Chicago/Turabian StyleTabish, Tanveer A., Hasan Hayat, Aumber Abbas, and Roger J. Narayan. 2022. "Graphene Quantum Dots-Based Electrochemical Biosensing Platform for Early Detection of Acute Myocardial Infarction" Biosensors 12, no. 2: 77. https://doi.org/10.3390/bios12020077
APA StyleTabish, T. A., Hayat, H., Abbas, A., & Narayan, R. J. (2022). Graphene Quantum Dots-Based Electrochemical Biosensing Platform for Early Detection of Acute Myocardial Infarction. Biosensors, 12(2), 77. https://doi.org/10.3390/bios12020077