Silicon Nanowires Length and Numbers Dependence on Sensitivity of the Field-Effect Transistor Sensor for Hepatitis B Virus Surface Antigen Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of Poly-Si NWFET Devices
2.3. Chemical Modification of the Sensor Chip Surface
2.4. HBsAb Biografting
3. Results and Discussions
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Yang, B.; Hua, Z.K.; Zhang, J.Y.; Guo, P.; Hao, D.D.; Gao, Y.S.; Huang, J. Recent advancements in flexible and wearable sensors for biomedical and healthcare applications. J. Phys. D Appl. Phys. 2021, 55, 134001. [Google Scholar] [CrossRef]
- Yong, S.K.; Shen, S.-K.; Chiang, C.-W.; Weng, Y.-Y.; Lu, M.-P.; Yang, Y.-S. Silicon Nanowire Field-Effect Transistor as Label-Free Detection of Hepatitis B Virus Proteins with Opposite Net Charges. Biosensors 2021, 11, 442. [Google Scholar] [CrossRef] [PubMed]
- Alam, S.; Raman, A.; Raj, B.; Kumar, N.; Singh, S. Design and Analysis of Gate Overlapped/Underlapped NWFET Based Lable Free Biosensor. Silicon 2021, 14, 989–996. [Google Scholar] [CrossRef]
- Chiou, A.-H.; Wei, J.-L.; Chen, S.-H. Ag-Functionalized Si Nanowire Arrays Aligned Vertically for SERS Detection of Captured Heavy Metal Ions by BSA. Coatings 2021, 11, 685. [Google Scholar] [CrossRef]
- Su, P.-C.; Chen, B.-H.; Lee, Y.-C.; Yang, Y.-S. Silicon Nanowire Field-Effect Transistor as Biosensing Platforms for Post-Translational Modification. Biosensors 2020, 10, 213. [Google Scholar] [CrossRef]
- Wu, C.-C.; Manga, Y.B.; Yang, M.-H.; Chien, Z.-S.; Lee, K.-S. Label-Free Detection of BRAFV599E Gene Mutation Using Side-Gated Nanowire Field Effect Transistors. J. Electrochem. Soc. 2018, 165, B576–B581. [Google Scholar] [CrossRef]
- Ferrier, D.C.; Honeychurch, K.C. Carbon Nanotube (CNT)-Based Biosensors. Biosensors 2021, 11, 486. [Google Scholar] [CrossRef]
- Tao, Z.; Si, H.W.; Zhang, X.D.; Liao, J.J.; Lin, S.W. Highly sensitive and selective H2O2 sensors based on ZnO TFT using PBNCs/Pt-NPs/TNTAs as gate electrode. Sens. Actuators B Chem. 2021, 349, 130791. [Google Scholar] [CrossRef]
- Wu, C.-C.; Wang, M.-R. Effects of Buffer Concentration on the Sensitivity of Silicon Nanobelt Field-Effect Transistor Sensors. Sensors 2021, 21, 4904. [Google Scholar] [CrossRef]
- Rohaizad, N.; Mayorga-Martinez, C.C.; Sofer, Z.; Webster, R.D.; Pumera, M. Niobium-doped TiS2: Formation of TiS3 nanobelts and their effects in enzymatic biosensors. Biosens. Bioelectron. 2020, 155, 112114. [Google Scholar] [CrossRef]
- Ozel, T.; Zhang, B.A.; Gao, R.; Day, R.W.; Lieber, C.M.; Nocera, D.G. Electrochemical Deposition of Conformal and Functional Layers on High Aspect Ratio Silicon Micro/Nanowires. Nano Lett. 2017, 17, 4502–4507. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-H.; Feng, M.-H.; Hwang, C.-H.; Wu, J.Y.-S.; Su, P.-C.; Lin, M.-Y.; Chen, C.-H.; Chen, B.-H.; Huang, B.-Y.; Lu, M.-P.; et al. Surface composition and interactions of mobile charges with immobilized molecules on polycrystalline silicon nanowires. Sens. Actuators B Chem. 2015, 211, 7–16. [Google Scholar] [CrossRef]
- Mu, L.; Droujinine, I.A.; Lee, J.; Wipf, M.; Davis, P.; Adams, C.; Hannant, J.; Reed, M.A. Nanoelectronic Platform for Ultrasensitive Detection of Protein Biomarkers in Serum using DNA Amplification. Anal. Chem. 2017, 89, 11325–11331. [Google Scholar] [CrossRef] [PubMed]
- Tintelott, M.; Pachauri, V.; Ingebrandt, S.; Vu, X.T. Process Variability in Top-Down Fabrication of Silicon Nanowire-Based Biosensor Arrays. Sensors 2021, 21, 5153. [Google Scholar] [CrossRef]
- Zida, S.I.; Yang, C.-C.; Khung, Y.L.; Lin, Y.-D. Fabrication and Characterization of an Aptamer-Based N-type Silicon Nanowire FET Biosensor for VEGF Detection. J. Med. Biol. Eng. 2020, 40, 601–609. [Google Scholar] [CrossRef]
- Manga, Y.B.; Ko, F.-H.; Yang, Y.-S.; Hung, J.-Y.; Yang, W.-L.; Huang, H.-M.; Wu, C.-C. Ultra-fast and sensitive silicon nanobelt field-effect transistor for high-throughput screening of alpha-fetoprotein. Sens. Actuators B Chem. 2018, 256, 1114–1121. [Google Scholar] [CrossRef]
- Azzouz, A.; Hejji, L.; Sonne, C.; Kim, K.-H.; Kumar, V. Nanomaterial-based aptasensors as an efficient substitute for cardiovascular disease diagnosis: Future of smart biosensors. Biosens. Bioelectron. 2021, 193, 113617. [Google Scholar] [CrossRef]
- Lim, W.Y.; Lan, B.L.; Ramakrishnan, N. Emerging Biosensors to Detect Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): A Review. Biosensors 2021, 11, 434. [Google Scholar] [CrossRef]
- Haustein, N.; Gutiérrez-Sanz, Ó.; Tarasov, A. Analytical Model To Describe the Effect of Polyethylene Glycol on Ionic Screening of Analyte Charges in Transistor-Based Immunosensing. ACS Sens. 2019, 4, 874–882. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, Z.H.; Zhang, Q.Z.; Wei, Q.H.; Zhang, J.; Tang, S.Q.; Lv, C.G.; Wang, Y.R.; Zhao, H.B.; Wei, F.; et al. O-2 Plasma Treated Biosensor for Enhancing Detection Sensitivity of Sulfadiazine in a High-K Hfo2 Coated Silicon Nanowire Array. Sens. Actuators B Chem. 2020, 306, 127464. [Google Scholar] [CrossRef]
- Wu, J.-Y.; Tseng, C.-L.; Wang, Y.-K.; Yu, Y.; Ou, K.-L.; Wu, C.-C. Detecting Interleukin-1β Genes Using a N2O Plasma Modified Silicon Nanowire Biosensor. J. Exp. Clin. Med. 2013, 5, 12–16. [Google Scholar] [CrossRef]
- Vu, C.-A.; Lai, H.-Y.; Chang, C.-Y.; Chan, H.W.-H.; Chen, W.-Y. Optimizing surface modification of silicon nanowire field-effect transistors by polyethylene glycol for MicroRNA detection. Colloids Surf. B Biointerfaces 2021, 209, 112142. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.; Kwon, D.W.; Kim, S.; Kim, S.; Mo, H.-S.; Kim, D.H.; Park, B.-G. Nanowire size dependence on sensitivity of silicon nanowire field-effect transistor-based pH sensor. Jpn. J. Appl. Phys. 2017, 56, 56. [Google Scholar] [CrossRef] [Green Version]
- Boonkaew, S.; Yakoh, A.; Chuaypen, N.; Tangkijvanich, P.; Rengpipat, S.; Siangproh, W.; Chailapakul, O. An automated fast-flow/delayed paper-based platform for the simultaneous electrochemical detection of hepatitis B virus and hepatitis C virus core antigen. Biosens. Bioelectron. 2021, 193, 113543. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Song, C.H.; Zhang, Y.C.; Siyin, S.T.; Zhang, Q.; Song, M.M.; Cao, L.Y.; Shi, H.P. Hepatitis B virus infection and the risk of gastrointestinal cancers among Chinese population: A prospective cohort study. Int. J. Cancer 2021, 150, 1018–1028. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-C.; Ko, F.-H.; Yang, Y.-S.; Hsia, D.-L.; Lee, B.-S.; Su, T.-S. Label-free biosensing of a gene mutation using a silicon nanowire field-effect transistor. Biosens. Bioelectron. 2009, 25, 820–825. [Google Scholar] [CrossRef]
- Yang, S.-W.; Chen, W.-L.; Wu, W.-T.; Wang, C.-C. Investigation on returning to work in liver cancer survivors in Taiwan: A 5-year follow-up study. BMC Public Health 2021, 21, 1846. [Google Scholar] [CrossRef]
- Peng, Y.-T.; Meng, F.-T.; Su, S.-Y.; Chiang, C.-J.; Yang, Y.-W.; Lee, W.-C. A Survivorship-Period-Cohort Model for Cancer Survival: Application to Liver Cancer in Taiwan, 1997–2016. Am. J. Epidemiol. 2021, 190, 1961–1968. [Google Scholar] [CrossRef]
- Lempp, F.A.; Roggenbach, I.; Nkongolo, S.; Sakin, V.; Schlund, F.; Schnitzler, P.; Wedemeyer, H.; Le Gal, F.; Gordien, E.; Yurdaydin, C.; et al. A Rapid Point-of-Care Test for the Serodiagnosis of Hepatitis Delta Virus Infection. Viruses 2021, 13, 2371. [Google Scholar] [CrossRef]
- Kawanaka, M.; Nishino, K.; Kawamoto, H.; Haruma, K. Hepatitis B: Who should be treated?-managing patients with chronic hepatitis B during the immune-tolerant and immunoactive phases. World J. Gastroenterol. 2021, 27, 7497–7508. [Google Scholar] [CrossRef]
- Ahmad, M.S.; Makhamrah, O.; Suardi, N.; Shukri, A.; Ab Razak, N.N.A.N.; Oglat, A.A.; Mohammad, H. Hepatocellular Carcinoma Liver Dynamic Phantom For Mri. Radiat. Phys. Chem. 2021, 188, 109632. [Google Scholar] [CrossRef]
- Vedeld, H.M.; Grimsrud, M.M.; Andresen, K.; Pharo, H.D.; von Seth, E.; Karlsen, T.H.; Honne, H.; Paulsen, V.; Färkkilä, M.A.; Bergquist, A.; et al. Early and accurate detection of cholangiocarcinoma in patients with primary sclerosing cholangitis by methylation markers in bile. Hepatology 2021, 75, 59–73. [Google Scholar] [CrossRef] [PubMed]
- Moon, I.Y.; Kim, J.W. Methylation Profile of Hepatitis B Virus Is Not Influenced by Interferon Alpha in Human Liver Cancer Cells. Mol. Med. Rep. 2021, 24, 715. [Google Scholar] [CrossRef] [PubMed]
- Schroder, D.K. Semiconductor Material and Characterization, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2006; p. 225. [Google Scholar]
Length of Nanowire | Sensitivity | Linear Range | LOD (g/mL) |
---|---|---|---|
1.6 µm | 0.061 | 800 ag/mL to 800 pg/mL | 4.69 × 10−18 |
3 µm | 0.061 (800 ag/mL to 800 fg/mL) 0.203 (below 800 ag/mL) | 800 ag/mL to 800 fg/mL | 4.02 × 10−18 |
5 µm | 0.046 | 800 ag/mL to 800 pg/mL | 6.69 × 10−18 |
Numbers of Nanowire | Sensitivity | Linear Range | LOD (g/mL) |
---|---|---|---|
40 n | 0.030 | 800 ag/mL to 800 pg/mL | 6.85 × 10−18 |
20 n | 0.046 | 800 ag/mL to 800 pg/mL | 6.69 × 10−18 |
10 n | 0.052 | 800 ag/mL to 800 pg/mL | 5.21 × 10−18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.-C. Silicon Nanowires Length and Numbers Dependence on Sensitivity of the Field-Effect Transistor Sensor for Hepatitis B Virus Surface Antigen Detection. Biosensors 2022, 12, 115. https://doi.org/10.3390/bios12020115
Wu C-C. Silicon Nanowires Length and Numbers Dependence on Sensitivity of the Field-Effect Transistor Sensor for Hepatitis B Virus Surface Antigen Detection. Biosensors. 2022; 12(2):115. https://doi.org/10.3390/bios12020115
Chicago/Turabian StyleWu, Chi-Chang. 2022. "Silicon Nanowires Length and Numbers Dependence on Sensitivity of the Field-Effect Transistor Sensor for Hepatitis B Virus Surface Antigen Detection" Biosensors 12, no. 2: 115. https://doi.org/10.3390/bios12020115
APA StyleWu, C. -C. (2022). Silicon Nanowires Length and Numbers Dependence on Sensitivity of the Field-Effect Transistor Sensor for Hepatitis B Virus Surface Antigen Detection. Biosensors, 12(2), 115. https://doi.org/10.3390/bios12020115