Selective Detection of Legionella pneumophila Serogroup 1 and 5 with a Digital Photocorrosion Biosensor Using Antimicrobial Peptide-Antibody Sandwich Strategy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Biofunctionalization of GaAs Chips
2.3. Preparation of Bacterial Suspensions
2.4. Capture Efficiency of L. pneumophila SG1 and SG5 with pAb-Functionalized GaAs
2.5. Processing of Cooling Tower Water for Biosensing Experiments
2.6. Optical Microscopy Analysis
2.7. PCR Measurements
2.8. Photoluminescence Measurements
2.9. Statistical Analysis
3. Results and Discussion
3.1. Functionalization of GaAs/AlGaAs Biosensors
3.2. Bacteria-Capture Efficiency by Peptide-Coated Surfaces
3.3. Reactivity of L. pneumophila pAb against L. pneumophila SG1 and SG5
3.4. Reactivity of L. pneumophila SG1 and SG5 against Different Peptides
3.5. Selective Detection of L. pneumophila SG1 and SG5 Using AMP-Ab Sandwich Technique
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pinel, I.; Hankinson, P.; Moed, D.; Wyseure, L.; Vrouwenvelder, J.S.; van Loosdrecht, M.C. Efficient cooling tower operation at alkaline pH for the control of Legionella pneumophila and other pathogenic genera. Water Res. 2021, 197, 117047. [Google Scholar] [CrossRef] [PubMed]
- Reuter, C.; Slesiona, N.; Hentschel, S.; Aehlig, O.; Breitenstein, A.; Csáki, A.; Henkel, T.; Fritzsche, W. Loop-mediated amplification as promising on-site detection approach for Legionella pneumophila and Legionella spp. Appl. Microbiol. Biotechnol. 2020, 104, 405–415. [Google Scholar] [CrossRef]
- Nocker, A.; Schulte-Illingheim, L.; Frösler, J.; Welp, L.; Sperber, O.; Hugo, A. Microbiological examination of water and aerosols from four industrial evaporative cooling systems in regard to risk of Legionella emissions and methodological suggestions for surveillance. Int. J. Hyg. Environ. Health 2020, 229, 113591. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-J.; Choi, S.-J. Rapid single-cell detection of pathogenic bacteria for in situ determination of food safety. Anal. Methods 2020, 12, 5621–5627. [Google Scholar] [CrossRef] [PubMed]
- Fricke, C.; Xu, J.; Jiang, F.L.; Liu, Y.; Harms, H.; Maskow, T. Rapid culture-based detection of Legionella pneumophila using isothermal microcalorimetry with an improved evaluation method. Microb. Biotechnol. 2020, 13, 1262–1272. [Google Scholar] [CrossRef]
- Váradi, L.; Luo, J.L.; Hibbs, D.E.; Perry, J.D.; Anderson, R.J.; Orenga, S.; Groundwater, P.W. Methods for the detection and identification of pathogenic bacteria: Past, present, and future. Chem. Soc. Rev. 2017, 46, 4818–4832. [Google Scholar] [CrossRef]
- Rajapaksha, P.; Elbourne, A.; Gangadoo, S.; Brown, R.; Cozzolino, D.; Chapman, J. A review of methods for the detection of pathogenic microorganisms. Analyst 2019, 144, 396–411. [Google Scholar] [CrossRef]
- Mobed, A.; Hasanzadeh, M.; Agazadeh, M.; Mokhtarzadeh, A.; Rezaee, M.A.; Sadeghi, J. Bioassays: The best alternative for conventional methods in detection of Legionella pneumophila. Int. J. Biol. Macromol. 2019, 121, 1295–1307. [Google Scholar] [CrossRef]
- Chambers, S.T.; Slow, S.; Scott-Thomas, A.; Murdoch, D.R. Legionellosis Caused by Non-Legionella pneumophila Species, with a Focus on Legionella longbeachae. Microorganisms 2021, 9, 291. [Google Scholar] [CrossRef]
- Park, E.J.; Lee, J.-Y.; Kim, J.H.; Lee, C.J.; Kim, H.S.; Min, N.K. Investigation of plasma-functionalized multiwalled carbon nanotube film and its application of DNA sensor for Legionella pneumophila detection. Talanta 2010, 82, 904–911. [Google Scholar] [CrossRef]
- Li, N.; Brahmendra, A.; Veloso, A.J.; Prashar, A.; Cheng, X.R.; Hung, V.W.; Guyard, C.; Terebiznik, M.; Kerman, K. Disposable immunochips for the detection of Legionella pneumophila using electrochemical impedance spectroscopy. Anal. Chem. 2012, 84, 3485–3488. [Google Scholar] [CrossRef] [PubMed]
- Laribi, A.; Allegra, S.; Souiri, M.; Mzoughi, R.; Othmane, A.; Girardot, F. Legionella pneumophila sg1-sensing signal enhancement using a novel electrochemical immunosensor in dynamic detection mode. Talanta 2020, 215, 120904. [Google Scholar] [CrossRef] [PubMed]
- Manera, M.G.; Montagna, G.; Cimaglia, F.; Chiesa, M.; Poltronieri, P.; Santino, A.; Rella, R. SPR based immunosensor for detection of Legionella pneumophila in water samples. Opt. Commun. 2013, 294, 420–426. [Google Scholar]
- Albalat, G.R.; Broch, B.B.; Bono, M.J. Method modification of the Legipid® Legionella fast detection test kit. J. AOAC Int. 2014, 97, 1403–1409. [Google Scholar] [CrossRef] [Green Version]
- Nuthong, B.; Wilailuckana, C.; Tavichakorntrakool, R.; Boonsiri, P.; Daduang, S.; Bunyaraksyotin, G.; Suphan, O.; Daduang, J. One step for Legionella pneumophila detection in environmental samples by DNA-gold nanoparticle probe. J. Appl. Microbiol. 2018, 125, 1534–1540. [Google Scholar] [CrossRef]
- Jafari, S.; Dehghani, M.; Nasirizadeh, N.; Baghersad, M.H.; Azimzadeh, M. Label-free electrochemical detection of Cloxacillin antibiotic in milk samples based on molecularly imprinted polymer and graphene oxide-gold nanocomposite. Measurement 2019, 145, 22–29. [Google Scholar] [CrossRef]
- Vogiazi, V.; de la Cruz, A.; Mishra, S.; Shanov, V.; Heineman, W.R.; Dionysiou, D.D. A comprehensive review: Development of electrochemical biosensors for detection of cyanotoxins in freshwater. ACS Sens. 2019, 4, 1151–1173. [Google Scholar] [CrossRef]
- Lin, H.-Y.; Tsao, Y.-C.; Tsai, W.-H.; Yang, Y.-W.; Yan, T.-R.; Sheu, B.-C. Development and application of side-polished fiber immunosensor based on surface plasmon resonance for the detection of Legionella pneumophila with halogens light and 850 nm-LED. Sens. Actuators A Phys. 2007, 138, 299–305. [Google Scholar] [CrossRef]
- Huang, Y.H.; Ho, H.P.; Kong, S.K.; Kabashin, A.V. Phase-sensitive surface plasmon resonance biosensors: Methodology, instrumentation and applications. Ann. Phys. 2012, 524, 637–662. [Google Scholar] [CrossRef]
- Sadsri, V.; Trakulsujaritchok, T.; Tangwattanachuleeporn, M.; Hoven, V.P.; Na Nongkhai, P. Simple Colorimetric Assay for Vibrio parahaemolyticus Detection Using Aptamer-Functionalized Nanoparticles. ACS Omega 2020, 5, 21437–21442. [Google Scholar] [CrossRef]
- Aziziyan, M.R.; Hassen, W.M.; Morris, D.; Frost, E.H.; Dubowski, J.J. Photonic biosensor based on photocorrosion of GaAs/AlGaAs quantum heterostructures for detection of Legionella pneumophila. Biointerphases 2016, 11, 019301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassen, W.M.; Sanyal, H.; Hammood, M.; Moumanis, K.; Frost, E.H.; Dubowski, J.J. Chemotaxis for enhanced immobilization of Escherichia coli and Legionella pneumophila on biofunctionalized surfaces of GaAs. Biointerphases 2016, 11, 021004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aziziyan, M.R.; Hassen, W.M.; Sharma, H.; Shirzaei Sani, E.; Annabi, N.; Frost, E.H.; Dubowski, J.J. Sodium dodecyl sulfate decorated Legionella pneumophila for enhanced detection with a GaAs/AlGaAs nanoheterostructure biosensor. Sens. Actuators B Chem. 2020, 304, 127007. [Google Scholar] [CrossRef]
- Oh, B.-K.; Kim, Y.-K.; Lee, W.; Bae, Y.M.; Lee, W.H.; Choi, J.-W. Immunosensor for detection of Legionella pneumophila using surface plasmon resonance. Biosens. Bioelectron. 2003, 18, 605–611. [Google Scholar] [CrossRef]
- Lei, K.F.; Leung, P.H. Microelectrode array biosensor for the detection of Legionellapneumophila. Microelectron. Eng. 2012, 91, 174–177. [Google Scholar] [CrossRef]
- Martín, M.; Salazar, P.; Jiménez, C.; Lecuona, M.; Ramos, M.J.; Ode, J.; Alcoba, J.; Roche, R.; Villalonga, R.; Campuzano, S. Rapid Legionella pneumophila determination based on a disposable core–shell Fe3O4@ poly (dopamine) magnetic nanoparticles immunoplatform. Anal. Chim. Acta 2015, 887, 51–58. [Google Scholar] [CrossRef]
- Wunderlich, A.; Torggler, C.; Elsässer, D.; Lück, C.; Niessner, R.; Seidel, M. Rapid quantification method for Legionella pneumophila in surface water. Anal. Bioanal. Chem. 2016, 408, 2203–2213. [Google Scholar] [CrossRef]
- Byrne, B.; Stack, E.; Gilmartin, N.; O’Kennedy, R. Antibody-based sensors: Principles, problems and potential for detection of pathogens and associated toxins. Remote Sens. 2009, 9, 4407–4445. [Google Scholar] [CrossRef] [Green Version]
- Choinière, S.; Frost, E.H.; Dubowski, J.J. Binding strategies for capturing and growing Escherichia coli on surfaces of biosensing devices. Talanta 2019, 192, 270–277. [Google Scholar] [CrossRef] [Green Version]
- Hiep, H.M.; Saito, M.; Nakamura, Y.; Tamiya, E. RNA aptamer-based optical nanostructured sensor for highly sensitive and label-free detection of antigen-antibody reactions. Anal. Bioanal. Chem. 2010, 396, 2575–2581. [Google Scholar] [CrossRef]
- Shen, M.; Rusling, J.F.; Dixit, C.K. Site-selective orientated immobilization of antibodies and conjugates for immunodiagnostics development. Methods 2017, 116, 95–111. [Google Scholar] [CrossRef] [Green Version]
- Mannoor, M.S.; Zhang, S.; Link, A.J.; McAlpine, M.C. Electrical detection of pathogenic bacteria via immobilized antimicrobial peptides. Proc. Natl. Acad. Sci. USA 2010, 107, 19207–19212. [Google Scholar] [CrossRef] [Green Version]
- Hoyos-Nogués, M.; Brosel-Oliu, S.; Abramova, N.; Muñoz, F.-X.; Bratov, A.; Mas-Moruno, C.; Gil, F.-J. Impedimetric antimicrobial peptide-based sensor for the early detection of periodontopathogenic bacteria. Biosens. Bioelectron. 2016, 86, 377–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Etayash, H.; Norman, L.; Thundat, T.; Kaur, K. Peptide-bacteria interactions using engineered surface-immobilized peptides from class IIa bacteriocins. Langmuir 2013, 29, 4048–4056. [Google Scholar] [CrossRef] [PubMed]
- De Miranda, J.L.; Oliveira, M.D.; Oliveira, I.S.; Frias, I.A.; Franco, O.L.; Andrade, C.A. A simple nanostructured biosensor based on clavanin A antimicrobial peptide for gram-negative bacteria detection. Biochem. Eng. J. 2017, 124, 108–114. [Google Scholar] [CrossRef]
- Dong, Z.-M.; Zhao, G.-C. Label-free detection of pathogenic bacteria via immobilized antimicrobial peptides. Talanta 2015, 137, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Etayash, H.; Jiang, K.; Thundat, T.; Kaur, K. Impedimetric detection of pathogenic gram-positive bacteria using an antimicrobial peptide from class IIa bacteriocins. Anal. Chem. 2014, 86, 1693–1700. [Google Scholar] [CrossRef] [PubMed]
- Etayash, H.; Norman, L.; Thundat, T.; Stiles, M.; Kaur, K. Surface-conjugated antimicrobial peptide leucocin a displays high binding to pathogenic gram-positive bacteria. ACS Appl. Mater. Interfaces 2014, 6, 1131–1138. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.A.; Hassen, W.M.; Tayabali, A.F.; Dubowski, J.J. Antimicrobial warnericin RK peptide functionalized GaAs/AlGaAs biosensor for highly sensitive and selective detection of Legionella pneumophila. Biochem. Eng. J. 2020, 154, 107435. [Google Scholar] [CrossRef]
- Islam, M.A.; Hassen, W.M.; Tayabali, A.F.; Dubowski, J.J. Short Ligand, Cysteine-Modified Warnericin RK Antimicrobial Peptides Favor Highly Sensitive Detection of Legionella pneumophila. ACS Omega 2021, 6, 1299–1308. [Google Scholar] [CrossRef]
- Berjeaud, J.-M.; Chevalier, S.; Schlusselhuber, M.; Portier, E.; Loiseau, C.; Aucher, W.; Lesouhaitier, O.; Verdon, J. Legionella pneumophila: The paradox of a highly sensitive opportunistic waterborne pathogen able to persist in the environment. Front. Microbiol. 2016, 7, 486. [Google Scholar] [CrossRef] [Green Version]
- Aithal, S.; Liu, N.; Dubowski, J.J. Photocorrosion metrology of photoluminescence emitting GaAs/AlGaAs heterostructures. J. Phys. D Appl. Phys. 2017, 50, 035106. [Google Scholar] [CrossRef] [Green Version]
- Aziziyan, M.R.; Sharma, H.; Dubowski, J.J. Photo-Atomic Layer Etching of GaAs/AlGaAs Nanoheterostructures. ACS Appl. Mater. Interfaces 2019, 11, 17968–17978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazemi, E.; Aithal, S.; Hassen, W.M.; Frost, E.H.; Dubowski, J.J. GaAs/AlGaAs heterostructure based photonic biosensor for rapid detection of Escherichia coli in phosphate buffered saline solution. Sens. Actuators B Chem. 2015, 207, 556–562. [Google Scholar] [CrossRef]
- Aithal, S.; Dubowski, J.J. Open circuit potential monitored digital photocorrosion of GaAs/AlGaAs quantum well microstructures. Appl. Phys. Lett. 2018, 112, 153102. [Google Scholar] [CrossRef] [Green Version]
- Lacour, V.; Elie-Caille, C.; Leblois, T.; Dubowski, J.J. Regeneration of a thiolated and antibody functionalized GaAs (001) surface using wet chemical processes. Biointerphases 2016, 11, 019302. [Google Scholar] [CrossRef] [Green Version]
- Sharma, H.; Moumanis, K.; Dubowski, J.J. pH-Dependent Photocorrosion of GaAs/AlGaAs Quantum Well Microstructures. J. Phys. Chem. C 2016, 120, 26129–26137. [Google Scholar] [CrossRef]
- Yamaguchi, N.; Tokunaga, Y.; Goto, S.; Fujii, Y.; Banno, F.; Edagawa, A. Rapid on-site monitoring of Legionella pneumophila in cooling tower water using a portable microfluidic system. Sci. Rep. 2017, 7, 3092. [Google Scholar] [CrossRef] [Green Version]
- Bookout, A.L.; Mangelsdorf, D.J. Quantitative real-time PCR protocol for analysis of nuclear receptor signaling pathways. Nucl. Recept. Signal. 2003, 1, nrs.01012. [Google Scholar] [CrossRef]
- Choo, E.S.G.; Tang, X.; Sheng, Y.; Shuter, B.; Xue, J. Controlled loading of superparamagnetic nanoparticles in fluorescent nanogels as effective T 2-weighted MRI contrast agents. J. Mater. Chem. 2011, 21, 2310–2319. [Google Scholar] [CrossRef]
- Yuen, S.-N.; Choi, S.-M.; Phillips, D.L.; Ma, C.-Y. Raman and FTIR spectroscopic study of carboxymethylated non-starch polysaccharides. Food Chem. 2009, 114, 1091–1098. [Google Scholar] [CrossRef]
- Humblot, V.; Yala, J.-F.; Thebault, P.; Boukerma, K.; Héquet, A.; Berjeaud, J.-M.; Pradier, C.-M. The antibacterial activity of Magainin I immobilized onto mixed thiols Self-Assembled Monolayers. Biomaterials 2009, 30, 3503–3512. [Google Scholar] [CrossRef] [PubMed]
- Forsting, T.; Gottschalk, H.C.; Hartwig, B.; Mons, M.; Suhm, M.A. Correcting the record: The dimers and trimers of trans-N-methylacetamide. Phys. Chem. Chem. Phys. 2017, 19, 10727–10737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doiron, K.; Beaulieu, L.; St-Louis, R.; Lemarchand, K. Reduction of bacterial biofilm formation using marine natural antimicrobial peptides. Colloids Surf. B Biointerfaces 2018, 167, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Ami, D.; Posteri, R.; Mereghetti, P.; Porro, D.; Doglia, S.M.; Branduardi, P. Fourier transform infrared spectroscopy as a method to study lipid accumulation in oleaginous yeasts. Biotechnol. Biofuels 2014, 7, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbosa, M.; Vale, N.; Costa, F.M.; Martins, M.C.L.; Gomes, P. Tethering antimicrobial peptides onto chitosan: Optimization of azide-alkyne “click” reaction conditions. Carbohydr. Polym. 2017, 165, 384–393. [Google Scholar] [CrossRef]
- Jeevithan, E.; Bao, B.; Bu, Y.; Zhou, Y.; Zhao, Q.; Wu, W. Type II collagen and gelatin from silvertip shark (Carcharhinus albimarginatus) cartilage: Isolation, purification, physicochemical and antioxidant properties. Mar. Drugs 2014, 12, 3852–3873. [Google Scholar] [CrossRef] [Green Version]
- Dinesh, B.; Squillaci, M.A.; Ménard-Moyon, C.; Samorì, P.; Bianco, A. Self-assembly of diphenylalanine backbone homologues and their combination with functionalized carbon nanotubes. Nanoscale 2015, 7, 15873–15879. [Google Scholar] [CrossRef] [Green Version]
- Corrales-Ureña, Y.R.; Souza-Schiaber, Z.; Lisboa-Filho, P.N.; Marquenet, F.; Michael Noeske, P.-L.; Gätjen, L.; Rischka, K. Functionalization of hydrophobic surfaces with antimicrobial peptides immobilized on a bio-interfactant layer. RSC Adv. 2020, 10, 376–386. [Google Scholar] [CrossRef] [Green Version]
- Marchand, A.; Verdon, J.; Lacombe, C.; Crapart, S.; Hechard, Y.; Berjeaud, J. Anti-Legionella activity of staphylococcal hemolytic peptides. Peptides 2011, 32, 845–851. [Google Scholar] [CrossRef]
- Marchand, A.; Augenstreich, J.; Loiseau, C.; Verdon, J.; Lecomte, S.; Berjeaud, J.-M. Effect of amino acid substitution in the staphylococcal peptides warnericin RK and PSMα on their anti-Legionella and hemolytic activities. Mol. Cell. Biochem. 2015, 405, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Verdon, J.; Berjeaud, J.-M.; Lacombe, C.; Héchard, Y. Characterization of anti-Legionella activity of warnericin RK and delta-lysin I from Staphylococcus warneri. Peptides 2008, 29, 978–984. [Google Scholar] [CrossRef] [PubMed]
- Verdon, J.; Labanowski, J.; Sahr, T.; Ferreira, T.; Lacombe, C.; Buchrieser, C.; Berjeaud, J.-M.; Héchard, Y. Fatty acid composition modulates sensitivity of Legionella pneumophila to warnericin RK, an antimicrobial peptide. Biochim. Biophys. Acta 2011, 1808, 1146–1153. [Google Scholar] [CrossRef] [PubMed]
- Hindahl, M.S.; Iglewski, B.H. Isolation and characterization of the Legionella pneumophila outer membrane. J. Bacteriol. 1984, 159, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Conover, G.M.; Martinez-Morales, F.; Heidtman, M.I.; Luo, Z.Q.; Tang, M.; Chen, C.; Geiger, O.; Isberg, R.R. Phosphatidylcholine synthesis is required for optimal function of Legionella pneumophila virulence determinants. Cell. Microbiol. 2008, 10, 514–528. [Google Scholar] [CrossRef] [Green Version]
- Sousa, P.S.; Silva, I.N.; Moreira, L.M.; Veríssimo, A.; Costa, J. Differences in Virulence Between Legionella pneumophila Isolates from Human and Non-human Sources Determined in Galleria mellonella Infection Model. Front. Cell. Infect. Microbiol. 2018, 8, 97. [Google Scholar] [CrossRef]
- Yadav, S.; Sreedhara, A.; Kanai, S.; Liu, J.; Lien, S.; Lowman, H.; Kalonia, D.S.; Shire, S.J. Establishing a link between amino acid sequences and self-associating and viscoelastic behavior of two closely related monoclonal antibodies. Pharm. Res. 2011, 28, 1750–1764. [Google Scholar] [CrossRef]
- Olsson, N.; Wallin, S.; James, P.; Borrebaeck, C.A.; Wingren, C. Epitope-specificity of recombinant antibodies reveals promiscuous peptide-binding properties. Protein Sci. 2012, 21, 1897–1910. [Google Scholar] [CrossRef] [Green Version]
- Moumanis, K.; Sirbu, L.; Hassen, W.M.; Frost, E.; Carvalho, L.R.d.; Hiernaux, P.; Dubowski, J.J. Water Sampling Module for Collecting and Concentrating Legionella pneumophila from Low-to-Medium Contaminated Environment. Biosensors 2021, 11, 34. [Google Scholar] [CrossRef]
Detection Technique | Substrate for Immobilization | Bioreceptors | Detection Source | Time for Result | Range of Detection (CFU/mL) | Limit of Detection (CFU/mL) | Reference |
---|---|---|---|---|---|---|---|
SPR | Au | mAb | PBS | 2 h 20 min | 102–109 | 102 | [24] |
EIS | Au | mAb | PBS | - | 101–108 | 101 | [12] |
Microelectrode array | Si | Antibody | PBS | - | 105–108 | 105 | [25] |
EIS | Au | Antibody | PBS | - | 2 × 101–2 × 105 | 2 × 102 | [11] |
Amperometric sensor | Carbon | pAb | PBS | 3 h | 104–106 | 104 | [26] |
SPR | Au | mAb | PBS | - | 101–104 | 101 | [18] |
SPR | Au | pAb | PBS | 30 min | 103–106 | 103 | [13] |
Colorimetric | Gold nanoparticles | Nucleic Acid | DI water | 60 min | - | 124 | [15] |
DIP | GaAs/AlGaAs | pAb | PBS | 42 min | 104–106 | 104 | [21] |
DIP | GaAs/AlGaAs | pAb/SDS | PBS | 70 min | 102–106 | 103 | [23] |
Bacteria and Reference | PL Maxima (Minutes) | Significantly Different vs. Control (p Value) |
---|---|---|
Pristine Condition | ||
GaAs + Cys-WRK | 16 ± 1.12 | Control |
GaAs + Cys-WRK + Anti Lp pAb | 17.50 ± 1.18 | No |
GaAs + Cys-WRK + 100 CFU/mL of LpSG1 | 21.05 ± 1.5 | No |
GaAs + Cys-WRK + 100 CFU/mL of LpSG5 | 19.23 ± 1.2 | No |
GaAs + Cys-WRK + 50 CFU/mL of LpSG1 + Anti LpSG1 pAb-decorated bacteria | 27.83 ± 2 | Yes (p < 0.0001) |
GaAs + Cys-WRK + 50 CFU/mL of LpSG5 + Anti LpSG1 pAb-decorated bacteria | 21 ± 1.14 | No |
GaAs + Cys-WRK+100 CFU/mL of LpSG1 + Anti LpSG1 pAb-decorated bacteria | 36.2 ± 2.1 | Yes (p < 0.0001) |
GaAs + Cys-WRK + 100 CFU/mL of LpSG5 + Anti LpSG1 pAb-decorated bacteria | 25.75 ± 1.16 | Yes (p < 0.0019) |
Cooling Tower Condition | ||
Cooling tower water (3IT) | 18.37 ± 1.5 | Control |
GaAs + Cys-WRK + Cooling tower water + 100 CFU/mL of LpSG5 + Anti LpSG1 pAb | 22.20 ± 2 | No |
GaAs + Cys-WRK + Cooling tower water + 100 CFU/mL of LpSG1 + Anti LpSG1 pAb | 31.5 ± 2 | Yes (p < 0.0043) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.A.; Hassen, W.M.; Ishika, I.; Tayabali, A.F.; Dubowski, J.J. Selective Detection of Legionella pneumophila Serogroup 1 and 5 with a Digital Photocorrosion Biosensor Using Antimicrobial Peptide-Antibody Sandwich Strategy. Biosensors 2022, 12, 105. https://doi.org/10.3390/bios12020105
Islam MA, Hassen WM, Ishika I, Tayabali AF, Dubowski JJ. Selective Detection of Legionella pneumophila Serogroup 1 and 5 with a Digital Photocorrosion Biosensor Using Antimicrobial Peptide-Antibody Sandwich Strategy. Biosensors. 2022; 12(2):105. https://doi.org/10.3390/bios12020105
Chicago/Turabian StyleIslam, M. Amirul, Walid M. Hassen, Ishika Ishika, Azam F. Tayabali, and Jan J. Dubowski. 2022. "Selective Detection of Legionella pneumophila Serogroup 1 and 5 with a Digital Photocorrosion Biosensor Using Antimicrobial Peptide-Antibody Sandwich Strategy" Biosensors 12, no. 2: 105. https://doi.org/10.3390/bios12020105
APA StyleIslam, M. A., Hassen, W. M., Ishika, I., Tayabali, A. F., & Dubowski, J. J. (2022). Selective Detection of Legionella pneumophila Serogroup 1 and 5 with a Digital Photocorrosion Biosensor Using Antimicrobial Peptide-Antibody Sandwich Strategy. Biosensors, 12(2), 105. https://doi.org/10.3390/bios12020105