Recent Advances in the Immunoassays Based on Nanozymes
Abstract
:1. Introduction
2. Immunoassay Based on Nanozymes
2.1. Colorimetric Immunoassays Based on Nanozymes
2.1.1. Plate-Based Colorimetric Immunoassays
Double Antibody Sandwich Colorimetric Immunoassays
Competitive Colorimetric Immunoassay
2.1.2. Immunochromatography Based on Nanozymes
Double Antibody Sandwich Method
Competitive Method
2.2. Fluorescent Immunoassays Based on Nanozymes
2.3. Chemiluminescence Immunoassays Based on Nanozymes
2.4. Electrochemical Immunoassays Based on Nanozymes
2.5. Electrochemiluminescence Immunoassays Based on Nanozymes
2.6. SERS Immunoassays Based on Nanozymes
2.7. Photoelectrochemical Immunoassays Based on Nanozymes
2.8. Other Immunoassays Based on Nanozymes
2.9. Multimodal Immunoassays Based on Nanozymes
3. Conclusions and Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, M.H.; Chen, S.C.; Chen, K.C.; You, H.P.; Wu, H.Y.; Arthur Chen, Y.M.; Huang, Y.F.; Huang, M.Y.; Yuan, C.H.; Lin, P.C.; et al. Quantitative analysis of progesterone using isotope dilution-matrix-assisted laser desorption ionization-time of flight mass spectrometry as a reference procedure for radioimmunoassay. Clin. Chim. Acta 2021, 512, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Zha, Y.; Li, Y.; Hu, P.; Lu, S.; Ren, H.; Liu, Z.; Yang, H.; Zhou, Y. Duplex-Specific Nuclease-Triggered Fluorescence Immunoassay Based on Dual-Functionalized AuNP for Acetochlor, Metolachlor, and Propisochlor. Anal. Chem. 2021, 93, 13886–13892. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Wang, T.T.; Yao, D.; Xu, J.Y.; Luo, Q.; Liu, J.Q. Interfacial Assembly of Signal Amplified Multienzymes and Biorecognized Antibody into Proteinosome for an Ultrasensitive Immunoassay. Small 2019, 15, 1900350. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.N.; Zhou, H.; Wu, Q.P.; Xiong, Y.H.; Wang, J.; Ding, Y. Recent advances in enzyme-enhanced immunosensors. Biotechnol. Adv. 2021, 53, 107867. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Lu, D.; Zhang, G.Y.; Zhang, D.; Shi, X.B. Recent improvements in enzyme-linked immunosorbent assays based on nanomaterials. Talanta 2021, 223, 121722. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Ren, J.; Qu, X. Catalytically active nanomaterials: A promising candidate for artificial enzymes. Acc. Chem. Res. 2014, 47, 1097–1105. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, X.; Wang, Q.; Lou, Z.; Li, S.; Zhu, Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076. [Google Scholar] [PubMed]
- Liang, M.; Yan, X. Nanozymes: From New Concepts, Mechanisms, and Standards to Applications. Acc. Chem. Res. 2019, 52, 2190–2200. [Google Scholar] [CrossRef]
- Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583. [Google Scholar] [CrossRef]
- Liang, M.; Fan, K.; Pan, Y.; Jiang, H.; Wang, F.; Yang, D.; Lu, D.; Feng, J.; Zhao, J.; Yang, L.; et al. Fe3O4 Magnetic Nanoparticle Peroxidase Mimetic-Based Colorimetric Assay for the Rapid Detection of Organophosphorus Pesticide and Nerve Agent. Anal. Chem. 2013, 85, 308–312. [Google Scholar] [CrossRef]
- Li, Y.; He, X.; Yin, J.J.; Ma, Y.; Zhang, P.; Li, J.; Ding, Y.; Zhang, J.; Zhao, Y.; Chai, Z.; et al. Acquired superoxide-scavenging ability of ceria nanoparticles. Angew. Chem. Int. Ed. Engl. 2015, 54, 1832–1835. [Google Scholar] [CrossRef] [PubMed]
- Karakoti, A.S.; Singh, S.; Kumar, A.; Malinska, M.; Kuchibhatla, S.V.N.T.; Wozniak, K.; Self, W.T.; Seal, S. PEGylated Nanoceria as Radical Scavenger with Tunable Redox Chemistry. J. Am. Chem. Soc. 2009, 131, 14144–14145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, C.K.; Kim, T.; Choi, I.Y.; Soh, M.; Kim, D.; Kim, Y.J.; Jang, H.; Yang, H.S.; Kim, J.Y.; Park, H.K.; et al. Ceria nanoparticles that can protect against ischemic stroke. Angew. Chem. Int. Ed. Engl. 2012, 51, 11039–11043. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Zhu, C.; Su, S.; Li, D.; He, Y.; Huang, Q.; Fan, C. Self-Catalyzed, Self-Limiting Growth of Glucose Oxidase-Mimicking Gold Nanoparticles. ACS Nano 2010, 4, 7451–7458. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Cheng, H.; Zhao, X.; Wu, J.; Muhammad, F.; Lin, S.; He, J.; Zhou, L.; Zhang, C.; Deng, Y.; et al. Surface-Enhanced Raman Scattering Active Gold Nanoparticles with Enzyme-Mimicking Activities for Measuring Glucose and Lactate in Living Tissues. ACS Nano 2017, 11, 5558–5566. [Google Scholar] [CrossRef]
- Hai, X.; Li, Y.; Yu, K.; Yue, S.; Li, Y.; Song, W.; Bi, S.; Zhang, X. Synergistic in-situ growth of silver nanoparticles with nanozyme activity for dual-mode biosensing and cancer theranostics. Chin. Chem. Lett. 2021, 32, 1215–1219. [Google Scholar] [CrossRef]
- Hai, X.; Zhu, X.; Yu, K.; Yue, S.; Song, W.; Bi, S. Dual-mode glucose nanosensor as an activatable theranostic platform for cancer cell recognition and cascades-enhanced synergetic therapy. Biosens. Bioelectron. 2021, 192, 113544. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Li, T.; Hai, X.; Bi, S. A nanozyme-based colorimetric sensor array as electronic tongue for thiols discrimination and disease identification. Biosens. Bioelectron. 2022, 213, 114438. [Google Scholar] [CrossRef]
- Vazquez-Gonzalez, M.; Liao, W.C.; Cazelles, R.; Wang, S.; Yu, X.; Gutkin, V.; Willner, I. Mimicking Horseradish Peroxidase Functions Using Cu(2+)-Modified Carbon Nitride Nanoparticles or Cu(2+)-Modified Carbon Dots as Heterogeneous Catalysts. ACS Nano 2017, 11, 3247–3253. [Google Scholar] [CrossRef]
- Lin, T.R.; Zhong, L.S.; Wang, J.; Guo, L.Q.; Wu, H.Y.; Guo, Q.Q.; Fu, F.F.; Chen, G.N. Graphite-like carbon nitrides as peroxidase mimetics and their applications to glucose detection. Biosens. Bioelectron. 2014, 59, 89–93. [Google Scholar] [CrossRef]
- Huang, Y.; Ren, J.; Qu, X. Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications. Chem. Rev. 2019, 119, 4357–4412. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wei, H.; Zhang, Z.; Wang, E.; Dong, S. Nanozyme: An emerging alternative to natural enzyme for biosensing and immunoassay. TrAC Trends Anal. Chem. 2018, 105, 218–224. [Google Scholar] [CrossRef]
- Niu, X.; Cheng, N.; Ruan, X.; Du, D.; Lin, Y. Review—Nanozyme-Based Immunosensors and Immunoassays: Recent Developments and Future Trends. J. Electrochem. Soc. 2019, 167, 037508. [Google Scholar] [CrossRef]
- Hu, J.; Tang, F.; Wang, L.; Tang, M.; Jiang, Y.-Z.; Liu, C. Nanozyme sensor based-on platinum-decorated polymer nanosphere for rapid and sensitive detection of Salmonella typhimurium with the naked eye. Sens. Actuators B Chem. 2021, 346, 130560. [Google Scholar] [CrossRef]
- Yan, H.; Chen, Y.; Jiao, L.; Gu, W.; Zhu, C. Amorphous RuTe2 nanorods as efficient peroxidase mimics for colorimetric immunoassay. Sens. Actuators B Chem. 2021, 341, 130007. [Google Scholar] [CrossRef]
- Farka, Z.; Cunderlova, V.; Horackova, V.; Pastucha, M.; Mikusova, Z.; Hlavacek, A.; Skladal, P. Prussian Blue Nanoparticles as a Catalytic Label in a Sandwich Nanozyme-Linked Immunosorbent Assay. Anal. Chem. 2018, 90, 2348–2354. [Google Scholar] [CrossRef] [PubMed]
- Adeniyi, O.; Sicwetsha, S.; Adesina, A.; Mashazi, P. Immunoassay detection of tumor-associated autoantibodies using protein G bioconjugated to nanomagnet-silica decorated with Au@Pd nanoparticles. Talanta 2021, 226, 122127. [Google Scholar] [CrossRef]
- Xie, J.; Tang, M.Q.; Chen, J.; Zhu, Y.H.; Lei, C.B.; He, H.W.; Xu, X.H. A sandwich ELISA-like detection of C-reactive protein in blood by citicoline-bovine serum albumin conjugate and aptamer-functionalized gold nanoparticles nanozyme. Talanta 2020, 217, 121070. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wu, D.; Wu, Y.; Li, G. Bioinspired nanozyme for portable immunoassay of allergenic proteins based on A smartphone. Biosens. Bioelectron. 2021, 172, 112776. [Google Scholar] [CrossRef]
- Jin, L.Y.; Dong, Y.M.; Wu, X.M.; Cao, G.X.; Wang, G.L. Versatile and Amplified Biosensing through Enzymatic Cascade Reaction by Coupling Alkaline Phosphatase in Situ Generation of Photoresponsive Nanozyme. Anal. Chem. 2015, 87, 10429–10436. [Google Scholar] [CrossRef]
- Su, B.; Xu, H.; Xie, G.; Chen, Q.; Sun, Z.; Cao, H.; Liu, X. Generation of a nanobody-alkaline phosphatase fusion and its application in an enzyme cascade-amplified immunoassay for colorimetric detection of alpha fetoprotein in human serum. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 262, 120088. [Google Scholar] [CrossRef] [PubMed]
- Ruan, X.; Liu, D.; Niu, X.; Wang, Y.; Simpson, C.D.; Cheng, N.; Du, D.; Lin, Y. 2D Graphene Oxide/Fe-MOF Nanozyme Nest with Superior Peroxidase-Like Activity and Its Application for Detection of Woodsmoke Exposure Biomarker. Anal. Chem. 2019, 91, 13847–13854. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Gan, C.; Chang, W.; Qileng, A.; Lei, H.; Liu, Y. Double-integrated mimic enzymes for the visual screening of Microcystin-LR: Copper hydroxide nanozyme and G-quadruplex/hemin DNAzyme. Anal. Chim. Acta 2019, 1054, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Zhan, S.; Feng, L.; Chen, X.; Guo, Q.; Guo, Y.; He, Q.; Xiong, Y. Chemical modification of M13 bacteriophage as nanozyme container for dramatically enhanced sensitivity of colorimetric immunosensor. Sens. Actuators B Chem. 2021, 346, 130368. [Google Scholar] [CrossRef]
- Chen, Y.; Jiao, L.; Yan, H.; Xu, W.; Wu, Y.; Zheng, L.; Gu, W.; Zhu, C. Fe-N-C Single-Atom Catalyst Coupling with Pt Clusters Boosts Peroxidase-like Activity for Cascade-Amplified Colorimetric Immunoassay. Anal. Chem. 2021, 93, 12353–12359. [Google Scholar] [CrossRef]
- Oh, S.; Kim, J.; Tran, V.T.; Lee, D.K.; Ahmed, S.R.; Hong, J.C.; Lee, J.; Park, E.Y.; Lee, J. Magnetic Nanozyme-Linked Immunosorbent Assay for Ultrasensitive Influenza A Virus Detection. ACS Appl. Mater. Interfaces 2018, 10, 12534–12543. [Google Scholar] [CrossRef]
- Jiao, L.; Yan, H.; Xu, W.; Wu, Y.; Gu, W.; Li, H.; Du, D.; Lin, Y.; Zhu, C. Self-Assembly of All-Inclusive Allochroic Nanoparticles for the Improved ELISA. Anal. Chem. 2019, 91, 8461–8465. [Google Scholar] [CrossRef]
- Ahmed, S.R.; Corredor, J.C.; Nagy, E.; Neethirajan, S. Amplified visual immunosensor integrated with nanozyme for ultrasensitive detection of avian influenza virus. Nanotheranostics 2017, 1, 338–345. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Xing, Z.; Tang, Q.; Yang, L.; Dai, L.; Wang, H.; Yan, T.; Xu, W.; Ma, H.; Wei, Q. Enzyme-Free Colorimetric Immunoassay for Protein Biomarker Enabled by Loading and Disassembly Behaviors of Polydopamine Nanoparticles. ACS Appl. Bio Mater. 2020, 3, 8841–8848. [Google Scholar] [CrossRef]
- Guo, Y.; Zhou, Y.; Xiong, S.; Zeng, L.; Huang, X.; Leng, Y.; Xiong, Y. Natural enzyme-free colorimetric immunoassay for human chorionic gonadotropin detection based on the Ag+-triggered catalytic activity of cetyltrimethylammonium bromide-coated gold nanoparticles. Sens. Actuators B Chem. 2020, 305, 127439. [Google Scholar] [CrossRef]
- Chen, G.; Jin, M.; Ma, J.; Yan, M.; Cui, X.; Wang, Y.; Zhang, X.; Li, H.; Zheng, W.; Zhang, Y.; et al. Competitive Bio-Barcode Immunoassay for Highly Sensitive Detection of Parathion Based on Bimetallic Nanozyme Catalysis. J. Agric. Food Chem. 2020, 68, 660–668. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; He, S.; Zhang, Y.; Xu, J.; Zhang, H.; Wang, Z.; Xue, J.; Li, X.; Yu, W.; Fan, X. Signal-off tuned signal-on (SF-T-SN) colorimetric immunoassay for amantadine using activity-metalmodulated peroxidase-mimicking nanozyme. Sens. Actuators B Chem. 2020, 311, 127933. [Google Scholar] [CrossRef]
- Zhu, H.; Quan, Z.; Hou, H.; Cai, Y.; Liu, W.; Liu, Y. A colorimetric immunoassay based on cobalt hydroxide nanocages as oxidase mimics for detection of ochratoxin A. Anal. Chim. Acta 2020, 1132, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Cai, X.; Ostermeyer, G.; Yu, J.; Du, D.; Lin, Y. Self-Assembling Allochroic Nanocatalyst for Improving Nanozyme-Based Immunochromatographic Assays. ACS Sens. 2021, 6, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Lai, X.; Zhang, G.; Zeng, L.; Xiao, X.; Peng, J.; Guo, P.; Zhang, W.; Lai, W. Synthesis of PDA-Mediated Magnetic Bimetallic Nanozyme and Its Application in Immunochromatographic Assay. ACS Appl. Mater. Interfaces 2021, 13, 1413–1423. [Google Scholar] [CrossRef]
- Wang, Z.; Yao, X.; Zhang, Y.; Wang, R.; Ji, Y.; Sun, J.; Zhang, D.; Wang, J. Functional nanozyme mediated multi-readout and label-free lateral flow immunoassay for rapid detection of Escherichia coli O157:H7. Food Chem. 2020, 329, 127224. [Google Scholar] [CrossRef]
- Cheng, N.; Song, Y.; Zeinhom, M.M.A.; Chang, Y.C.; Sheng, L.; Li, H.; Du, D.; Li, L.; Zhu, M.J.; Luo, Y.; et al. Nanozyme-Mediated Dual Immunoassay Integrated with Smartphone for Use in Simultaneous Detection of Pathogens. ACS Appl. Mater. Interfaces 2017, 9, 40671–40680. [Google Scholar] [CrossRef]
- Bradbury, D.W.; Azimi, M.; Diaz, A.J.; Pan, A.A.; Falktoft, C.H.; Wu, B.M.; Kamei, D.T. Automation of Biomarker Preconcentration, Capture, and Nanozyme Signal Enhancement on Paper-Based Devices. Anal. Chem. 2019, 91, 12046–12054. [Google Scholar] [CrossRef]
- Fu, J.; Zhou, Y.; Huang, X.; Zhang, W.; Wu, Y.; Fang, H.; Zhang, C.; Xiong, Y. Dramatically Enhanced Immunochromatographic Assay Using Cascade Signal Amplification for Ultrasensitive Detection of Escherichia coli O157:H7 in Milk. J. Agric. Food Chem. 2020, 68, 1118–1125. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Y.; Cheng, N.; Xu, Y.; Huang, K.; Luo, Y.; Wang, P.; Duan, D.; Xu, W. Ultrasensitive Detection of Viable Enterobacter sakazakii by a Continual Cascade Nanozyme Biosensor. Anal. Chem. 2017, 89, 10194–10200. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, M.; Fu, Q.; Ouyang, H.; Wen, W.; Song, Y.; Zhu, C.; Lin, Y.; Du, D. A Nanozyme- and Ambient Light-Based Smartphone Platform for Simultaneous Detection of Dual Biomarkers from Exposure to Organophosphorus Pesticides. Anal. Chem. 2018, 90, 7391–7398. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Dou, L.; Yao, X.; Zhang, W.; Zhao, M.; Yin, X.; Sun, J.; Zhang, D.; Wang, J. Nanozyme amplification mediated on-demand multiplex lateral flow immunoassay with dual-readout and broadened detection range. Biosens. Bioelectron. 2020, 169, 112610. [Google Scholar] [CrossRef] [PubMed]
- Ruan, X.; Wang, Y.; Kwon, E.Y.; Wang, L.; Cheng, N.; Niu, X.; Ding, S.; Van Wie, B.J.; Lin, Y.; Du, D. Nanomaterial-enhanced 3D-printed sensor platform for simultaneous detection of atrazine and acetochlor. Biosens. Bioelectron. 2021, 184, 113238. [Google Scholar] [CrossRef]
- Wei, D.; Zhang, X.; Chen, B.; Zeng, K. Using bimetallic Au@Pt nanozymes as a visual tag and as an enzyme mimic in enhanced sensitive lateral-flow immunoassays: Application for the detection of streptomycin. Anal. Chim. Acta 2020, 1126, 106–113. [Google Scholar] [CrossRef]
- Jiao, L.; Zhang, L.H.; Du, W.W.; Li, H.; Yang, D.Y.; Zhu, C.Z. Hierarchical manganese dioxide nanoflowers enable accurate ratiometric fluorescence enzyme-linked immunosorbent assay. Nanoscale 2018, 10, 21893–21897. [Google Scholar] [CrossRef]
- Tan, X.F.; Zhang, L.H.; Tang, Q.R.; Zheng, G.X.; Li, H. Ratiometric fluorescent immunoassay for the cardiac troponin-I using carbon dots and palladium-iridium nanocubes with peroxidase-mimicking activity. Microchim. Acta 2019, 186, 280. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Liu, G.; Jia, H.; Cui, X.; Wang, Y.; Li, D.; Zheng, W.; She, Y.; Xu, D.; Huang, X.; et al. A sensitive bio-barcode immunoassay based on bimetallic Au@Pt nanozyme for detection of organophosphate pesticides in various agro-products. Food Chem. 2021, 362, 130118. [Google Scholar] [CrossRef]
- Li, J.; Cao, Y.; Hinman, S.S.; McKeating, K.S.; Guan, Y.; Hu, X.; Cheng, Q.; Yang, Z. Efficient label-free chemiluminescent immunosensor based on dual functional cupric oxide nanorods as peroxidase mimics. Biosens. Bioelectron. 2018, 100, 304–311. [Google Scholar] [CrossRef]
- Liu, D.; Ju, C.; Han, C.; Shi, R.; Chen, X.; Duan, D.; Yan, J.; Yan, X. Nanozyme chemiluminescence paper test for rapid and sensitive detection of SARS-CoV-2 antigen. Biosens. Bioelectron. 2020, 173, 112817. [Google Scholar] [CrossRef]
- Zhong, Y.; Tang, X.; Li, J.; Lan, Q.; Min, L.; Ren, C.; Hu, X.; Torrente-Rodriguez, R.M.; Gao, W.; Yang, Z. A nanozyme tag enabled chemiluminescence imaging immunoassay for multiplexed cytokine monitoring. Chem. Commun. 2018, 54, 13813–13816. [Google Scholar] [CrossRef]
- Huang, T.; Hu, X.; Wang, M.; Wu, Y.; Hu, L.; Xia, Z. Ionic liquid-assisted chemiluminescent immunoassay of prostate specific antigen using nanoceria as an alkaline phosphatase-like nanozyme label. Chem. Commun. 2021, 57, 3054–3057. [Google Scholar] [CrossRef] [PubMed]
- Zhi, L.J.; Sun, A.L. Platinum nanozyme-encapsulated poly(amidoamine) dendrimer for voltammetric immunoassay of pro-gastrin-releasing peptide. Anal. Chim. Acta 2020, 1134, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Hu, X.; Wang, K.; Zou, Y.; Gyimah, E.; Yakubu, S.; Zhang, Z. A novel signal amplification strategy based on the competitive reaction between 2D Cu-TCPP(Fe) and polyethyleneimine (PEI) in the application of an enzyme-free and ultrasensitive electrochemical immunosensor for sulfonamide detection. Biosens. Bioelectron. 2020, 150, 111883. [Google Scholar] [CrossRef] [PubMed]
- Nandhakumar, P.; Kim, G.; Park, S.; Kim, S.; Kim, S.; Park, J.K.; Lee, N.S.; Yoon, Y.H.; Yang, H. Metal Nanozyme with Ester Hydrolysis Activity in the Presence of Ammonia-Borane and Its Use in a Sensitive Immunosensor. Angew. Chem. Int. Ed. Engl. 2020, 59, 22419–22422. [Google Scholar] [CrossRef] [PubMed]
- Sha, H.; Wang, Y.; Zhang, Y.; Ke, H.; Xiong, X.; Jia, N. Enzyme-free ECL immunesensor based on PbS nanocrystals for highly sensitive detection of alpha fetoprotein. Sens. Actuators B Chem. 2018, 277, 157–163. [Google Scholar] [CrossRef]
- Yang, W.; Zhou, Z.; Wu, H.; Liu, C.; Shen, B.; Ding, S.; Zhou, Y. Multi-function PtCo nanozymes/CdS nanocrystals@graphene oxide luminophores and K2S2O8/H2O2 coreactants-based dual amplified electrochemiluminescence immunosensor for ultrasensitive detection of anti-myeloperoxidase antibody. J. Nanobiotechnol. 2021, 19, 225. [Google Scholar] [CrossRef]
- Shao, K.; Zhang, C.; Ye, S.; Cai, K.; Wu, L.; Wang, B.; Zou, C.; Lu, Z.; Han, H. Near–infrared electrochemiluminesence biosensor for high sensitive detection of porcine reproductive and respiratory syndrome virus based on cyclodextrin-grafted porous Au/PtAu nanotube. Sens. Actuators B Chem. 2017, 240, 586–594. [Google Scholar] [CrossRef]
- Sloan-Dennison, S.; Laing, S.; Shand, N.C.; Graham, D.; Faulds, K. A novel nanozyme assay utilising the catalytic activity of silver nanoparticles and SERRS. Analyst 2017, 142, 2484–2490. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Li, G.; Liu, J.; Su, Z. Bio-inspired Nanoenzyme Synthesis and Its Application in A Portable Immunoassay for Food Allergy Proteins. J. Agric. Food Chem. 2021, 69, 14751–14760. [Google Scholar] [CrossRef]
- Su, Y.; Wu, D.; Chen, J.; Chen, G.; Hu, N.; Wang, H.; Wang, P.; Han, H.; Li, G.; Wu, Y. Ratiometric Surface Enhanced Raman Scattering Immunosorbent Assay of Allergenic Proteins via Covalent Organic Framework Composite Material Based Nanozyme Tag Triggered Raman Signal ″Turn-on″ and Amplification. Anal. Chem. 2019, 91, 11687–11695. [Google Scholar] [CrossRef]
- Li, W.; Fan, G.C.; Gao, F.; Cui, Y.; Wang, W.; Luo, X. High-activity Fe3O4 nanozyme as signal amplifier: A simple, low-cost but efficient strategy for ultrasensitive photoelectrochemical immunoassay. Biosens. Bioelectron. 2019, 127, 64–71. [Google Scholar] [CrossRef]
- Chen, G.; Qin, Y.; Jiao, L.; Huang, J.; Wu, Y.; Hu, L.; Gu, W.; Xu, D.; Zhu, C. Nanozyme-Activated Synergistic Amplification for Ultrasensitive Photoelectrochemical Immunoassay. Anal. Chem. 2021, 93, 6881–6888. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Du, Y.; Feng, J.; Xu, R.; Ren, X.; Fan, D.; Wei, Q.; Ju, H. A duple nanozyme stimulating tandem catalysis assisted multiple signal inhibition strategy for photoelectrochemical bioanalysis. Sens. Actuators B Chem. 2021, 334, 129608. [Google Scholar] [CrossRef]
- Liu, L.; Liu, J.; Huang, H.; Li, Y.; Zhao, G.; Dou, W. A quantitative foam immunoassay for detection of Escherichia coli O157:H7 based on bimetallic nanocatalyst-gold platinum. Microchem. J. 2019, 148, 702–707. [Google Scholar] [CrossRef]
- Guo, R.; Xue, L.; Cai, G.; Qi, W.; Liu, Y.; Lin, J. Fe-MIL-88NH2 Metal–Organic Framework Nanocubes Decorated with Pt Nanoparticles for the Detection of Salmonella. ACS Appl. Nano Mater. 2021, 4, 5115–5122. [Google Scholar] [CrossRef]
- Miao, L.; Jiao, L.; Tang, Q.; Li, H.; Zhang, L.; Wei, Q. A nanozyme-linked immunosorbent assay for dual-modal colorimetric and ratiometric fluorescent detection of cardiac troponin I. Sens. Actuators B Chem. 2019, 288, 60–64. [Google Scholar] [CrossRef]
- Choi, H.; Son, S.E.; Hur, W.; Tran, V.K.; Lee, H.B.; Park, Y.; Han, D.K.; Seong, G.H. Electrochemical Immunoassay for Determination of Glycated Albumin using Nanozymes. Sci. Rep. 2020, 10, 9513. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, Y.; Huang, Y.; Dai, H.; Lin, Y. Design and application of proximity hybridization-based multiple stimuli-responsive immunosensing platform for ovarian cancer biomarker detection. Biosens. Bioelectron. 2020, 159, 112201. [Google Scholar] [CrossRef]
- Xie, X.; Tan, L.; Liu, S.; Wen, X.; Li, T.; Yang, M. High-sensitive photometric microplate assay for tumor necrosis factor-alpha based on Fe@BC nanozyme. J. Immunol. Methods 2021, 499, 113167. [Google Scholar] [CrossRef]
- Leng, Y.; Bu, S.; Li, Z.; Hao, Z.; Ma, C.; He, X.; Wan, J. A Colorimetric Immunosensor Based on Hemin@MI Nanozyme Composites, with Peroxidase-like Activity for Point-of-care Testing of Pathogenic E. coli O157:H7. Anal. Sci. 2021, 37, 941–947. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, X.; Zhao, Y.; Lv, J.; Meng, H.; Chang, H.; Zhang, H.; Wei, W. Highly photosensitive colorimetric immunoassay for tumor marker detection based on Cu(2+) doped Ag-AgI nanocomposite. Talanta 2017, 167, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.P.; Li, N.S.; Chen, Y.T.; Pang, H.H.; Wei, K.C.; Yang, H.W. A serological point-of-care test for Zika virus detection and infection surveillance using an enzyme-free vial immunosensor with a smartphone. Biosens. Bioelectron. 2020, 151, 111960. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Chen, T.; Chen, Y.; Yang, G. Modified Ti3C2 nanosheets as peroxidase mimetics for use in colorimetric detection and immunoassays. J. Mater. Chem. B 2020, 8, 2650–2659. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Hua, M.Y.; Li, N.S.; Hsu, Y.P.; Chen, Y.T.; Chuang, C.K.; Pang, S.T.; Yang, H.W. A colorimetric immunosensor based on self-linkable dual-nanozyme for ultrasensitive bladder cancer diagnosis and prognosis monitoring. Biosens. Bioelectron. 2019, 126, 581–589. [Google Scholar] [CrossRef]
- Xu, W.; Song, W.; Kang, Y.; Jiao, L.; Wu, Y.; Chen, Y.; Cai, X.; Zheng, L.; Gu, W.; Zhu, C. Axial Ligand-Engineered Single-Atom Catalysts with Boosted Enzyme-Like Activity for Sensitive Immunoassay. Anal. Chem. 2021, 93, 12758–12766. [Google Scholar] [CrossRef]
- Long, L.; Cai, R.; Liu, J.; Wu, X. A Novel Nanoprobe Based on Core-Shell Au@Pt@Mesoporous SiO2 Nanozyme with Enhanced Activity and Stability fwithumps Virus Diagnosis. Front. Chem. 2020, 8, 463. [Google Scholar] [CrossRef]
- Khoris, I.M.; Ganganboina, A.B.; Suzuki, T.; Park, E.Y. Self-assembled chromogen-loaded polymeric cocoon for respiratory virus detection. Nanoscale 2021, 13, 388–396. [Google Scholar] [CrossRef]
- Khoris, I.M.; Chowdhury, A.D.; Li, T.C.; Suzuki, T.; Park, E.Y. Advancement of capture immunoassay for real-time monitoring of hepatitis E virus-infected monkey. Anal. Chim. Acta 2020, 1110, 64–71. [Google Scholar] [CrossRef]
- Mohamad, A.; Keasberry, N.A.; Ahmed, M.U. Enzyme-free Gold-silver Core-shell Nanozyme Immunosensor for the Detection of Haptoglobin. Anal. Sci. 2018, 34, 1257–1263. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.J.; Huang, Z.; Sun, Y.M.; Xu, Z.L.; Liu, J. The Most Active Oxidase-Mimicking Mn2 O3 Nanozyme for Biosensor Signal Generation. Chemistry 2021, 27, 9597–9604. [Google Scholar] [CrossRef]
- Zhang, Z.; Su, B.; Xu, H.; He, Z.; Zhou, Y.; Chen, Q.; Sun, Z.; Cao, H.; Liu, X. Enzyme cascade-amplified immunoassay based on the nanobody–alkaline phosphatase fusion and MnO2 nanosheets for the detection of ochratoxin A in coffee. RSC Adv. 2021, 11, 21760–21766. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Liu, B.; Li, J.; Lu, J.; Zhang, E.; Deng, Q.; Zhang, L.; Chen, R.; Fu, Y.; Li, C.; et al. A nanoenzyme linked immunochromatographic sensor for rapid and quantitative detection of SARS-CoV-2 nucleocapsid protein in human blood. Sens. Actuators B Chem. 2021, 349, 130718. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Kweon, S.H.; Cho, S.; An, S.S.A.; Kim, M.I.; Doh, J.; Lee, J. Pt-Decorated Magnetic Nanozymes for Facile and Sensitive Point-of-Care Bioassay. ACS Appl. Mater. Interfaces 2017, 9, 35133–35140. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Yang, H.; Chen, Y.; Shen, D.; Cui, X.; Zhang, C.; Xiao, H.; Eremin, S.A.; Fang, Y.; Zhao, S. Prussian blue nanoparticles with peroxidase-mimicking properties in a dual immunoassays for glycocholic acid. J. Pharm. Biomed. Anal. 2020, 187, 113317. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.H.; Kim, J.S.; Sessler, J.L. Small molecule-based ratiometric fluorescence probes for cations, anions, and biomolecules. Chem. Soc. Rev. 2015, 44, 4185–4191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Guo, L.; Li, Z.; He, J.; Cui, H. Temporal-Spatial-Color Multiresolved Chemiluminescence Imaging for Multiplex Immunoassays Using a Smartphone Coupled with Microfluidic Chip. Anal. Chem. 2020, 92, 6827–6831. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Liu, H.; Wu, K.; Deng, A.; Li, J. Ultra-sensitive detection of florfenicol by flow injection chemiluminescence immunoassay based on Nickel/Cobalt bimetallic metal-organic framework nanozymes. Analyst 2022, 147, 1321–1328. [Google Scholar] [CrossRef]
- Alizadeh, N.; Hallaj, R.; Salimi, A. Dual Amplified Electrochemical Immunosensor for Hepatitis B Virus Surface Antigen Detection Using Hemin/G-Quadruplex Immobilized onto Fe3O4-AuNPs or (Hemin-Amino-rGO-Au) Nanohybrid. Electroanalysis 2018, 30, 402–414. [Google Scholar] [CrossRef]
- Liu, Y.; He, G.; Liu, H.; Yin, H.; Gao, F.; Chen, J.; Zhang, S.; Yang, B. Electrochemical immunosensor based on AuBP@Pt nanostructure and AuPd-PDA nanozyme for ultrasensitive detection of APOE4. RSC Adv. 2020, 10, 7912–7917. [Google Scholar] [CrossRef]
- Yang, M.; Wu, X.; Hu, X.; Wang, K.; Zhang, C.; Gyimah, E.; Yakubu, S.; Zhang, Z. Electrochemical immunosensor based on Ag(+)-dependent CTAB-AuNPs for ultrasensitive detection of sulfamethazine. Biosens. Bioelectron. 2019, 144, 111643. [Google Scholar] [CrossRef]
- Zhao, W.W.; Xu, J.J.; Chen, H.Y. Photoelectrochemical bioanalysis: The state of the art. Chem. Soc. Rev. 2015, 44, 729–741. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Liu, M.Q.; Ma, G.F.; Wang, Y.L.; Zhao, L.N.; Yuan, Q.; Gao, F.P.; Liu, R.; Zhai, J.; Chai, Z.F.; et al. Peptide-Conjugated Gold Nanoprobe: Intrinsic Nanozyme-Linked Immunsorbant Assay of Integrin Expression Level on Cell Membrane. ACS Nano 2015, 9, 10979–10990. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Chen, G.; She, Y.; Ma, J.; Hong, S.; Shao, Y.; Abd El-Aty, A.M.; Wang, M.; Wang, S.; Wang, J. Sensitive and Simple Competitive Biomimetic Nanozyme-Linked Immunosorbent Assay for Colorimetric and Surface-Enhanced Raman Scattering Sensing of Triazophos. J. Agric. Food Chem. 2019, 67, 9658–9666. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wen, W.; Guo, J.; Wang, S.; Wang, J. Development of non-enzymatic and photothermal immuno-sensing assay for detecting the enrofloxacin in animal derived food by utilizing black phosphorus-platinum two-dimensional nanomaterials. Food Chem. 2021, 357, 129766. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Liu, Y.; Qileng, A.; Shen, H.; Liu, W.; Xu, Z.; Liu, Y. PEI-coated Prussian blue nanocubes as pH-Switchable nanozyme: Broad-pH-responsive immunoassay for illegal additive. Biosens. Bioelectron. 2022, 219, 114797. [Google Scholar] [CrossRef] [PubMed]
Nanozymes | Signals | Analyte | Limit of Detection (LOD) | Comparison of Sensitivity with Natural Enzymes-Labeled Immunoassays | Ref. |
---|---|---|---|---|---|
Ps-Pt | Colorimetric | S. typhi | 100 CFU mL−1 | - | [24] |
a-RuTe2 nanorods | Colorimetric | PSA | 32.6 pg mL−1 | The LOD was one order of magnitude lower than that of ELISA. | [25] |
PBNPs | Colorimetric | HSA | 1.2 ng mL−1 | The LOD was improved by 3 orders of magnitude that of ELISA. | [26] |
Fe3O4@SiO2-NH2-Au@Pd0.30NPs | Colorimetric | antip53aAbs | 15 pg mL−1 | The LOD was lower than that of ELISA (0.19 ng mL−1). | [27] |
aptamer-AuNPs | Colorimetric | CRP | 8 pg mL−1 | The LOD was lower than that of ELISA (0.14 μg mL−1). | [28] |
LMs | Colorimetric | α-LA | 0.056 ng mL−1 | - | [29] |
TiO2-CA NPs | Colorimetric | ALP | 0.002 U L−1 | - | [30] |
MnO2 nanoflakes | Colorimetric | AFP | 0.148 ng mL−1 | - | [31] |
2D GO/Fe-MOF | Colorimetric | BPDE-DNA | 0.268 ng mL−1 | - | [32] |
Cu(OH)2-DNAzymes | Colorimetric | MC-LR | 6 ng L−1 | The LOD was lower than that of ELISA (190 ng L−1). | [33] |
Fe-N-C single-atom | Colorimetric | CEA | 0.55 pg mL−1 | The LOD was lower than that of ELISA (2 pg mL−1). | [34] |
FeSA−PtC nanozymes | Colorimetric | PSA | 1.8 pg mL−1 | - | [35] |
AuNZs | Colorimetric | influenza virus A (H1N1) | 44.2 × 10−15 g mL−1 | - | [36] |
TMB NPs | Colorimetric | interleukin-6 | 0.66 pg mL−1 | The sensitivity was 11.82 times higher than that of ELISA (7.8 pg mL−1). | [37] |
TMBZ-AuNPs | Colorimetric | influenza virus A (H5N1) | 1.11 pg mL−1 | The LOD was lower than that of ELISA (909 pg mL−1). | [38] |
PDA-Fe(III) NPs | Colorimetric | PSA | 0.84 pg mL−1 | The LOD was lower than that of ELISA (6.81 pg mL−1). | [39] |
AuNSs@CTAB | Colorimetric | HCG | 7.8 mIU mL−1 | - | [40] |
Au@Pt probes | Colorimetric | parathion | 2.13 ng·kg−1 | The LOD was lower than that of ELISA (20.82 ng·kg−1). | [41] |
PVP-PtNC nanozyme | Colorimetric | AMD | 0.134 ng mL−1 | The LOD was lower than that of HRP-labeled IgG catalyzed colorimetric reactions (0.343 ng mL−1). | [42] |
Co(OH)2 nanocages | Colorimetric | ochratoxin A | 0.26 ng L−1 | - | [43] |
SAN | Colorimetric | cTnI-TnC Myo | 0.012 ng mL−1 0.2 ng mL−1 | The LODs were lower than ELISA kit (0.03 ng mL−1 for cTnI, and 5 ng mL−1 for Myo). | [44] |
Fe3O4@PDA@Pd/Pt | Colorimetric | E. coli O157:H7 | 9 × 101 CFU mL−1 | - | [45] |
man-PB | Colorimetric | E. coli O157:H7 | 102 CFU mL−1 | - | [46] |
Pd@Pt | Colorimetric | S. Enteritidis E. coli O157:H7 | ∼20 CFU mL−1 ∼34 CFU mL−1 | The LOD was 100-fold more sensitive than AuNP-based LFIAs and similar to HRP enhanced LFIAs. | [47] |
PtGNs | Colorimetric | E. coli O157:H7 | 3.3 × 104 CFU mL−1 | 30-fold improvement in LOD was achieved over the conventional LFA. | [48] |
in situ gold growth of AuNPs | Colorimetric | E. coli O157:H7 | 1.25 × 10 CFU mL−1 | The LOD was 400-fold lower than colloidal gold immunochromatography assay. | [49] |
MNP | Colorimetric | ES | 2 CFU mL−1 | - | [50] |
PtPd nanoparticles | Colorimetric | BChE | 0.025 nM | - | [51] |
MPBN | Colorimetric | CLE RAC | 0.20 ng mL−1 0.12 ng mL−1 | - | [52] |
Pd@Pt NP | Colorimetric | Atrazine acetochlor | 0.24 ppb 3.2 ppb | - | [53] |
Au@Pt nanozyme | Colorimetric | STR | 1 ng mL−1 | The LOD was lower than LFA based on AuNPs (8 ng mL−1). | [54] |
MnO2 NFs | Fluorescence | CRP | 0.67 pg mL−1 | The LOD was lower than electrochemical ELISA (12.5 pg mL−1). | [55] |
Pd-Ir nanocubes | Fluorescence | cardiac troponin I | 0.31 pg mL−1 | - | [56] |
Au@Pt nanozyme | Fluorescence | parathion Triazophos chlorpyrifos | 9.88 ng kg−1 3.91 ng kg−1 1.47 ng kg−1 | - | [57] |
CuONRs | Chemiluminescence | CEA | 0.05 ng mL−1 | The LOD was 12-fold more sensitive than HRP-labeled sandwich CLIA. | [58] |
Co-Fe@hemin | Chemiluminescence | SARS-CoV-2 antigen | 0.1 ng mL−1 | - | [59] |
CuSNPs | Chemiluminescence | IFN-γ IL-4 | 2.9 pg mL−1 3.2 pg mL−1 | The LOD was lower than ELISA (500 pg mL−1 for IFN-γ) and CLIA (20 pg mL−1 for IL-4). | [60] |
nanoceria | Chemiluminescence | PSA | 53 fg mL−1 | - | [61] |
PtDEN | Electrochemical | ProGRP | 0.86 pg mL−1 | The LOD was lower than EC immunosensor (10 pg mL−1). | [62] |
2D Cu-TCPP(Fe) | Electrochemical | SAs | 0.395 ng mL−1 | - | [63] |
PtNP | Electrochemical | TSH | 0.3 pg mL−1 | - | [64] |
PbS NCs | Electrochemiluminescence | AFP | 3.0 fg mL−1 | The LOD was lower than ELISA (0.1 ng mL−1). | [65] |
PtCo nanozymes | Electrochemiluminescence | anti-MPO | 7.39 fg mL−1 | - | [66] |
PtAu BNT | Electrochemiluminescence | PRRSV | 10.8 pg mL−1 | - | [67] |
Ag-NPs | SERS | CRP | 1.09 ng mL−1 | - | [68] |
CeO2 | SERS | α-LA | 0.01 ng mL−1 | The LOD was lower than ELISA (0.128 ng mL−1). | [69] |
AuNPs doped COF | SERS | β-lactoglobulin | 0.01 ng mL−1 | The LOD was lower than sandwich ELISA (33.95 ng mL−1). | [70] |
Fe3O4 | Photoelectrochemical | PSA | 18 fg mL−1 | The LOD was lower than sandwich HRP labeled PEC immunoassay (37 fg mL−1). | [71] |
PdPt bimetallic nanozymes | Photoelectrochemical | CEA | 0.21 pg mL−1 | - | [72] |
BSA@Au NPs | Photoelectrochemical | CYFRA21-1 | 1.12 fg mL−1 | - | [73] |
Au@Pt NP | Height of foam | E. coli O157:H7 | 2.16 × 102 CFU mL−1 | - | [74] |
Fe-MOF/PtNPs | Temperature | Salmonella | 93 CFU mL−1 | The LOD was lower than sandwich ELISA (104 CFU mL−1). | [75] |
nanoceria | Colorimetric Ratiometric fluorescence | cTnI | 0.227 pg mL−1 0.413 pg mL−1 | - | [76] |
Pt nanozymes | Colorimetric Electrochemical | GA | 9.2 μg mL−1 3.8 μg mL−1 | - | [77] |
MoS2 NSs | Colorimetric Electrochemiluminescence Photothermal | HE4 | 3 × 10−5 ng mL−1 3 × 10−7 ng mL−1 - | - | [78] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, L.; Liu, Y.; Lu, Y.; Zhou, P.; Lu, L.; Lv, H.; Hai, X. Recent Advances in the Immunoassays Based on Nanozymes. Biosensors 2022, 12, 1119. https://doi.org/10.3390/bios12121119
Zhou L, Liu Y, Lu Y, Zhou P, Lu L, Lv H, Hai X. Recent Advances in the Immunoassays Based on Nanozymes. Biosensors. 2022; 12(12):1119. https://doi.org/10.3390/bios12121119
Chicago/Turabian StyleZhou, Lu, Yifan Liu, Yang Lu, Peirong Zhou, Lianqin Lu, Han Lv, and Xin Hai. 2022. "Recent Advances in the Immunoassays Based on Nanozymes" Biosensors 12, no. 12: 1119. https://doi.org/10.3390/bios12121119
APA StyleZhou, L., Liu, Y., Lu, Y., Zhou, P., Lu, L., Lv, H., & Hai, X. (2022). Recent Advances in the Immunoassays Based on Nanozymes. Biosensors, 12(12), 1119. https://doi.org/10.3390/bios12121119