Potential Environmental and Health Implications from the Scaled-Up Production and Disposal of Nanomaterials Used in Biosensors
Abstract
:1. Introduction
2. Methods
3. Factors Affecting Toxicity
3.1. Material Composition
3.1.1. Metals and Metal Oxides
3.1.2. Nanocarbons
Carbon Nanoparticles
Graphene
Graphene Oxide
Reduced Graphene Oxide
Fullerenes
Carbon Nanotubes
3.1.3. Inorganic Two-Dimensional Nanomaterials
3.1.4. Composites and Alloys
3.2. Dimensionality
3.2.1. Size
- Confounding factors: factors such as exposure time, administration routes, shape, model organism, etc., often vary across studies (Table S3 in the Supplementary Materials).
3.2.2. Shape
3.3. Concentration, Bioaccumulation, and Biomagnification
3.4. Surface Chemistry
3.4.1. Charge
3.4.2. Surface Modifications
3.5. Transformations
3.5.1. Dissolution
3.5.2. Biomolecular-Particle Complexation
3.5.3. Environmental Transformation and Complexation
4. Exposure Effects Related to Nanomaterial Life Cycles
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mech, A.; Wohlleben, W.; Ghanem, A.; Hodoroaba, V.D.; Weigel, S.; Babick, F.; Brüngel, R.; Friedrich, C.M.; Rasmussen, K.; Rauscher, H. Nano or Not Nano? A Structured Approach for Identifying Nanomaterials According to the European Commission’s Definition. Small 2020, 16, 2002228. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, Applications and Toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Sudha, P.N.; Sangeetha, K.; Vijayalakshmi, K.; Barhoum, A. Nanomaterials History, Classification, Unique Properties, Production and Market. In Emerging Applications of Nanoparticles and Architecture Nanostructures; Elsevier: Amsterdam, The Netherlands, 2018; pp. 341–384. [Google Scholar] [CrossRef]
- Hammond, J.L.; Formisano, N.; Estrela, P.; Carrara, S.; Tkac, J. Electrochemical Biosensors and Nanobiosensors. Essays Biochem. 2016, 60, 69. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Morrin, A.; Killard, A.J.; Smyth, M.R. Application of Nanoparticles in Electrochemical Sensors and Biosensors. Electroanalysis 2006, 18, 319–326. [Google Scholar] [CrossRef] [Green Version]
- Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Introduction to Biosensors. Essays Biochem. 2016, 60, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Bolotsky, A.; Butler, D.; Dong, C.; Gerace, K.; Glavin, N.R.; Muratore, C.; Robinson, J.A.; Ebrahimi, A. Two-Dimensional Materials in Biosensing and Healthcare: From in Vitro Diagnostics to Optogenetics and Beyond. ACS Nano 2019, 13, 9781–9810. [Google Scholar] [CrossRef] [Green Version]
- Murphy, L. Biosensors and Bioelectrochemistry. Curr. Opin. Chem. Biol. 2006, 10, 177–184. [Google Scholar] [CrossRef]
- Kulabhusan, P.K.; Tripathi, A.; Kant, K.; Gold, N.; Kulabhusan, P.K.; Tripathi, A.; Kant, K. Gold Nanoparticles and Plant Pathogens: An Overview and Prospective for Biosensing in Forestry. Sensors 2022, 22, 1259. [Google Scholar] [CrossRef]
- Ornelas-Hernández, L.F.; Garduno-Robles, A.; Zepeda-Moreno, A. A Brief Review of Carbon Dots–Silica Nanoparticles Synthesis and Their Potential Use as Biosensing and Theragnostic Applications. Nanoscale Res. Lett. 2022, 17, 56. [Google Scholar] [CrossRef]
- Salata, O.V. Applications of Nanoparticles in Biology and Medicine. J. Nanobiotechnology 2004, 2, 3. [Google Scholar] [CrossRef] [Green Version]
- Abdelbasir, S.M.; McCourt, K.M.; Lee, C.M.; Vanegas, D.C. Waste-Derived Nanoparticles: Synthesis Approaches, Environmental Applications, and Sustainability Considerations. Front. Chem. 2020, 8, 782. [Google Scholar] [CrossRef]
- CDC. One Health Basics. Available online: https://www.cdc.gov/onehealth/basics/index.html (accessed on 28 October 2022).
- WHO. One Health. Available online: https://www.who.int/news-room/questions-and-answers/item/one-health (accessed on 28 October 2022).
- Safdari, M.; Al-Haik, M.S. A Review on Polymeric Nanocomposites: Effect of Hybridization and Synergy on Electrical Properties. In Carbon-Based Polymer Nanocomposites for Environmental and Energy Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 113–146. [Google Scholar] [CrossRef]
- Ferrando, R.; Jellinek, J.; Johnston, R.L. Nanoalloys: From Theory to Applications of Alloy Clusters and Nanoparticles. Chem. Rev. 2008, 108, 845–910. [Google Scholar] [CrossRef] [PubMed]
- van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2009, 84, 523–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chizhov, A.; Rumyantseva, M.; Gaskov, A. Light Activation of Nanocrystalline Metal Oxides for Gas Sensing: Principles, Achievements, Challenges. Nanomaterials 2021, 11, 892. [Google Scholar] [CrossRef]
- Lim, W.Y.; Lan, B.L.; Ramakrishnan, N. Emerging Biosensors to Detect Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): A Review. Biosensors 2021, 11, 434. [Google Scholar] [CrossRef]
- Zhang, Z.; Lou, Y.; Guo, C.; Jia, Q.; Song, Y.; Tian, J.Y.; Zhang, S.; Wang, M.; He, L.; Du, M. Metal–Organic Frameworks (MOFs) Based Chemosensors/Biosensors for Analysis of Food Contaminants. Trends Food Sci. Technol. 2021, 118, 569–588. [Google Scholar] [CrossRef]
- Mohankumar, P.; Ajayan, J.; Mohanraj, T.; Yasodharan, R. Recent Developments in Biosensors for Healthcare and Biomedical Applications: A Review. Measurement 2021, 167, 108293. [Google Scholar] [CrossRef]
- Hai, X.; Li, Y.; Zhu, C.; Song, W.; Cao, J.; Bi, S. DNA-Based Label-Free Electrochemical Biosensors: From Principles to Applications. TrAC Trends Anal. Chem. 2020, 133, 116098. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Yin, L.H.; Tang, M.; Pu, Y.P. ZnO, TiO2, SiO2, and Al2O3 Nanoparticles-Induced Toxic Effects on Human Fetal Lung Fibroblasts. Biomed. Environ. Sci. 2011, 24, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Chen, X.; Tan, L.; Wang, J. Combined Toxicities of Copper Nanoparticles with Carbon Nanotubes on Marine Microalgae Skeletonema Costatum. Environ. Sci. Pollut. Res. 2018, 25, 13127–13133. [Google Scholar] [CrossRef]
- Zhu, X.; Zhao, W.; Chen, X.; Zhao, T.; Tan, L.; Wang, J. Growth Inhibition of the Microalgae Skeletonema Costatum under Copper Nanoparticles with Microplastic Exposure. Mar. Environ. Res. 2020, 158, 105005. [Google Scholar] [CrossRef] [PubMed]
- Garncarek, M.; Kowalska-Góralska, M.; Senze, M.; Czyż, K. The Influence of Available Cu and Au Nanoparticles (NPs) on the Survival of Water Fleas (Daphnia Pulex). Int. J. Environ. Res. Public Health 2019, 16, 3617. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; He, Z.; Li, X.; Jiang, Z.; Xuan, F.; Tang, B.; Bian, X. Behavior and Toxicity Assessment of Copper Nanoparticles in Aquatic Environment: A Case Study on Red Swamp Crayfish. J. Environ. Manag. 2022, 313, 114986. [Google Scholar] [CrossRef]
- Song, L.; Vijver, M.G.; Peijnenburg, W.J.G.M.; Galloway, T.S.; Tyler, C.R. A Comparative Analysis on the in Vivo Toxicity of Copper Nanoparticles in Three Species of Freshwater Fish. Chemosphere 2015, 139, 181–189. [Google Scholar] [CrossRef]
- Ostaszewska, T.; Śliwiński, J.; Kamaszewski, M.; Sysa, P.; Chojnacki, M. Cytotoxicity of Silver and Copper Nanoparticles on Rainbow Trout (Oncorhynchus Mykiss) Hepatocytes. Environ. Sci. Pollut. Res. 2018, 25, 908–915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, K.; He, Z.; Byrne, H.J.; Curtin, J.F.; Tian, F. Investigating the Role of Gold Nanoparticle Shape and Size in Their Toxicities to Fungi. Int. J. Environ. Res. Public Health 2018, 15, 998. [Google Scholar] [CrossRef] [Green Version]
- Yahyaei, B.; Nouri, M.; Bakherad, S.; Hassani, M.; Pourali, P. Effects of Biologically Produced Gold Nanoparticles: Toxicity Assessment in Different Rat Organs after Intraperitoneal Injection. AMB Express 2019, 9, 38. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Chaves, C.; Soto-Alvaredo, J.; Montes-Bayon, M.; Bettmer, J.; Llopis, J.; Sanchez-Gonzalez, C. Gold Nanoparticles: Distribution, Bioaccumulation and Toxicity. In Vitro and in Vivo Studies. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Modica, V.; Glávits, R.; Murbach, T.S.; Endres, J.R.; Hirka, G.; Vértesi, A.; Béres, E.; Szakonyiné, I.P. A Toxicological Evaluation of 8–28 Nm Gold Nanocrystals. Food Chem. Toxicol. 2022, 161, 112844. [Google Scholar] [CrossRef]
- Hassanen, E.I.; Morsy, E.A.; Hussien, A.M.; Ibrahim, M.A.; Farroh, K.Y. The Effect of Different Concentrations of Gold Nanoparticles on Growth Performance, Toxicopathological and Immunological Parameters of Broiler Chickens. Biosci. Rep. 2020, 40, BSR20194296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ksiązyk, M.; Asztemborska, M.; Stęborowski, R.; Bystrzejewska-Piotrowska, G. Toxic Effect of Silver and Platinum Nanoparticles toward the Freshwater Microalga Pseudokirchneriella Subcapitata. Bull. Environ. Contam. Toxicol. 2015, 94, 554–558. [Google Scholar] [CrossRef] [Green Version]
- Demir, V.; Bucher, J.; Kropf, C.; Arenz, M.; Segner, H. Comparative Study of Cytotoxicity by Platinum Nanoparticles and Ions in Vitro Systems Based on Fish Cell Lines. Toxicol. Vitr. 2020, 66, 104859. [Google Scholar] [CrossRef]
- Lin, C.X.; Gu, J.L.; Cao, J.M. The Acute Toxic Effects of Platinum Nanoparticles on Ion Channels, Transmembrane Potentials of Cardiomyocytes in Vitro and Heart Rhythm in Vivo in Mice. Int. J. Nanomed. 2019, 14, 5595–5609. [Google Scholar] [CrossRef] [Green Version]
- Şahin, B.; Aygün, A.; Gündüz, H.; Şahin, K.; Demir, E.; Akocak, S.; Şen, F. Cytotoxic Effects of Platinum Nanoparticles Obtained from Pomegranate Extract by the Green Synthesis Method on the MCF-7 Cell Line. Colloids Surf. B Biointerfaces 2018, 163, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Starnes, D.L.; Unrine, J.M.; Starnes, C.P.; Collin, B.E.; Oostveen, E.K.; Ma, R.; Lowry, G.V.; Bertsch, P.M.; Tsyusko, O.V. Impact of Sulfidation on the Bioavailability and Toxicity of Silver Nanoparticles to Caenorhabditis Elegans. Environ. Pollut. 2015, 196, 239–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hlavkova, D.; Beklova, M.; Kopel, P.; Havelkova, B. Effects of Silver Nanoparticles and Ions Exposure on the Soil Invertebrates Folsomia Candida and Enchytraeus Crypticus. Bull. Environ. Contam. Toxicol. 2020, 105, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Olugbodi, J.O.; David, O.; Oketa, E.N.; Lawal, B.; Okoli, B.J.; Mtunzi, F. Silver Nanoparticles Stimulates Spermatogenesis Impairments and Hematological Alterations in Testis and Epididymis of Male Rats. Molecules 2020, 25, 1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, E.B.; Alms, C.; Hinman, A.W.; Kelly, C.; Smith, A.; Vance, M.; Loncarek, J.; Marr, L.C.; Cimini, D. Single-Cell Analysis Reveals That Chronic Silver Nanoparticle Exposure Induces Cell Division Defects in Human Epithelial Cells. Int. J. Environ. Res. Public Health 2019, 16, 2061. [Google Scholar] [CrossRef]
- Hu, B.; Yang, R.; Cheng, Z.; Liang, S.; Liang, S.; Yin, N.; Faiola, F. Non-Cytotoxic Silver Nanoparticle Levels Perturb Human Embryonic Stem Cell-Dependent Specification of the Cranial Placode in Part via FGF Signaling. J. Hazard. Mater. 2020, 393, 122440. [Google Scholar] [CrossRef]
- Anila, P.A.; Keerthiga, B.; Ramesh, M.; Muralisankar, T. Synthesis and Characterization of Palladium Nanoparticles by Chemical and Green Methods: A Comparative Study on Hepatic Toxicity Using Zebrafish as an Animal Model. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2021, 244, 108979. [Google Scholar] [CrossRef]
- Iavicoli, I.; Fontana, L.; Leso, V.; Corbi, M.; Marinaccio, A.; Leopold, K.; Schindl, R.; Lucchetti, D.; Calapà, F.; Sgambato, A. Subchronic Exposure to Palladium Nanoparticles Affects Serum Levels of Cytokines in Female Wistar Rats. Hum. Exp. Toxicol. 2018, 37, 309–320. [Google Scholar] [CrossRef]
- Wu, F.G.; Jiang, Y.W.; Gao, G.; Jia, H.R.; Zhang, X.; Cheng, X.; Wang, H.Y.; Liu, P. Palladium Nanosheets as Safe Radiosensitizers for Radiotherapy. Langmuir 2020, 36, 11637–11644. [Google Scholar] [CrossRef]
- Sasabe, E.; Tomomura, A.; Kitamura, N.; Yamamoto, T. Metal Nanoparticles-Induced Activation of NLRP3 Inflammasome in Human Oral Keratinocytes Is a Possible Mechanism of Oral Lichenoid Lesions. Toxicol. Vitr. 2020, 62, 104663. [Google Scholar] [CrossRef] [PubMed]
- Athie-García, M.S.; Piñón-Castillo, H.A.; Muñoz-Castellanos, L.N.; Ulloa-Ogaz, A.L.; Martínez-Varela, P.I.; Quintero-Ramos, A.; Duran, R.; Murillo-Ramirez, J.G.; Orrantia-Borunda, E. Cell Wall Damage and Oxidative Stress in Candida Albicans ATCC10231 and Aspergillus Niger Caused by Palladium Nanoparticles. Toxicol. Vitr. 2018, 48, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Lai, W.; Liu, X.; Yang, H.; Fang, Y.; Tian, L.; Li, K.; Nie, H.; Zhang, W.; Shi, Y.; et al. Exposure to Copper Oxide Nanoparticles Triggers Oxidative Stress and Endoplasmic Reticulum (ER)-Stress Induced Toxicology and Apoptosis in Male Rat Liver and BRL-3A Cell. J. Hazard. Mater. 2021, 401, 123349. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.; Thiel, K.; Jog, K.; Dringen, R. Uptake of Intact Copper Oxide Nanoparticles Causes Acute Toxicity in Cultured Glial Cells. Neurochem. Res. 2019, 44, 2156–2169. [Google Scholar] [CrossRef]
- Ouni, S.; Askri, D.; Jeljeli, M.; Abdelmalek, H.; Sakly, M.; Amara, S. Toxicity and Effects of Copper Oxide Nanoparticles on Cognitive Performances in Rats. Arch. Environ. Occup. Health 2019, 75, 384–394. [Google Scholar] [CrossRef]
- Ray, A.; Gautam, A.; Das, S.; Pal, K.; Das, S.; Karmakar, P.; Ray, M.; Ray, S. Effects of Copper Oxide Nanoparticle on Gill Filtration Rate, Respiration Rate, Hemocyte Associated Immune Parameters and Oxidative Status of an Indian Freshwater Mussel. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2020, 237, 108855. [Google Scholar] [CrossRef]
- Che, X.; Ding, R.; Zhang, Q.; Li, Y.; Sun, Q.; Li, Y.; Zhang, Z.; Wang, W.; Gao, H. The Severe Toxicity of CuO Nanoparticles to the Photosynthesis of the Prokaryotic Algae Arthrospira sp. Environ. Sci. Pollut. Res. 2021, 28, 54105–54116. [Google Scholar] [CrossRef] [PubMed]
- Souza, L.R.R.; Bernardes, L.E.; Barbetta, M.F.S.; da Veiga, M.A.M.S. Iron Oxide Nanoparticle Phytotoxicity to the Aquatic Plant Lemna Minor: Effect on Reactive Oxygen Species (ROS) Production and Chlorophyll a/Chlorophyll b Ratio. Environ. Sci. Pollut. Res. Int. 2019, 26, 24121–24131. [Google Scholar] [CrossRef]
- Ates, M.; Cimen, I.C.C.; Unal, I.; Kutlu, B.; Ertit Tastan, B.; Danabas, D.; Aksu, O.; Arslan, Z. Assessment of Impact of α-Fe2O3 and γ-Fe2O3 Nanoparticles on Phytoplankton Species Selenastrum Capricornutum and Nannochloropsis Oculata. Environ. Toxicol. 2020, 35, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Hurtado-Gallego, J.; Pulido-Reyes, G.; González-Pleiter, M.; Salas, G.; Leganés, F.; Rosal, R.; Fernández-Piñas, F. Toxicity of Superparamagnetic Iron Oxide Nanoparticles to the Microalga Chlamydomonas Reinhardtii. Chemosphere 2020, 238, 124562. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Wen, W.; Wang, X.; Huang, D.; Cao, J.; Qi, X.; Shen, S. Ultrasmall Iron Oxide Nanoparticles Cause Significant Toxicity by Specifically Inducing Acute Oxidative Stress to Multiple Organs. Part. Fibre Toxicol. 2022, 19, 24. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Hussain, A.; Bhushan, B.; Kaul, G. Comparative Toxicity Assessment of Nano- and Bulk-Phase Titanium Dioxide Particles on the Human Mammary Gland in Vitro. Hum. Exp. Toxicol. 2020, 39, 1475–1486. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Tang, Y.; Chen, B.; Hong, W.; Xu, X.; Liu, Y.; Aguilar, Z.P.; Xu, H. Oral Exposure of Titanium Oxide Nanoparticles Induce Ileum Physical Barrier Dysfunction via Th1/Th2 Imbalance. Environ. Toxicol. 2020, 35, 982–990. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.K.; Bareja, S. Zinc Oxide Nanoparticles: Chemical and Green Synthesis, Characterization, and Comparative Evaluation of Their Effects on Caprine Testis in Vitro. J. Biochem. Mol. Toxicol. 2022, 36, e23167. [Google Scholar] [CrossRef] [PubMed]
- Hassanian, M.; Aryapour, H.; Goudarzi, A.; Javan, M.B. Are Zinc Oxide Nanoparticles Safe? A Structural Study on Human Serum Albumin Using in Vitro and in Silico Methods. J. Biomol. Struct. Dyn. 2020, 39, 330–335. [Google Scholar] [CrossRef]
- Chemingui, H.; Smiri, M.; Missaoui, T.; Hafiane, A. Zinc Oxide Nanoparticles Induced Oxidative Stress and Changes in the Photosynthetic Apparatus in Fenugreek (Trigonella Foenum Graecum L.). Bull. Environ. Contam. Toxicol. 2019, 102, 477–485. [Google Scholar] [CrossRef]
- Shetti, N.P.; Mishra, A.; Bukkitgar, S.D.; Basu, S.; Narang, J.; Raghava Reddy, K.; Aminabhavi, T.M. Conventional and Nanotechnology-Based Sensing Methodsfor SARS Coronavirus (2019-NCoV). ACS Appl. Bio Mater. 2021, 4, 1178. [Google Scholar] [CrossRef]
- Patel, R.; Vinchurkar, M.; Patkar, R.; Pranjale, G.; Baghini, M.S. Impedance Based Biosensor for Agricultural Pathogen Detection. In Proceedings of the 2021 IEEE 21st International Conference on Nanotechnology (NANO), Montreal, QC, Canada, 28–30 July 2021; pp. 385–388. [Google Scholar] [CrossRef]
- Yoon, Y.; Kim, S.; Lee, J.; Choi, J.; Kim, R.K.; Lee, S.J.; Sul, O.; Lee, S.B. Clogging-Free Microfluidics for Continuous Size-Based Separation of Microparticles. Sci. Rep. 2016, 6, 26531. [Google Scholar] [CrossRef] [Green Version]
- Wasik, D.; Mulchandani, A.; Yates, M.V. A Heparin-Functionalized Carbon Nanotube-Based Affinity Biosensor for Dengue Virus. Biosens. Bioelectron. 2017, 91, 811–816. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Mei, Y.; He, C.; Luo, Y.; Yang, M.; Kuang, Y.; Ma, X.; Zhang, H.; Huang, Q. Electrochemical Biosensing Interface Based on Carbon Dots-Fe3O4 Nanomaterial for the Determination of Escherichia Coli O157:H7. Front. Chem. 2021, 9, 903. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Ramnan, P.; Pham, T.; Villarreal, C.C.; Yu, X.; Liu, G.; Mulchandani, A. Gas Biosensor Arrays Based on Single-Stranded DNA-Functionalized Single-Walled Carbon Nanotubes for the Detection of Volatile Organic Compound Biomarkers Released by Huanglongbing Disease-Infected Citrus Trees. Sensors 2019, 19, 4795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, Q.; Xu, Y.; Chen, X.; Xiao, H. Exhaled Gas Detection by a Novel Rh-Doped CNT Biosensor for Prediagnosis of Lung Cancer: A DFT Study. Mol. Phys. 2018, 116, 2205–2212. [Google Scholar] [CrossRef]
- Kuretake, T.; Kawahara, S.; Motooka, M.; Uno, S. An Electrochemical Gas Biosensor Based on Enzymes Immobilized on Chromatography Paper for Ethanol Vapor Detection. Sensors 2017, 17, 281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, V.; Raghuwanshi, S.K.; Kumar, S. Recent Advances in Carbon Nanomaterials Based SPR Sensor for Biomolecules and Gas Detection-A Review. IEEE Sens. J. 2022, 22, 15661–15672. [Google Scholar] [CrossRef]
- Takalkar, S.; Baryeh, K.; Liu, G. Fluorescent Carbon Nanoparticle-Based Lateral Flow Biosensor for Ultrasensitive Detection of DNA. Biosens. Bioelectron. 2017, 98, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Zhang, W.; Zhang, J.; Zhang, Q.; Sheng, T.; Gu, Y. An Electrochemical Biosensor for Sensitive Detection of MicroRNAs Based on Target-Recycled Non-Enzymatic Amplification. Sens. Actuators B Chem. 2018, 271, 15–23. [Google Scholar] [CrossRef]
- Bagheri, S.; Termehyousefi, A.; Mansouri, N.; Amani Babadi, A.; Abd Karim, M.S.; Adib Kadri, N. Carbon-Based Nanobiohybrid Thin Film for Amperometric Glucose Sensing. ACS Biomater. Sci. Eng. 2017, 3, 2059–2063. [Google Scholar] [CrossRef] [PubMed]
- Allafchian, A.R.; Moini, E.; Mirahmadi-Zare, S.Z. Flower-Like Self-Assembly of Diphenylalanine for Electrochemical Human Growth Hormone Biosensor. IEEE Sens. J. 2018, 18, 8979–8985. [Google Scholar] [CrossRef]
- Parate, K.; Pola, C.C.; Rangnekar, S.V.; Mendivelso-Perez, D.L.; Smith, E.A.; Hersam, M.C.; Gomes, C.L.; Claussen, J.C. Aerosol-Jet-Printed Graphene Electrochemical Histamine Sensors for Food Safety Monitoring. 2D Mater. 2020, 7, 034002. [Google Scholar] [CrossRef]
- Nunes, E.W.; Silva, M.K.L.; Rascón, J.; Leiva-Tafur, D.; Lapa, R.M.L.; Cesarino, I. Acetylcholinesterase Biosensor Based on Functionalized Renewable Carbon Platform for Detection of Carbaryl in Food. Biosensors 2022, 12, 486. [Google Scholar] [CrossRef]
- Smart, A.; Crew, A.; Pemberton, R.; Hughes, G.; Doran, O.; Hart, J.P. Screen-Printed Carbon Based Biosensors and Their Applications in Agri-Food Safety. TrAC Trends Anal. Chem. 2020, 127, 115898. [Google Scholar] [CrossRef]
- da Silva, M.K.L.; Vanzela, H.C.; Defavari, L.M.; Cesarino, I. Determination of Carbamate Pesticide in Food Using a Biosensor Based on Reduced Graphene Oxide and Acetylcholinesterase Enzyme. Sens. Actuators B Chem. 2018, 277, 555–561. [Google Scholar] [CrossRef] [Green Version]
- Fallatah, A.; Kuperus, N.; Almomtan, M.; Padalkar, S. Sensitive Biosensor Based on Shape-Controlled ZnO Nanostructures Grown on Flexible Porous Substrate for Pesticide Detection. Sensors 2022, 22, 3522. [Google Scholar] [CrossRef]
- Zamzami, M.A.; Rabbani, G.; Ahmad, A.; Basalah, A.A.; Al-Sabban, W.H.; Nate Ahn, S.; Choudhry, H. Carbon Nanotube Field-Effect Transistor (CNT-FET)-Based Biosensor for Rapid Detection of SARS-CoV-2 (COVID-19) Surface Spike Protein S1. Bioelectrochemistry 2022, 143, 107982. [Google Scholar] [CrossRef]
- Thanihaichelvan, M.; Surendran, S.N.; Kumanan, T.; Sutharsini, U.; Ravirajan, P.; Valluvan, R.; Tharsika, T. Selective and Electronic Detection of COVID-19 (Coronavirus) Using Carbon Nanotube Field Effect Transistor-Based Biosensor: A Proof-of-Concept Study. Mater. Today Proc. 2022, 49, 2546–2549. [Google Scholar] [CrossRef]
- Saenchoopa, A.; Klangphukhiew, S.; Somsub, R.; Talodthaisong, C.; Patramanon, R.; Daduang, J.; Daduang, S.; Kulchat, S. A Disposable Electrochemical Biosensor Based on Screen-Printed Carbon Electrodes Modified with Silver Nanowires/HPMC/Chitosan/Urease for the Detection of Mercury (II) in Water. Biosensors 2021, 11, 351. [Google Scholar] [CrossRef]
- Wang, Z.; Bi, J.; Wang, H.; Khaneghah, M.; Wang, Z.; Bi, J.; Wang, H.; Tan, M. Assessment of Potential Toxicity of Onion-like Carbon Nanoparticles from Grilled Turbot Scophthalmus Maximus L. Foods 2021, 11, 95. [Google Scholar] [CrossRef]
- Ou, L.; Song, B.; Liang, H.; Liu, J.; Feng, X.; Deng, B.; Sun, T.; Shao, L. Toxicity of Graphene-Family Nanoparticles: A General Review of the Origins and Mechanisms. Part. Fibre Toxicol. 2016, 13, 57. [Google Scholar] [CrossRef] [Green Version]
- Fahmi, T.; Branch, L.D.; Nima, Z.A.; Jang, D.S.; Savenka, A.V.; Biris, A.S.; Basnakian, A.G. Mechanism of Graphene-Induced Cytotoxicity: Role of Endonucleases. J. Appl. Toxicol. 2017, 37, 1325–1332. [Google Scholar] [CrossRef] [Green Version]
- Manjunatha, B.; Park, S.H.; Kim, K.; Kundapur, R.R.; Lee, S.J. In Vivo Toxicity Evaluation of Pristine Graphene in Developing Zebrafish (Danio Rerio) Embryos. Environ. Sci. Pollut. Res. 2018, 13, 12821–12829. [Google Scholar] [CrossRef]
- Fernandes, A.L.; Nascimento, J.P.; Santos, A.P.; Furtado, C.A.; Romano, L.A.; Eduardo da Rosa, C.; Monserrat, J.M.; Ventura-Lima, J. Assessment of the Effects of Graphene Exposure in Danio Rerio: A Molecular, Biochemical and Histological Approach to Investigating Mechanisms of Toxicity. Chemosphere 2018, 210, 458–466. [Google Scholar] [CrossRef]
- Tiginyanu, I.; Ursaki, V.; Popa, V. Ultra-Thin Membranes for Sensor Applications. In Nanocoatings and Ultra-Thin Films; Woodhead Publishing: Sawston, UK, 2011; pp. 330–354. [Google Scholar] [CrossRef]
- Khan, B.; Adeleye, A.S.; Burgess, R.M.; Smolowitz, R.; Russo, S.M.; Ho, K.T. A 72-h Exposure Study with Eastern Oysters (Crassostrea Virginica) and the Nanomaterial Graphene Oxide. Environ. Toxicol. Chem. 2019, 38, 820–830. [Google Scholar] [CrossRef]
- Khan, B.; Adeleye, A.S.; Burgess, R.M.; Russo, S.M.; Ho, K.T. Effects of Graphene Oxide Nanomaterial Exposures on the Marine Bivalve, Crassostrea Virginica. Aquat. Toxicol. 2019, 216, 105297. [Google Scholar] [CrossRef]
- Souza, J.P.; Baretta, J.F.; Santos, F.; Paino, I.M.M.; Zucolotto, V. Toxicological Effects of Graphene Oxide on Adult Zebrafish (Danio Rerio). Aquat. Toxicol. 2017, 186, 11–18. [Google Scholar] [CrossRef]
- Zhu, S.; Luo, F.; Chen, W.; Zhu, B.; Wang, G. Toxicity Evaluation of Graphene Oxide on Cysts and Three Larval Stages of Artemia Salina. Sci. Total Environ. 2017, 595, 101–109. [Google Scholar] [CrossRef]
- Yu, Q.; Zhang, B.; Li, J.; Du, T.; Yi, X.; Li, M.; Chen, W.; Alvarez, P.J.J. Graphene Oxide Significantly Inhibits Cell Growth at Sublethal Concentrations by Causing Extracellular Iron Deficiency. Nanotoxicology 2017, 11, 1102–1114. [Google Scholar] [CrossRef]
- Dziewięcka, M.; Karpeta-Kaczmarek, J.; Augustyniak, M.; Rost-Roszkowska, M. Short-Term in Vivo Exposure to Graphene Oxide Can Cause Damage to the Gut and Testis. J. Hazard. Mater. 2017, 328, 80–89. [Google Scholar] [CrossRef]
- An, W.; Zhang, Y.; Zhang, X.; Li, K.; Kang, Y.; Akhtar, S.; Sha, X.; Gao, L. Ocular Toxicity of Reduced Graphene Oxide or Graphene Oxide Exposure in Mouse Eyes. Exp. Eye Res. 2018, 174, 59–69. [Google Scholar] [CrossRef]
- Fadeel, B.; Bussy, C.; Merino, S.; Vázquez, E.; Flahaut, E.; Mouchet, F.; Evariste, L.; Gauthier, L.; Koivisto, A.J.; Vogel, U.; et al. Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment. ACS Nano 2018, 12, 10582–10620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.T.; Mu, X.Y.; Wu, X.L.; Meng, L.X.; Guan, W.B.; Ma, Y.Q.; Sun, H.; Wang, C.J.; Li, X.F. Toxicity of Multi-Walled Carbon Nanotubes, Graphene Oxide, and Reduced Graphene Oxide to Zebrafish Embryos. Biomed. Environ. Sci. 2014, 27, 676–683. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, Z.; Chu, M. Long-Term Toxicity of Reduced Graphene Oxide Nanosheets: Effects on Female Mouse Reproductive Ability and Offspring Development. Biomaterials 2015, 54, 188–200. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Xie, C.; Zhang, P.; Zhang, J.; Wang, G.; He, X.; Ma, Y.; Zhao, B.; Zhang, Z. Toxicity and Transformation of Graphene Oxide and Reduced Graphene Oxide in Bacteria Biofilm. Sci. Total Environ. 2017, 580, 1300–1308. [Google Scholar] [CrossRef]
- Siqueira, P.R.; Souza, J.P.; Estevão, B.M.; Altei, W.F.; Carmo, T.L.L.; Santos, F.A.; Araújo, H.S.S.; Zucolotto, V.; Fernandes, M.N. Concentration- and Time-Dependence Toxicity of Graphene Oxide (GO) and Reduced Graphene Oxide (RGO) Nanosheets upon Zebrafish Liver Cell Line. Aquat. Toxicol. 2022, 248, 106199. [Google Scholar] [CrossRef]
- Kang, Y.; Liu, J.; Wu, J.; Yin, Q.; Liang, H.; Chen, A.; Shao, L. Graphene Oxide and Reduced Graphene Oxide Induced Neural Pheochromocytoma-Derived PC12 Cell Lines Apoptosis and Cell Cycle Alterations via the ERK Signaling Pathways. Int. J. Nanomed. 2017, 12, 5501–5510. [Google Scholar] [CrossRef]
- Wang, X.; Feng, Y.; Dong, P.; Huang, J. A Mini Review on Carbon Quantum Dots: Preparation, Properties, and Electrocatalytic Application. Front. Chem. 2019, 7, 671. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, M.; Bhandari, B.; Yang, C. Recent Development of Carbon Quantum Dots: Biological Toxicity, Antibacterial Properties and Application in Foods. Food Rev. Int. 2020, 38, 1513–1532. [Google Scholar] [CrossRef]
- Yao, K.; Lv, X.; Zheng, G.; Chen, Z.; Jiang, Y.; Zhu, X.; Wang, Z.; Cai, Z. Effects of Carbon Quantum Dots on Aquatic Environments: Comparison of Toxicity to Organisms at Different Trophic Levels. Environ. Sci. Technol. 2018, 52, 14445–14451. [Google Scholar] [CrossRef]
- Pinheiro, F.G.; Moreira-Gomes, M.D.; Machado, M.N.; dos Santos Almeida, T.; Barboza, P.D.; Silva Oliveira, L.F.; Ávila Cavalcante, F.S.; Leal-Cardoso, J.H.; Fortunato, R.S.; Zin, W.A. Eugenol Mitigated Acute Lung but Not Spermatic Toxicity of C60 Fullerene Emulsion in Mice. Environ. Pollut. 2021, 269, 116188. [Google Scholar] [CrossRef]
- Sarasamma, S.; Audira, G.; Juniardi, S.; Sampurna, B.P.; Lai, Y.H.; Hao, E.; Chen, J.R.; Hsiao, C. Der Evaluation of the Effects of Carbon 60 Nanoparticle Exposure to Adult Zebrafish: A Behavioral and Biochemical Approach to Elucidate the Mechanism of Toxicity. Int. J. Mol. Sci. 2018, 19, 3853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.; Huang, B.; Chen, Z.; Lv, X.; Qian, W.; Zhu, X.; Li, B.; Wang, Z.; Cai, Z. Behavioural and Chronic Toxicity of Fullerene to Daphnia Magna: Mechanisms Revealed by Transcriptomic Analysis. Environ. Pollut. 2019, 255, 113181. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wu, L.; de Perrot, M.; Zhao, X. Carbon Nanotubes: A Summary of Beneficial and Dangerous Aspects of an Increasingly Popular Group of Nanomaterials. Front. Oncol. 2021, 11, 2908. [Google Scholar] [CrossRef] [PubMed]
- Venkataraman, A.; Amadi, E.V.; Chen, Y.; Papadopoulos, C. Carbon Nanotube Assembly and Integration for Applications. Nanoscale Res. Lett. 2019, 14, 220. [Google Scholar] [CrossRef]
- Hatami, M. Toxicity Assessment of Multi-Walled Carbon Nanotubes on Cucurbita Pepo L. under Well-Watered and Water-Stressed Conditions. Ecotoxicol. Environ. Saf. 2017, 142, 274–283. [Google Scholar] [CrossRef]
- Zhao, J.; Luo, W.; Xu, Y.; Ling, J.; Deng, L. Potential Reproductive Toxicity of Multi-Walled Carbon Nanotubes and Their Chronic Exposure Effects on the Growth and Development of Xenopus Tropicalis. Sci. Total Environ. 2021, 766, 142652. [Google Scholar] [CrossRef] [PubMed]
- Deepa, S.; Mamta, S.K.; Anitha, A.; Senthilkumaran, B. Exposure of Carbon Nanotubes Affects Testis and Brain of Common Carp. Environ. Toxicol. Pharmacol. 2022, 95, 103957. [Google Scholar] [CrossRef]
- Minchenko, O.H.; Tsymbal, D.O.; Minchenko, D.O.; Prylutska, S.V.; Hnatiuk, O.S.; Prylutskyy, Y.I.; Tsierkezos, N.G.; Ritter, U. Single-Walled Carbon Nanotubes Affect the Expression of Genes Associated with Immune Response in Normal Human Astrocytes. Toxicol. Vitr. 2018, 52, 122–130. [Google Scholar] [CrossRef]
- Lin, B.; Zhang, H.; Lin, Z.; Fang, Y.; Tian, L.; Yang, H.; Yan, J.; Liu, H.; Zhang, W.; Xi, Z. Studies of Single-Walled Carbon Nanotubes-Induced Hepatotoxicity by NMR-Based Metabonomics of Rat Blood Plasma and Liver Extracts. Nanoscale Res. Lett. 2013, 8, 236. [Google Scholar] [CrossRef] [Green Version]
- Chou, C.C.; Hsiao, H.Y.; Hong, Q.S.; Chen, C.H.; Peng, Y.W.; Chen, H.W.; Yang, P.C. Single-Walled Carbon Nanotubes Can Induce Pulmonary Injury in Mouse Model. Nano Lett. 2008, 8, 437–445. [Google Scholar] [CrossRef]
- Fujita, K.; Fukuda, M.; Endoh, S.; Maru, J.; Kato, H.; Nakamura, A.; Shinohara, N.; Uchino, K.; Honda, K. Pulmonary and Pleural Inflammation after Intratracheal Instillation of Short Single-Walled and Multi-Walled Carbon Nanotubes. Toxicol. Lett. 2016, 257, 23–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, C.; Zhou, Y.; Liu, L.; Long, J.; Liu, H.; Li, J.; Cao, Y. Lipid Accumulation in Multi-Walled Carbon Nanotube-Exposed HepG2 Cells: Possible Role of Lipophagy Pathway. Food Chem. Toxicol. 2018, 121, 65–71. [Google Scholar] [CrossRef]
- Long, J.; Ma, W.; Yu, Z.; Liu, H.; Cao, Y. Multi-Walled Carbon Nanotubes (MWCNTs) Promoted Lipid Accumulation in THP-1 Macrophages through Modulation of Endoplasmic Reticulum (ER) Stress. Nanotoxicology 2019, 13, 938–951. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Li, J.; Yang, C.; Liu, H.; Cao, Y. Multi-Walled Carbon Nanotubes Promoted Lipid Accumulation in Human Aortic Smooth Muscle Cells. Toxicol. Appl. Pharmacol. 2019, 374, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.Y.; Chen, R.L.; Shao, Y.; Wang, H.L.; Liu, Z.G. Effects of Exposure of Adult Mice to Multi-Walled Carbon Nanotubes on the Liver Lipid Metabolism of Their Offspring. Toxicol. Res. 2018, 7, 809–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Xu, R.; Hua, X.; Rui, Q.; Wang, D. Multi-Walled Carbon Nanotubes Induce Transgenerational Toxicity Associated with Activation of Germline Long Non-Coding RNA Linc-7 in C. Elegans. Chemosphere 2022, 301, 134687. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, F.; Peres, N.M.R.; Ribeiro, R.M.; Chaves, A.J. Excitons in Hexagonal Boron Nitride Single-Layer: A New Platform for Polaritonics in the Ultraviolet. JOSA 2019, 36, 674–683. [Google Scholar] [CrossRef] [Green Version]
- Mohona, T.M.; Gupta, A.; Masud, A.; Chien, S.C.; Lin, L.C.; Nalam, P.C.; Aich, N. Aggregation Behavior of Inorganic 2D Nanomaterials beyond Graphene: Insights from Molecular Modeling and Modified DLVO Theory. Environ. Sci. Technol. 2019, 53, 4161–4172. [Google Scholar] [CrossRef] [PubMed]
- Chng, E.L.K.; Pumera, M. Toxicity of Graphene Related Materials and Transition Metal Dichalcogenides. RSC Adv. 2014, 5, 3074–3080. [Google Scholar] [CrossRef]
- Naikoo, G.A.; Arshad, F.; Almas, M.; Hassan, I.U.; Pedram, M.Z.; Aljabali, A.A.; Mishra, V.; Serrano-Aroca, Á.; Birkett, M.; Charbe, N.B.; et al. 2D Materials, Synthesis, Characterization and Toxicity: A Critical Review. Chem. Biol. Interact. 2022, 365, 110081. [Google Scholar] [CrossRef]
- Wang, X.; Mansukhani, N.D.; Guiney, L.M.; Ji, Z.; Chang, C.H.; Wang, M.; Liao, Y.P.; Song, T.B.; Sun, B.; Li, R.; et al. Differences in the Toxicological Potential of 2D versus Aggregated Molybdenum Disulfide in the Lung. Small 2015, 11, 5079–5087. [Google Scholar] [CrossRef] [Green Version]
- Corazzari, I.; Deorsola, F.A.; Gulino, G.; Aldieri, E.; Bensaid, S.; Turci, F.; Fino, D. Hazard Assessment of W and Mo Sulphide Nanomaterials for Automotive Use. J. Nanoparticle Res. 2014, 16, 2401. [Google Scholar] [CrossRef]
- Yin, W.; Yan, L.; Yu, J.; Tian, G.; Zhou, L.; Zheng, X.; Zhang, X.; Yong, Y.; Li, J.; Gu, Z.; et al. High-Throughput Synthesis of Single-Layer MoS2 Nanosheets as a near-Infrared Photothermal-Triggered Drug Delivery for Effective Cancer Therapy. ACS Nano 2014, 8, 6922–6933. [Google Scholar] [CrossRef]
- Latiff, N.M.; Teo, W.Z.; Sofer, Z.; Fisher, A.C.; Pumera, M. The Cytotoxicity of Layered Black Phosphorus. Chem. A Eur. J. 2015, 21, 13991–13995. [Google Scholar] [CrossRef]
- Mu, X.; Wang, J.Y.; Bai, X.; Xu, F.; Liu, H.; Yang, J.; Jing, Y.; Liu, L.; Xue, X.; Dai, H.; et al. Black Phosphorus Quantum Dot Induced Oxidative Stress and Toxicity in Living Cells and Mice. ACS Appl. Mater. Interfaces 2017, 9, 20399–20409. [Google Scholar] [CrossRef] [PubMed]
- Eke, J.; Mills, P.A.; Page, J.R.; Wright, G.P.; Tsyusko, O.V.; Escobar, I.C. Nanohybrid Membrane Synthesis with Phosphorene Nanoparticles: A Study of the Addition, Stability and Toxicity. Polymers 2020, 12, 1555. [Google Scholar] [CrossRef] [PubMed]
- Tian, B.; Tian, B.; Smith, B.; Scott, M.C.; Lei, Q.; Hua, R.; Tian, Y.; Liu, Y. Facile Bottom-up Synthesis of Partially Oxidized Black Phosphorus Nanosheets as Metal-Free Photocatalyst for Hydrogen Evolution. Proc. Natl. Acad. Sci. USA 2018, 115, 4345–4350. [Google Scholar] [CrossRef] [Green Version]
- Burrs, S.L.; Vanegas, D.C.; Bhargava, M.; Mechulan, N.; Hendershot, P.; Yamaguchi, H.; Gomes, C.; McLamore, E.S. A Comparative Study of Graphene–Hydrogel Hybrid Bionanocomposites for Biosensing. Analyst 2015, 140, 1466–1476. [Google Scholar] [CrossRef] [PubMed]
- Daniele, M.A.; Pedrero, M.; Burrs, S.; Chaturvedi, P.; Salim, W.W.A.; Kuralay, F.; Campuzano, S.; McLamore, E.; Cargill, A.A.; Ding, S.; et al. Hybrid Metallic Nanoparticles: Enhanced Bioanalysis and Biosensing via Carbon Nanotubes, Graphene, and Organic Conjugation. Nanobiosensors Nanobioanalyses 2015, 137–166. [Google Scholar] [CrossRef]
- Chaturvedi, P.; Vanegas, D.C.; Taguchi, M.; Burrs, S.L.; Sharma, P.; McLamore, E.S. A Nanoceria–Platinum–Graphene Nanocomposite for Electrochemical Biosensing. Biosens. Bioelectron. 2014, 58, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, I.; Buzea, C. Nanomaterials and Nanocomposites: Classification and Toxicity. In Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications; Kharissova, O.V., Martínez, L.M.T., Kharisov, B.I., Eds.; Springer: Cham, Switzerland, 2021; pp. 3–39. [Google Scholar] [CrossRef]
- Wamucho, A.; Unrine, J.M.; Kieran, T.J.; Glenn, T.C.; Schultz, C.L.; Farman, M.; Svendsen, C.; Spurgeon, D.J.; Tsyusko, O.V. Genomic Mutations after Multigenerational Exposure of Caenorhabditis Elegans to Pristine and Sulfidized Silver Nanoparticles. Environ. Pollut. 2019, 254, 113078. [Google Scholar] [CrossRef]
- Kim, Y.; Jeong, J.; Yang, J.; Joo, S.W.; Hong, J.; Choi, J. Graphene Oxide Nano-Bio Interaction Induces Inhibition of Spermatogenesis and Disturbance of Fatty Acid Metabolism in the Nematode Caenorhabditis Elegans. Toxicology 2018, 410, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.H.; Chao, H.R.; Jiang, J.J.; Su, Y.H.; Cortez, M.S.P.; Tayo, L.L.; Lu, I.C.; Hsieh, H.; Lin, C.C.; Lin, S.L.; et al. Toxicity of Low-Dose Graphene Oxide Nanoparticles in an in-Vivo Wild Type of Caenorhabditis Elegans Model. Aerosol Air Qual. Res. 2021, 21, 200559. [Google Scholar] [CrossRef]
- Yin, J.; Dong, Z.; Liu, Y.; Wang, H.; Li, A.; Zhuo, Z.; Feng, W.; Fan, W. Toxicity of Reduced Graphene Oxide Modified by Metals in Microalgae: Effect of the Surface Properties of Algal Cells and Nanomaterials. Carbon N. Y. 2020, 169, 182–192. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, W.; Xu, Z.; Peng, W.; Luo, S. Transgenerational Effects of Reduced Graphene Oxide Modified by Au, Ag, Pd, Fe3O4, Co3O4 and SnO2 on Two Generations of Daphnia Magna. Carbon N. Y. 2017, 122, 669–679. [Google Scholar] [CrossRef]
- De Mori, A.; Jones, R.S.; Cretella, M.; Cerri, G.; Draheim, R.R.; Barbu, E.; Tozzi, G.; Roldo, M. Evaluation of Antibacterial and Cytotoxicity Properties of Silver Nanowires and Their Composites with Carbon Nanotubes for Biomedical Applications. Int. J. Mol. Sci. 2020, 21, 2303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, I.C.; Ko, K.S.; Lee, M.H.; Lee, J.H.; Han, Y.H. Ecotoxicity Evaluation of Cu- and Fe-CNT Complexes Based on the Activity of Bacterial Bioluminescence and Seed Germination. J. Environ. Sci. 2018, 67, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Hahn, A.; Fuhlrott, J.; Loos, A.; Barcikowski, S. Cytotoxicity and Ion Release of Alloy Nanoparticles. J. Nanoparticle Res. 2012, 14, 686. [Google Scholar] [CrossRef] [Green Version]
- Grade, S.; Eberhard, J.; Jakobi, J.; Winkel, A.; Stiesch, M.; Barcikowski, S. Alloying Colloidal Silver Nanoparticles with Gold Disproportionally Controls Antibacterial and Toxic Effects. Gold Bull. 2014, 47, 83–93. [Google Scholar] [CrossRef] [Green Version]
- Grasmik, V.; Breisch, M.; Loza, K.; Heggen, M.; Sengstock, C.; Epple, M. Synthesis and Biological Characterization of Alloyed Silver-Platinum Nanoparticles: From Compact Core-Shell Nanoparticles to Hollow Nanoalloys. RSC Adv. 2018, 8, 38582–38590. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Luo, Y.; Liu, P.; Li, Y.; Yue, J.; Jiang, L. Atomic-Engineering Au-Ag Nanoalloys for Screening Antimicrobial Agents with Low Toxicity towards Mammalian Cells. Colloids Surf. B Biointerfaces 2021, 204, 111831. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Zhao, X.; Zhai, Y.; Chen, G.; Lee, E.H.; He, S. A Study on the Biocompatibility of Surface-Modified Au/Ag Alloyed Nanobox Particles in Zebrafish in Terms of Mortality Rate, Hatch Rate and Imaging of Particle Distribution Behavior. Prog. Electromagn. Res. 2015, 150, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Albee, B.; Alemayehu, M.; Diaz, R.; Ingham, L.; Kamal, S.; Rodriguez, M.; Whaley Bishnoi, S. Comparative Toxicity Study of Ag, Au, and Ag-Au Bimetallic Nanoparticles on Daphnia Magna. Anal. Bioanal. Chem. 2010, 398, 689–700. [Google Scholar] [CrossRef]
- Girgis, E.; Khalil, W.K.B.; Emam, A.N.; Mohamed, M.B.; Rao, K.V. Nanotoxicity of Gold and Gold-Cobalt Nanoalloy. Chem. Res. Toxicol. 2012, 25, 1086–1098. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Hu, T.; Liang, R.; Wei, M. Application of Zero-Dimensional Nanomaterials in Biosensing. Front. Chem. 2020, 8, 320. [Google Scholar] [CrossRef]
- Feigel, I.M.; Vedala, H.; Star, A. Biosensors Based on One-Dimensional Nanostructures. J. Mater. Chem. 2011, 21, 8940–8954. [Google Scholar] [CrossRef]
- Rohaizad, N.; Mayorga-Martinez, C.C.; Fojtů, M.; Latiff, N.M.; Pumera, M. Two-Dimensional Materials in Biomedical, Biosensing and Sensing Applications. Chem. Soc. Rev. 2021, 50, 619–657. [Google Scholar] [CrossRef] [PubMed]
- Lei, Z.L.; Guo, B. 2D Material-Based Optical Biosensor: Status and Prospect. Adv. Sci. 2022, 9, 2102924. [Google Scholar] [CrossRef]
- Napi, M.L.M.; Noorden, A.F.A.; Tan, M.L.P.; Jamaluddin, H.; Hamid, F.A.; Ahmad, M.K.; Hashim, U.; Ahmad, M.R.; Sultan, S.M. Three Dimensional Zinc Oxide Nanostructures as an Active Site Platform for Biosensor: Recent Trend in Healthcare Diagnosis. J. Electrochem. Soc. 2020, 167, 137501. [Google Scholar] [CrossRef]
- Ramanathan, S.; Gopinath, S.C.B.; Arshad, M.K.; Poopalan, P. Multidimensional (0D-3D) Nanostructures for Lung Cancer Biomarker Analysis: Comprehensive Assessment on Current Diagnostics. Biosens. Bioelectron. 2019, 141, 111434. [Google Scholar] [CrossRef] [PubMed]
- Raja, I.S.; Song, S.J.; Kang, M.S.; Lee, Y.B.; Kim, B.; Hong, S.W.; Jeong, S.J.; Lee, J.C.; Han, D.W. Toxicity of Zero- and One-Dimensional Carbon Nanomaterials. Nanomaterials 2019, 9, 1214. [Google Scholar] [CrossRef] [Green Version]
- Tan, E.; Li, B.L.; Ariga, K.; Lim, C.T.; Garaj, S.; Leong, D.T. Toxicity of Two-Dimensional Layered Materials and Their Heterostructures. Bioconjugate Chem. 2019, 30, 2287–2299. [Google Scholar] [CrossRef]
- Zhang, B.; Ni, H.; Chen, R.; Zhang, T.; Li, X.; Zhan, W.; Wang, Z.; Xu, Y. Cytotoxicity Effects of Three-Dimensional Graphene in NIH-3T3 Fibroblasts. RSC Adv. 2016, 6, 45093–45102. [Google Scholar] [CrossRef]
- Zha, Y.; Chai, R.; Song, Q.; Chen, L.; Wang, X.; Cheng, G.; Tang, M.; Wang, M. Characterization and Toxicological Effects of Three-Dimensional Graphene Foams in Rats in Vivo. J. Nanoparticle Res. 2016, 18, 122. [Google Scholar] [CrossRef]
- Castro, P.; Da, C.; Mayara, R.; Leão, B.; Lenz, C.; Corte, D.; Ferreira De Matos, C. Evaluation of the Carbon Nanostructures Toxicity as a Function of Their Dimensionality Using Model Organisms: A Review. Water Air Soil Pollut. 2021, 232, 367. [Google Scholar] [CrossRef]
- Jin, R.; Higaki, T. Open Questions on the Transition between Nanoscale and Bulk Properties of Metals. Commun. Chem. 2021, 4, 28. [Google Scholar] [CrossRef]
- Park, J.H.; Cho, Y.W.; Kim, T.H. Recent Advances in Surface Plasmon Resonance Sensors for Sensitive Optical Detection of Pathogens. Biosensors 2022, 12, 180. [Google Scholar] [CrossRef]
- Sani, A.; Cao, C.; Cui, D. Toxicity of Gold Nanoparticles (AuNPs): A Review. Biochem. Biophys. Rep. 2021, 26, 100991. [Google Scholar] [CrossRef]
- Sendra, M.; Moreno-Garrido, I.; Yeste, M.P.; Gatica, J.M.; Blasco, J. Toxicity of TiO2, in Nanoparticle or Bulk Form to Freshwater and Marine Microalgae under Visible Light and UV-A Radiation. Environ. Pollut. 2017, 227, 39–48. [Google Scholar] [CrossRef]
- Qiu, H.; Smolders, E. Nanospecific Phytotoxicity of CuO Nanoparticles in Soils Disappeared When Bioavailability Factors Were Considered. Environ. Sci. Technol. 2017, 51, 11976–11985. [Google Scholar] [CrossRef]
- Yeh, Y.C.; Creran, B.; Rotello, V.M. Gold Nanoparticles: Preparation, Properties, and Applications in Bionanotechnology. Nanoscale 2012, 4, 1871. [Google Scholar] [CrossRef]
- Bai, X.; Wang, Y.; Song, Z.; Feng, Y.; Chen, Y.; Zhang, D.; Feng, L. The Basic Properties of Gold Nanoparticles and Their Applications in Tumor Diagnosis and Treatment. Int. J. Mol. Sci. 2020, 21, 2480. [Google Scholar] [CrossRef] [Green Version]
- Lansdown, A.B.G. GOLD: Human Exposure and Update on Toxic Risks. Crit. Rev. Toxicol. 2018, 48, 596–614. [Google Scholar] [CrossRef]
- Wigginton, N.S.; Haus, K.L.; Hochella, M.F. Aquatic Environmental Nanoparticles. J. Environ. Monit. 2007, 9, 1306–1316. [Google Scholar] [CrossRef]
- Huang, Y.W.; Cambre, M.; Lee, H.J. The Toxicity of Nanoparticles Depends on Multiple Molecular and Physicochemical Mechanisms. Int. J. Mol. Sci. 2017, 18, 2702. [Google Scholar] [CrossRef]
- Torres-Duarte, C.; Ramos-Torres, K.M.; Rahimoff, R.; Cherr, G.N. Stage Specific Effects of Soluble Copper and Copper Oxide Nanoparticles during Sea Urchin Embryo Development and Their Relation to Intracellular Copper Uptake. Aquat. Toxicol. 2017, 189, 134–141. [Google Scholar] [CrossRef]
- Tunçsoy, M.; Duran, S.; Ay, Ö.; Cicik, B.; Erdem, C. Effects of Copper Oxide Nanoparticles on Antioxidant Enzyme Activities and on Tissue Accumulation of Oreochromis Niloticus. Bull. Environ. Contam. Toxicol. 2017, 99, 360–364. [Google Scholar] [CrossRef]
- Djearamane, S.; Lim, Y.M.; Wong, L.S.; Lee, P.F. Cellular Accumulation and Cytotoxic Effects of Zinc Oxide Nanoparticles in Microalga Haematococcus Pluvialis. PeerJ 2019, 2019, e7582. [Google Scholar] [CrossRef] [Green Version]
- Ali, I.; Khan, S.; Shah, K.; Haroon; Kalimullah; Bian, L. Microscopic Analysis of Plant-Mediated Silver Nanoparticle Toxicity in Rainbow Trout Fish (Oncorhynchus Mykiss). Microsc. Res. Tech. 2021, 84, 2302–2310. [Google Scholar] [CrossRef]
- Barreto, A.; Luis, L.G.; Pinto, E.; Almeida, A.; Paíga, P.; Santos, L.H.M.L.M.; Delerue-Matos, C.; Trindade, T.; Soares, A.M.V.M.; Hylland, K.; et al. Effects and Bioaccumulation of Gold Nanoparticles in the Gilthead Seabream (Sparus Aurata)–Single and Combined Exposures with Gemfibrozil. Chemosphere 2019, 215, 248–260. [Google Scholar] [CrossRef]
- Ickrath, P.; Wagner, M.; Scherzad, A.; Gehrke, T.; Burghartz, M.; Hagen, R.; Radeloff, K.; Kleinsasser, N.; Hackenberg, S. Time-Dependent Toxic and Genotoxic Effects of Zinc Oxide Nanoparticles after Long-Term and Repetitive Exposure to Human Mesenchymal Stem Cells. Int. J. Environ. Res. Public Health 2017, 14, 1590. [Google Scholar] [CrossRef] [Green Version]
- Antsiferova, A.A.; Kopaeva, M.Y.; Kochkin, V.N.; Kashkarov, P.K.; Kovalchuk, M.V. Disturbance in Mammalian Cognition Caused by Accumulation of Silver in Brain. Toxics 2021, 9, 30. [Google Scholar] [CrossRef]
- Hara, T.; Saeki, M.; Negishi, Y.; Kaji, T.; Yamamoto, C. Cell Density-Dependent Accumulation of Low Polarity Gold Nanocluster in Cultured Vascular Endothelial Cells. J. Toxicol. Sci. 2020, 45, 795–800. [Google Scholar] [CrossRef]
- Wei, Z.; Yin, X.T.; Cai, Y.; Xu, W.G.; Song, C.H.; Wang, Y.F.; Zhang, J.W.; Kang, A.; Wang, Z.Y.; Han, W. Antitumor Effect of a Pt-Loaded Nanocomposite Based on Graphene Quantum Dots Combats Hypoxia-Induced Chemoresistance of Oral Squamous Cell Carcinoma. Int. J. Nanomed. 2018, 13, 1505–1524. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Xu, M.; Zhou, X.R.; Zhang, Y.; Zhao, L.; Ye, G.; Shi, F.; Lv, C.; Li, Y. Acute Toxicity and Biodistribution of Different Sized Copper Nano-Particles in Rats after Oral Administration. Mater. Sci. Eng. C 2018, 93, 649–663. [Google Scholar] [CrossRef]
- Xia, Q.; Huang, J.; Feng, Q.; Chen, X.; Liu, X.; Li, X.; Zhang, T.; Xiao, S.; Li, H.; Zhong, Z.; et al. Size- and Cell Type-Dependent Cellular Uptake, Cytotoxicity and in Vivo Distribution of Gold Nanoparticles. Int. J. Nanomed. 2019, 14, 6957–6970. [Google Scholar] [CrossRef] [Green Version]
- Baek, M.; Chung, H.E.; Yu, J.; Lee, J.A.; Kim, T.H.; Oh, J.M.; Lee, W.J.; Paek, S.M.; Lee, J.K.; Jeong, J.; et al. Pharmacokinetics, Tissue Distribution, and Excretion of Zinc Oxide Nanoparticles. Int. J. Nanomed. 2012, 7, 3081. [Google Scholar] [CrossRef]
- Alshraiedeh, N.H.; Ammar, O.F.; Masadeh, M.M.; Alzoubi, K.H.; Al-Fandi, M.G.; Oweis, R.J.; Alsharedeh, R.H.; Alabed, R.A.; Hayajneh, R.H. Comparative Study of Antibacterial Activity of Different ZnO Nanoparticles, Nanoflowers, and Nanoflakes. Curr. Nanosci. 2022, 18, 758–765. [Google Scholar] [CrossRef]
- Soleimani, F.F.; Saleh, T.; Shojaosadati, S.A.; Poursalehi, R. Green Synthesis of Different Shapes of Silver Nanostructures and Evaluation of Their Antibacterial and Cytotoxic Activity. Bionanoscience 2018, 8, 72–80. [Google Scholar] [CrossRef]
- Moon, J.; Kwak, J., II; An, Y.J. The Effects of Silver Nanomaterial Shape and Size on Toxicity to Caenorhabditis Elegans in Soil Media. Chemosphere 2019, 215, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Abramenko, N.B.; Demidova, T.B.; Abkhalimov, E.V.; Ershov, B.G.; Krysanov, E.Y.; Kustov, L.M. Ecotoxicity of Different-Shaped Silver Nanoparticles: Case of Zebrafish Embryos. J. Hazard. Mater. 2018, 347, 89–94. [Google Scholar] [CrossRef]
- Sukhanova, A.; Bozrova, S.; Sokolov, P.; Berestovoy, M.; Karaulov, A.; Nabiev, I. Dependence of Nanoparticle Toxicity on Their Physical and Chemical Properties. Nanoscale Res. Lett. 2018, 13, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attarilar, S.; Yang, J.; Ebrahimi, M.; Wang, Q.; Liu, J.; Tang, Y.; Yang, J. The Toxicity Phenomenon and the Related Occurrence in Metal and Metal Oxide Nanoparticles: A Brief Review From the Biomedical Perspective. Front. Bioeng. Biotechnol. 2020, 8, 822. [Google Scholar] [CrossRef] [PubMed]
- Sree Latha, T.; Reddy, M.C.; Muthukonda, S.V.; Srikanth, V.V.S.S.; Lomada, D. In Vitro and in Vivo Evaluation of Anti-Cancer Activity: Shape-Dependent Properties of TiO2 Nanostructures. Mater. Sci. Eng. C 2017, 78, 969–977. [Google Scholar] [CrossRef] [PubMed]
- Zein, R.; Sharrouf, W.; Selting, K. Physical Properties of Nanoparticles That Result in Improved Cancer Targeting. J. Oncol. 2020, 2020, 5194780. [Google Scholar] [CrossRef]
- Talamini, L.; Violatto, M.B.; Cai, Q.; Monopoli, M.P.; Kantner, K.; Krpetić, Ž.; Perez-Potti, A.; Cookman, J.; Garry, D.; Silveira, C.P.; et al. Influence of Size and Shape on the Anatomical Distribution of Endotoxin-Free Gold Nanoparticles. ACS Nano 2017, 11, 5519–5529. [Google Scholar] [CrossRef]
- Steckiewicz, K.P.; Barcinska, E.; Malankowska, A.; Zauszkiewicz–Pawlak, A.; Nowaczyk, G.; Zaleska-Medynska, A.; Inkielewicz-Stepniak, I. Impact of Gold Nanoparticles Shape on Their Cytotoxicity against Human Osteoblast and Osteosarcoma in in Vitro Model. Evaluation of the Safety of Use and Anti-Cancer Potential. J. Mater. Sci. Mater. Med. 2019, 30, 22. [Google Scholar] [CrossRef] [Green Version]
- Adams, C.P.; Walker, K.A.; Obare, S.O.; Docherty, K.M. Size-Dependent Antimicrobial Effects of Novel Palladium Nanoparticles. PLoS ONE 2014, 9, 85981. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.; Li, K.; Feng, Y.; Cheng, Y.; Zhang, M.; Wang, Z.; Wu, Z.; Zhang, H. Achievement of Safer Palladium Nanocrystals by Enlargement of {100} Crystallographic Facets. Nanotoxicology 2017, 11, 907–922. [Google Scholar] [CrossRef]
- Ribeiro, L.N.D.M.; Couto, V.M.; Fraceto, L.F.; De Paula, E. Use of Nanoparticle Concentration as a Tool to Understand the Structural Properties of Colloids. Sci. Rep. 2018, 8, 982. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Khalek, A.A.; Kadry, M.A.M.; Badran, S.R.; Marie, M.-A.S. Comparative Toxicity of Copper Oxide Bulk and Nano Particles in Nile Tilapia; Oreochromis Niloticus: Biochemical and Oxidative Stress. J. Basic Appl. Zool. 2015, 72, 43–57. [Google Scholar] [CrossRef] [Green Version]
- Qian, H.; Ke, M.; Qu, Q.; Li, X.; Du, B.; Lu, T.; Sun, L.; Pan, X. Ecological Effects of Single-Walled Carbon Nanotubes on Soil Microbial Communities and Soil Fertility. Bull. Environ. Contam. Toxicol. 2018, 101, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Judy, J.D.; Unrine, J.M.; Bertsch, P.M. Evidence for Biomagnification of Gold Nanoparticles within a Terrestrial Food Chain. Environ. Sci. Technol. 2011, 45, 776–781. [Google Scholar] [CrossRef]
- Unrine, J.M.; Shoults-Wilson, W.A.; Zhurbich, O.; Bertsch, P.M.; Tsyusko, O.V. Trophic Transfer of Au Nanoparticles from Soil along a Simulated Terrestrial Food Chain. Environ. Sci. Technol. 2012, 46, 9753–9760. [Google Scholar] [CrossRef] [PubMed]
- Fröhlich, E. The Role of Surface Charge in Cellular Uptake and Cytotoxicity of Medical Nanoparticles. Int. J. Nanomed. 2012, 7, 5577. [Google Scholar] [CrossRef]
- Jeon, S.; Clavadetscher, J.; Lee, D.K.; Chankeshwara, S.V.; Bradley, M.; Cho, W.S. Surface Charge-Dependent Cellular Uptake of Polystyrene Nanoparticles. Nanomedicine 2018, 8, 1028. [Google Scholar] [CrossRef] [Green Version]
- Hanot, C.C.; Choi, Y.S.; Anani, T.B.; Soundarrajan, D.; David, A.E. Effects of Iron-Oxide Nanoparticle Surface Chemistry on Uptake Kinetics and Cytotoxicity in CHO-K1 Cells. Int. J. Mol. Sci. 2015, 17, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmoudi, M.; Laurent, S.; Shokrgozar, M.A.; Hosseinkhani, M. Toxicity Evaluations of Superparamagnetic Iron Oxide Nanoparticles: Cell “Vision” versus Physicochemical Properties of Nanoparticles. ACS Nano 2011, 5, 7263–7276. [Google Scholar] [CrossRef]
- Barbasz, A.; Oćwieja, M.; Roman, M. Toxicity of Silver Nanoparticles towards Tumoral Human Cell Lines U-937 and HL-60. Colloids Surf. B Biointerfaces 2017, 156, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Tu, Z.; Achazi, K.; Schulz, A.; Mülhaupt, R.; Thierbach, S.; Rühl, E.; Adeli, M.; Haag, R. Combination of Surface Charge and Size Controls the Cellular Uptake of Functionalized Graphene Sheets. Adv. Funct. Mater. 2017, 27, 1701837. [Google Scholar] [CrossRef]
- Weiss, M.; Fan, J.; Claudel, M.; Sonntag, T.; Didier, P.; Ronzani, C.; Lebeau, L.; Pons, F. Density of Surface Charge Is a More Predictive Factor of the Toxicity of Cationic Carbon Nanoparticles than Zeta Potential. J. Nanobiotechnol. 2021, 19, 5. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, S.; Yan, B.; Yue, T. Surface Properties of Nanoparticles Dictate Their Toxicity by Regulating Adsorption of Humic Acid Molecules. ACS Sustain. Chem. Eng. 2021, 9, 13705–13716. [Google Scholar] [CrossRef]
- Della Ventura, B.; Banchelli, M.; Funari, R.; Illiano, A.; De Angelis, M.; Taroni, P.; Amoresano, A.; Matteini, P.; Velotta, R. Biosensor Surface Functionalization by a Simple Photochemical Immobilization of Antibodies: Experimental Characterization by Mass Spectrometry and Surface Enhanced Raman Spectroscopy. Analyst 2019, 144, 6871–6880. [Google Scholar] [CrossRef] [PubMed]
- Miranda, B.; Rea, I.; Dardano, P.; De Stefano, L.; Forestiere, C. Recent Advances in the Fabrication and Functionalization of Flexible Optical Biosensors: Toward Smart Life-Sciences Applications. Biosensors 2021, 11, 107. [Google Scholar] [CrossRef] [PubMed]
- Guy, O.J.; Walker, K.A.D. Graphene Functionalization for Biosensor Applications. In Silicon Carbide Biotechnology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 85–141. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, R.; Bhawna; Gupta, A.; Singh, P.; Kalia, S.; Thakur, P.; Kumar, V. Prospects of Biosensors Based on Functionalized and Nanostructured Solitary Materials: Detection of Viral Infections and Other Risks. ACS Omega 2022, 7, 22073–22088. [Google Scholar] [CrossRef]
- Sanità, G.; Carrese, B.; Lamberti, A. Nanoparticle Surface Functionalization: How to Improve Biocompatibility and Cellular Internalization. Front. Mol. Biosci. 2020, 7, 587012. [Google Scholar] [CrossRef]
- Katsumiti, A.; Tomovska, R.; Cajaraville, M.P. Intracellular Localization and Toxicity of Graphene Oxide and Reduced Graphene Oxide Nanoplatelets to Mussel Hemocytes in Vitro. Aquat. Toxicol. 2017, 188, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Tang, M.; Zhang, S.; Hu, Y.; Li, H.; Zhang, T.; Xue, Y.; Pu, Y. Systemic and Immunotoxicity of Pristine and PEGylated Multi-Walled Carbon Nanotubes in an Intravenous 28 Days Repeated Dose Toxicity Study. Int. J. Nanomed. 2017, 12, 1539–1554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meran, M.; Akkus, P.D.; Kurkcuoglu, O.; Baysak, E.; Hizal, G.; Haciosmanoglu, E.; Unlu, A.; Karatepe, N.; Güner, F.S. Noncovalent Pyrene-Polyethylene Glycol Coatings of Carbon Nanotubes Achieve in Vitro Biocompatibility. Langmuir 2018, 34, 12071–12082. [Google Scholar] [CrossRef] [PubMed]
- Shaik, A.S.; Shaik, A.P.; Bammidi, V.K.; Al Faraj, A. Effect of Polyethylene Glycol Surface Charge Functionalization of SWCNT on the in Vitro and in Vivo Nanotoxicity and Biodistribution Monitored Noninvasively Using MRI. Toxicol. Mech. Methods 2019, 29, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Niska, K.; Knap, N.; Kędzia, A.; Jaskiewicz, M.; Kamysz, W.; Inkielewicz-Stepniak, I. Capping Agent-Dependent Toxicity and Antimicrobial Activity of Silver Nanoparticles: An In Vitro Study. Concerns about Potential Application in Dental Practice. Int. J. Med. Sci. 2016, 13, 772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abramenko, N.; Demidova, T.B.; Krutyakov, Y.A.; Zherebin, P.M.; Krysanov, E.Y.; Kustov, L.M.; Peijnenburg, W. The Effect of Capping Agents on the Toxicity of Silver Nanoparticles to Danio Rerio Embryos. Nanotoxicology 2019, 13, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carnovale, C.; Bryant, G.; Shukla, R.; Bansal, V. Identifying Trends in Gold Nanoparticle Toxicity and Uptake: Size, Shape, Capping Ligand, and Biological Corona. ACS Omega 2019, 4, 242–256. [Google Scholar] [CrossRef] [Green Version]
- Javed, R.; Sajjad, A.; Naz, S.; Sajjad, H.; Ao, Q. Significance of Capping Agents of Colloidal Nanoparticles from the Perspective of Drug and Gene Delivery, Bioimaging, and Biosensing: An Insight. Int. J. Mol. Sci. 2022, 23, 10521. [Google Scholar] [CrossRef] [PubMed]
- Amini, A.P.; Kirkpatrick, J.D.; Wang, C.S.; Jaeger, A.M.; Su, S.; Naranjo, S.; Zhong, Q.; Cabana, C.M.; Jacks, T.; Bhatia, S.N. Multiscale Profiling of Protease Activity in Cancer. Nat. Commun. 2022, 13, 5745. [Google Scholar] [CrossRef]
- Shoshan, M.S.; Vonderach, T.; Hattendorf, B.; Wennemers, H. Peptide-Coated Platinum Nanoparticles with Selective Toxicity against Liver Cancer Cells. Angew. Chem. Int. Ed. 2019, 58, 4901–4905. [Google Scholar] [CrossRef] [PubMed]
- Santino, F.; Stavole, P.; He, T.; Pieraccini, S.; Paolillo, M.; Prodi, L.; Rampazzo, E.; Gentilucci, L. Preparation of Non-Toxic Fluorescent Peptide-Coated Silica/PEG Nanoparticles from Peptide-Block Copolymer Conjugates. Micro 2022, 2, 240–256. [Google Scholar] [CrossRef]
- Kadam, U.S.; Hong, J.C. Advances in Aptameric Biosensors Designed to Detect Toxic Contaminants from Food, Water, Human Fluids, and the Environment. Trends Environ. Anal. Chem. 2022, 36, e00184. [Google Scholar] [CrossRef]
- Kovacevic, K.D.; Gilbert, J.C.; Jilma, B. Pharmacokinetics, Pharmacodynamics and Safety of Aptamers. Adv. Drug Deliv. Rev. 2018, 134, 36–50. [Google Scholar] [CrossRef] [PubMed]
- Keefe, A.D.; Pai, S.; Ellington, A. Aptamers as Therapeutics. Nat. Rev. Drug Discov. 2010, 9, 537–550. [Google Scholar] [CrossRef] [PubMed]
- Ni, S.; Zhuo, Z.; Pan, Y.; Yu, Y.; Li, F.; Liu, J.; Wang, L.; Wu, X.; Li, D.; Wan, Y.; et al. Recent Progress in Aptamer Discoveries and Modifications for Therapeutic Applications. ACS Appl. Mater. Interfaces 2021, 13, 9500–9519. [Google Scholar] [CrossRef] [PubMed]
- Spurgeon, D.J.; Lahive, E.; Schultz, C.L. Nanomaterial Transformations in the Environment: Effects of Changing Exposure Forms on Bioaccumulation and Toxicity. Small 2020, 16, 2000618. [Google Scholar] [CrossRef] [PubMed]
- Fabrega, J.; Luoma, S.N.; Tyler, C.R.; Galloway, T.S.; Lead, J.R. Silver Nanoparticles: Behaviour and Effects in the Aquatic Environment. Environ. Int. 2011, 37, 517–531. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Tsyusko, O.V.; McNear, D.H.; Judy, J.; Lewis, R.W.; Unrine, J.M. Effects of Biosolids from a Wastewater Treatment Plant Receiving Manufactured Nanomaterials on Medicago Truncatula and Associated Soil Microbial Communities at Low Nanomaterial Concentrations. Sci. Total Environ. 2017, 609, 799–806. [Google Scholar] [CrossRef]
- Sharma, V.K.; Sayes, C.M.; Guo, B.; Pillai, S.; Parsons, J.G.; Wang, C.; Yan, B.; Ma, X. Interactions between Silver Nanoparticles and Other Metal Nanoparticles under Environmentally Relevant Conditions: A Review. Sci. Total Environ. 2019, 653, 1042–1051. [Google Scholar] [CrossRef]
- Lundqvist, M.; Stigler, J.; Cedervall, T.; Berggård, T.; Flanagan, M.B.; Lynch, I.; Elia, G.; Dawson, K. The Evolution of the Protein Corona around Nanoparticles: A Test Study. ACS Nano 2011, 5, 7503–7509. [Google Scholar] [CrossRef] [PubMed]
- Cukalevski, R.; Lundqvist, M.; Oslakovic, C.; Dahlbäck, B.; Linse, S.; Cedervall, T. Structural Changes in Apolipoproteins Bound to Nanoparticles. Langmuir 2011, 27, 14360–14369. [Google Scholar] [CrossRef] [PubMed]
- Walczyk, D.; Bombelli, F.B.; Monopoli, M.P.; Lynch, I.; Dawson, K.A. What the Cell “Sees” in Bionanoscience. J. Am. Chem. Soc. 2010, 132, 5761–5768. [Google Scholar] [CrossRef] [PubMed]
- Fleischer, C.C.; Payne, C.K. Secondary Structure of Corona Proteins Determines the Cell Surface Receptors Used by Nanoparticles. J. Phys. Chem. B 2014, 118, 14017–14026. [Google Scholar] [CrossRef]
- Breznica, P.; Koliqi, R.; Daka, A. A Review of the Current Understanding of Nanoparticles Protein Corona Composition. Med. Pharm. Rep. 2020, 93, 342–350. [Google Scholar] [CrossRef]
- Lin, J.; Miao, L.; Zhong, G.; Lin, C.H.; Dargazangy, R.; Alexander-Katz, A. Understanding the Synergistic Effect of Physicochemical Properties of Nanoparticles and Their Cellular Entry Pathways. Commun. Biol. 2020, 3, 205. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Salvati, A.; Boya, P. Lysosome-Dependent Cell Death and Deregulated Autophagy Induced by Amine-Modified Polystyrene Nanoparticles. Open Biol. 2018, 8, 170271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janani, B.; Raju, L.L.; Thomas, A.M.; Alyemeni, M.N.; Dudin, G.A.; Wijaya, L.; Alsahli, A.A.; Ahmad, P.; Khan, S.S. Impact of Bovine Serum Albumin-A Protein Corona on Toxicity of ZnO NPs in Environmental Model Systems of Plant, Bacteria, Algae and Crustaceans. Chemosphere 2021, 270, 128629. [Google Scholar] [CrossRef] [PubMed]
- Spielman-Sun, E.; Avellan, A.; Bland, G.D.; Clement, E.T.; Tappero, R.V.; Acerbo, A.S.; Lowry, G.V. Protein Coating Composition Targets Nanoparticles to Leaf Stomata and Trichomes. Nanoscale 2020, 12, 3630–3636. [Google Scholar] [CrossRef]
- Starnes, D.; Unrine, J.; Chen, C.; Lichtenberg, S.; Starnes, C.; Svendsen, C.; Kille, P.; Morgan, J.; Baddar, Z.E.; Spear, A.; et al. Toxicogenomic Responses of Caenorhabditis Elegans to Pristine and Transformed Zinc Oxide Nanoparticles. Environ. Pollut. 2019, 247, 917–926. [Google Scholar] [CrossRef]
- Schultz, C.L.; Wamucho, A.; Tsyusko, O.V.; Unrine, J.M.; Crossley, A.; Svendsen, C.; Spurgeon, D.J. Multigenerational Exposure to Silver Ions and Silver Nanoparticles Reveals Heightened Sensitivity and Epigenetic Memory in Caenorhabditis Elegans. Proc. R. Soc. B Biol. Sci. 2016, 283, 20152911. [Google Scholar] [CrossRef] [Green Version]
- Wamucho, A.; Heffley, A.; Tsyusko, O.V. Epigenetic Effects Induced by Silver Nanoparticles in Caenorhabditis Elegans after Multigenerational Exposure. Sci. Total Environ. 2020, 725, 138523. [Google Scholar] [CrossRef]
- Starnes, D.L.; Lichtenberg, S.S.; Unrine, J.M.; Starnes, C.P.; Oostveen, E.K.; Lowry, G.V.; Bertsch, P.M.; Tsyusko, O.V. Distinct Transcriptomic Responses of Caenorhabditis Elegans to Pristine and Sulfidized Silver Nanoparticles. Environ. Pollut. 2016, 213, 314–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Gu, A.Z.; Xie, S.; Li, X.; Cen, T.; Li, D.; Chen, J. Nano-Metal Oxides Induce Antimicrobial Resistance via Radical-Mediated Mutagenesis. Environ. Int. 2018, 121, 1162–1171. [Google Scholar] [CrossRef]
- Di Cesare, A.; Eckert, E.M.; Corno, G. Co-Selection of Antibiotic and Heavy Metal Resistance in Freshwater Bacteria. J. Limnol. 2016, 75, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Unrine, J.M.; Judy, J.D.; Lewis, R.W.; Guo, J.; McNear, D.H.; Tsyusko, O.V. Toxicogenomic Responses of the Model Legume Medicago Truncatula to Aged Biosolids Containing a Mixture of Nanomaterials (TiO2, Ag, and ZnO) from a Pilot Wastewater Treatment Plant. Environ. Sci. Technol. 2015, 49, 8759–8768. [Google Scholar] [CrossRef] [PubMed]
- Jurgelėnė, Ž.; Montvydienė, D.; Šemčuk, S.; Stankevičiūtė, M.; Sauliutė, G.; Pažusienė, J.; Morkvėnas, A.; Butrimienė, R.; Jokšas, K.; Pakštas, V.; et al. The Impact of Co-Treatment with Graphene Oxide and Metal Mixture on Salmo Trutta at Early Development Stages: The Sorption Capacity and Potential Toxicity. Sci. Total Environ. 2022, 838, 156525. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, J.; Zhou, Q.; Liu, Z.; Li, Q. Hexavalent Chromium Amplifies the Developmental Toxicity of Graphene Oxide during Zebrafish Embryogenesis. Ecotoxicol. Environ. Saf. 2021, 208, 111487. [Google Scholar] [CrossRef]
- Chowdhury, I.; Hou, W.C.; Goodwin, D.; Henderson, M.; Zepp, R.G.; Bouchard, D. Sunlight Affects Aggregation and Deposition of Graphene Oxide in the Aquatic Environment. Water Res. 2015, 78, 37–46. [Google Scholar] [CrossRef]
- Aich, N.; Plazas-Tuttle, J.; Lead, J.R.; Saleh, N.B.; Aich, N.; Plazas-Tuttle, J.; Lead, J.R.; Saleh, N.B. A Critical Review of Nanohybrids: Synthesis, Applications and Environmental Implications. Environ. Chem. 2014, 11, 609–623. [Google Scholar] [CrossRef]
- Donia, D.T.; Carbone, M. Fate of the Nanoparticles in Environmental Cycles. Int. J. Environ. Sci. Technol. 2018, 16, 583–600. [Google Scholar] [CrossRef]
- Ferdous, Z.; Nemmar, A. Health Impact of Silver Nanoparticles: A Review of the Biodistribution and Toxicity Following Various Routes of Exposure. Int. J. Mol. Sci. 2020, 21, 2375. [Google Scholar] [CrossRef] [Green Version]
- Heitbrink, W.A.; Lo, L.M.; Dunn, K.H. Exposure Controls for Nanomaterials at Three Manufacturing Sites. J. Occup. Environ. Hyg. 2015, 12, 16. [Google Scholar] [CrossRef] [Green Version]
- Xia, T.; Li, N.; Nel, A.E. Potential Health Impact of Nanoparticles. Annu. Rev. Public Health 2009, 30, 137–150. [Google Scholar] [CrossRef] [Green Version]
- Larese Filon, F.; Bello, D.; Cherrie, J.W.; Sleeuwenhoek, A.; Spaan, S.; Brouwer, D.H. Occupational Dermal Exposure to Nanoparticles and Nano-Enabled Products: Part I—Factors Affecting Skin Absorption. Int. J. Hyg. Environ. Health 2016, 219, 536–544. [Google Scholar] [CrossRef] [Green Version]
- Goede, H.; Christopher-De Vries, Y.; Kuijpers, E.; Fransman, W. A Review of Workplace Risk Management Measures for Nanomaterials to Mitigate Inhalation and Dermal Exposure. Ann. Work Expo. Health 2018, 62, 907–922. [Google Scholar] [CrossRef]
- Kim, J.; Yu, I.J. National Survey of Workplaces Handling and Manufacturing Nanomaterials, Exposure to and Health Effects of Nanomaterials, and Evaluation of Nanomaterial Safety Data Sheets. Biomed Res. Int. 2016, 2016, 8389129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Methner, M.; Hodson, L.; Dames, A.; Geraci, C. Nanoparticle Emission Assessment Technique (NEAT) for the Identification and Measurement of Potential Inhalation Exposure to Engineered Nanomaterials—Part B: Results from 12 Field Studies. J. Occup. Environ. Hyg. 2010, 7, 163–176. [Google Scholar] [CrossRef] [PubMed]
- OSHA. What Are Nanotechnology and Nanomaterials? Occupational Safety and Health: Washington, DC, USA, 2013.
- Ganesh, R.; Smeraldi, J.; Hosseini, T.; Khatib, L.; Olson, B.H.; Rosso, D. Evaluation of Nanocopper Removal and Toxicity in Municipal Wastewaters. Environ. Sci. Technol. 2010, 44, 7808–7813. [Google Scholar] [CrossRef]
- Gómez-Rivera, F.; Field, J.A.; Brown, D.; Sierra-Alvarez, R. Fate of Cerium Dioxide (CeO2) Nanoparticles in Municipal Wastewater during Activated Sludge Treatment. Bioresour. Technol. 2012, 108, 300–304. [Google Scholar] [CrossRef]
- Kaegi, R.; Voegelin, A.; Sinnet, B.; Zuleeg, S.; Hagendorfer, H.; Burkhardt, M.; Siegrist, H. Behavior of Metallic Silver Nanoparticles in a Pilot Wastewater Treatment Plant. Environ. Sci. Technol. 2011, 45, 3902–3908. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Westerhoff, P.; Hristovski, K.D. Fate and Biological Effects of Silver, Titanium Dioxide, and C60 (Fullerene) Nanomaterials during Simulated Wastewater Treatment Processes. J. Hazard. Mater. 2012, 201–202, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Hendren, C.O.; Mesnard, X.; Dröge, J.; Wiesner, M.R. Estimating Production Data for Five Engineered Nanomaterials as a Basis for Exposure Assessment. Environ. Sci. Technol. 2011, 45, 2562–2569. [Google Scholar] [CrossRef]
- Subhan, M.A.; Subhan, T. Safety and Global Regulations for Application of Nanomaterials. In Nanomaterials Recycling; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2022; pp. 83–107. [Google Scholar] [CrossRef]
- Food and Drug Administration; Office of the Commissioner; Office of Policy, L.I.A.; Office of Policy. Considering Whether an FDA-Regulated Product Involves the Application of Nanotechnology; Food and Drug Administration: Silver Spring, MD, USA, 2014.
- Yang, Y.; Westerhoff, P. Presence in, and Release of, Nanomaterials from Consumer Products. Adv. Exp. Med. Biol. 2014, 811, 1–17. [Google Scholar] [CrossRef]
- Malakar, A.; Kanel, S.R.; Ray, C.; Snow, D.D.; Nadagouda, M.N. Nanomaterials in the Environment, Human Exposure Pathway, and Health Effects: A Review. Sci. Total Environ. 2021, 759, 143470. [Google Scholar] [CrossRef]
- Bhatt, I.; Tripathi, B.N. Interaction of Engineered Nanoparticles with Various Components of the Environment and Possible Strategies for Their Risk Assessment. Chemosphere 2011, 82, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Temizel, İ.; Emadian, S.M.; Di Addario, M.; Onay, T.T.; Demirel, B.; Copty, N.K.; Karanfil, T. Effect of Nano-ZnO on Biogas Generation from Simulated Landfills. Waste Manag. 2017, 63, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Živković, D.; Balanović, L.; Mitovski, A.; Talijan, N.; Štrbac, N.; Sokić, M.; Manasijević, D.; Minić, D.; Ćosović, V. Nanomaterials Environmental Risks and Recycling: Actual Issues. Reciklaza I Odrziv. Razvoj 2015, 7, 1–8. [Google Scholar] [CrossRef]
- Pavoski, G.; Botelho Junior, A.B.; Chaves, R.M.; Maraschin, T.; Oviedo, L.R.; Martins, T.A.G.; da Silva, W.L.; Bertuol, D.A.; Espinosa, D.C.R. Nanotechnology and Recycling, Remanufacturing, and Reusing Battery. In Nanotechnology and Recycling, Remanufacturing, and Reusing Battery; Elsevier: Amsterdam, The Netherlands, 2022; pp. 53–78. [Google Scholar] [CrossRef]
- Hwang, C.; Park, N.; Kim, E.S.; Kim, M.; Kim, S.D.; Park, S.; Kim, N.Y.; Kim, J.H. Ultra-Fast and Recyclable DNA Biosensor for Point-of-Care Detection of SARS-CoV-2 (COVID-19). Biosens. Bioelectron. 2021, 185, 113177. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Wang, Y.; Chu, Z.; Yin, Y.; Jiang, D.; Luo, J.; Ding, S.; Jin, W. A Highly Sensitive and Reusable Electrochemical Mercury Biosensor Based on Tunable Vertical Single-Walled Carbon Nanotubes and a Target Recycling Strategy. J. Mater. Chem. B 2017, 5, 1073–1080. [Google Scholar] [CrossRef]
- Yan, L.; Zhao, F.; Wang, J.; Zu, Y.; Gu, Z.; Zhao, Y. A Safe-by-Design Strategy towards Safer Nanomaterials in Nanomedicines. Adv. Mater. 2019, 31, 1805391. [Google Scholar] [CrossRef] [PubMed]
- Najahi-Missaoui, W.; Arnold, R.D.; Cummings, B.S. Safe Nanoparticles: Are We There Yet? Int. J. Mol. Sci. 2020, 22, 385. [Google Scholar] [CrossRef]
- Geitner, N.K.; Ogilvie Hendren, C.; Cornelis, G.; Kaegi, R.; Lead, J.R.; Lowry, G.V.; Lynch, I.; Nowack, B.; Petersen, E.; Bernhardt, E.; et al. Harmonizing across Environmental Nanomaterial Testing Media for Increased Comparability of Nanomaterial Datasets. Environ. Sci. Nano 2020, 7, 13–36. [Google Scholar] [CrossRef] [Green Version]
- Ji, Z.; Guo, W.; Sakkiah, S.; Liu, J.; Patterson, T.A.; Hong, H. Nanomaterial Databases: Data Sources for Promoting Design and Risk Assessment of Nanomaterials. Nanomaterials 2021, 11, 1599. [Google Scholar] [CrossRef]
- Li, J.; Si, L.; Bao, J.; Wang, Z.; Dai, Z. Fluorescence Regulation of Poly(Thymine)-Templated Copper Nanoparticles via an Enzyme-Triggered Reaction toward Sensitive and Selective Detection of Alkaline Phosphatase. Anal. Chem. 2017, 89, 3681–3686. [Google Scholar] [CrossRef] [PubMed]
- Bogers, J.F.M.; Berghuis, N.F.; Busker, R.W.; Van Booma, A.; Paauw, A.; Van Leeuwen, H.C. Bright Fluorescent Nucleic Acid Detection with CRISPR-Cas12a and Poly(Thymine) Templated Copper Nanoparticles. Biol. Methods Protoc. 2021, 6, bpaa020. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Han, P.; Mao, X.; Yin, Y.; Cao, Y. Sensitive Detection of Glutathione by Using DNA-Templated Copper Nanoparticles as Electrochemical Reporters. Sens. Actuators B Chem. 2017, 238, 325–330. [Google Scholar] [CrossRef]
- Bai, J.; Jiang, X. A Facile One-Pot Synthesis of Copper Sulfide-Decorated Reduced Graphene Oxide Composites for Enhanced Detecting of H2O2 in Biological Environments. Anal. Chem. 2013, 85, 8095–8101. [Google Scholar] [CrossRef] [PubMed]
- Hussein, H.A.; El Nashar, R.M.; El-Sherbiny, I.M.; Hassan, R.Y.A. High Selectivity Detection of FMDV- SAT-2 Using a Newly-Developed Electrochemical Nanosensors. Biosens. Bioelectron. 2021, 191, 113435. [Google Scholar] [CrossRef] [PubMed]
- Anh, N.T.; Dinh, N.X.; Van Tuan, H.; Doan, M.Q.; Anh, N.H.; Khi, N.T.; Trang, V.T.; Tri, D.Q.; Le, A.T. Eco-Friendly Copper Nanomaterials-Based Dual-Mode Optical Nanosensors for Ultrasensitive Trace Determination of Amoxicillin Antibiotics Residue in Tap Water Samples. Mater. Res. Bull. 2022, 147, 111649. [Google Scholar] [CrossRef]
- Qing, Z.; Bai, A.; Xing, S.; Zou, Z.; He, X.; Wang, K.; Yang, R. Progress in Biosensor Based on DNA-Templated Copper Nanoparticles. Biosens. Bioelectron. 2019, 137, 96–109. [Google Scholar] [CrossRef] [PubMed]
- Mokhtarzadeh, A.; Eivazzadeh-Keihan, R.; Pashazadeh, P.; Hejazi, M.; Gharaatifar, N.; Hasanzadeh, M.; Baradaran, B.; de la Guardia, M. Nanomaterial-Based Biosensors for Detection of Pathogenic Virus. TrAC Trends Anal. Chem. 2017, 97, 445–457. [Google Scholar] [CrossRef]
- Stebunov, Y.V.; Yakubovsky, D.I.; Fedyanin, D.Y.; Arsenin, A.V.; Volkov, V.S. Superior Sensitivity of Copper-Based Plasmonic Biosensors. Langmuir 2018, 34, 4681–4687. [Google Scholar] [CrossRef] [Green Version]
- Azimzadeh, M.; Rahaie, M.; Nasirizadeh, N.; Ashtari, K.; Naderi-Manesh, H. An Electrochemical Nanobiosensor for Plasma MiRNA-155, Based on Graphene Oxide and Gold Nanorod, for Early Detection of Breast Cancer. Biosens. Bioelectron. 2016, 77, 99–106. [Google Scholar] [CrossRef]
- Ramesh, T.; Foo, K.L.; Haarindraprasad, R.; Sam, A.J.; Solayappan, M. Gold-Hybridized Zinc Oxide Nanorods as Real-Time Low-Cost NanoBiosensors for Detection of Virulent DNA Signature of HPV-16 in Cervical Carcinoma. Sci. Rep. 2019, 9, 17039. [Google Scholar] [CrossRef] [Green Version]
- Faridli, Z.; Mahani, M.; Torkzadeh-Mahani, M.; Fasihi, J. Development of a Localized Surface Plasmon Resonance-Based Gold Nanobiosensor for the Determination of Prolactin Hormone in Human Serum. Anal. Biochem. 2016, 495, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Vakili, S.; Samare-Najaf, M.; Dehghanian, A.; Tajbakhsh, A.; Askari, H.; Tabrizi, R.; Iravani Saadi, M.; Movahedpour, A.; Alizadeh, M.; Samareh, A.; et al. Gold Nanobiosensor Based on the Localized Surface Plasmon Resonance Is Able to Diagnose Human Brucellosis, Introducing a Rapid and Affordable Method. Nanoscale Res. Lett. 2021, 16, 144. [Google Scholar] [CrossRef]
- Salahvarzi, A.; Mahani, M.; Torkzadeh-Mahani, M.; Alizadeh, R. Localized Surface Plasmon Resonance Based Gold Nanobiosensor: Determination of Thyroid Stimulating Hormone. Anal. Biochem. 2017, 516, 1–5. [Google Scholar] [CrossRef]
- Ying, N.; Ju, C.; Li, Z.; Liu, W.; Wan, J. Visual Detection of Nucleic Acids Based on Lateral Flow Biosensor and Hybridization Chain Reaction Amplification. Talanta 2017, 164, 432–438. [Google Scholar] [CrossRef]
- Zheng, L.; Cai, G.; Wang, S.; Liao, M.; Li, Y.; Lin, J. A Microfluidic Colorimetric Biosensor for Rapid Detection of Escherichia Coli O157:H7 Using Gold Nanoparticle Aggregation and Smart Phone Imaging. Biosens. Bioelectron. 2019, 124–125, 143–149. [Google Scholar] [CrossRef]
- Elahi, N.; Kamali, M.; Baghersad, M.H.; Amini, B. A Fluorescence Nano-Biosensors Immobilization on Iron (MNPs) and Gold (AuNPs) Nanoparticles for Detection of Shigella spp. Mater. Sci. Eng. C 2019, 105, 110113. [Google Scholar] [CrossRef]
- Hosseini, M.; Ahmadi, E.; Borghei, Y.S.; Ganjali, M.R. A New Fluorescence Turn-on Nanobiosensor for the Detection of Micro-RNA-21 Based on a DNA–Gold Nanocluster. Methods Appl. Fluoresc. 2017, 5, 015005. [Google Scholar] [CrossRef]
- Tessaro, L.; Aquino, A.; de Carvalho, A.P.A.; Conte-Junior, C.A. A Systematic Review on Gold Nanoparticles Based-Optical Biosensors for Influenza Virus Detection. Sens. Actuators Rep. 2021, 3, 100060. [Google Scholar] [CrossRef]
- Ma, X.M.; Sun, M.; Lin, Y.; Liu, Y.J.; Luo, F.; Guo, L.H.; Qiu, B.; Lin, Z.Y.; Chen, G.N. Progress of Visual Biosensor Based on Gold Nanoparticles. Chin. J. Anal. Chem. 2018, 46, 1–10. [Google Scholar] [CrossRef]
- Sharifi, M.; Hosseinali, S.H.; Hossein Alizadeh, R.; Hasan, A.; Attar, F.; Salihi, A.; Shekha, M.S.; Amen, K.M.; Aziz, F.M.; Saboury, A.A.; et al. Plasmonic and Chiroplasmonic Nanobiosensors Based on Gold Nanoparticles. Talanta 2020, 212, 120782. [Google Scholar] [CrossRef]
- Proa-Coronado, S.; Vargas-García, J.R.; Manzo-Robledo, A.; Mendoza-Acevedo, S.; Villagómez, C.J.; Mercado-Zúñiga, C.; Muñoz-Aguirre, N.; Villa-Vargas, L.A.; Martinez-Rivas, A. Platinum Nanoparticles Homogenously Decorating Multilayered Reduced Graphene Oxide for Electrical Nanobiosensor Applications. Thin Solid Film. 2018, 658, 54–60. [Google Scholar] [CrossRef]
- Dash, S.R.; Bag, S.S.; Golder, A.K. Bio-Inspired PtNPs/Graphene Nanocomposite Based Electrocatalytic Sensing of Metabolites of Dipyrone. Anal. Chim. Acta 2021, 1167, 338562. [Google Scholar] [CrossRef]
- Unmüssig, T.; Weltin, A.; Urban, S.; Daubinger, P.; Urban, G.A.; Kieninger, J. Non-Enzymatic Glucose Sensing Based on Hierarchical Platinum Micro-/Nanostructures. J. Electroanal. Chem. 2018, 816, 215–222. [Google Scholar] [CrossRef]
- You, J.G.; Liu, Y.W.; Lu, C.Y.; Tseng, W.L.; Yu, C.J. Colorimetric Assay of Heparin in Plasma Based on the Inhibition of Oxidase-like Activity of Citrate-Capped Platinum Nanoparticles. Biosens. Bioelectron. 2017, 92, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.H.; Lin, X.L.; Liu, Y.H.; Li, K.L.; Zhuang, Q.Q.; Peng, H.P.; Liu, A.L.; Xia, X.H.; Chen, W. Chitosan-Stabilized Platinum Nanoparticles as Effective Oxidase Mimics for Colorimetric Detection of Acid Phosphatase. Nanoscale 2017, 9, 10292–10300. [Google Scholar] [CrossRef]
- Bagheri Pebdeni, A.; Hosseini, M. Fast and Selective Whole Cell Detection of Staphylococcus Aureus Bacteria in Food Samples by Paper Based Colorimetric Nanobiosensor Using Peroxidase-like Catalytic Activity of DNA-Au/Pt Bimetallic Nanoclusters. Microchem. J. 2020, 159, 105475. [Google Scholar] [CrossRef]
- Rithesh Raj, D.; Prasanth, S.; Vineeshkumar, T.V.; Sudarsanakumar, C. Surface Plasmon Resonance Based Fiber Optic Dopamine Sensor Using Green Synthesized Silver Nanoparticles. Sens. Actuators B Chem. 2016, 224, 600–606. [Google Scholar] [CrossRef]
- Bhalla, N.; Jamshaid, A.; Leung, M.H.M.; Ishizu, N.; Shen, A.Q. Electrical Contact of Metals at the Nanoscale Overcomes the Oxidative Susceptibility of Silver-Based Nanobiosensors. ACS Appl. Nano Mater. 2019, 2, 2064–2075. [Google Scholar] [CrossRef] [Green Version]
- Vasileva, P.; Donkova, B.; Karadjova, I.; Dushkin, C. Synthesis of Starch-Stabilized Silver Nanoparticles and Their Application as a Surface Plasmon Resonance-Based Sensor of Hydrogen Peroxide. Colloids Surf. A Physicochem. Eng. Asp. 2011, 382, 203–210. [Google Scholar] [CrossRef]
- Zhao, L.J.; Yu, R.J.; Ma, W.; Han, H.X.; Tian, H.; Qian, R.C.; Long, Y.T. Sensitive Detection of Protein Biomarkers Using Silver Nanoparticles Enhanced Immunofluorescence Assay. Theranostics 2017, 7, 876–883. [Google Scholar] [CrossRef] [PubMed]
- Mansourian, N.; Rahaie, M.; Hosseini, M. A Nanobiosensor Based on Fluorescent DNA-Hosted Silver Nanocluster and HCR Amplification for Detection of MicroRNA Involved in Progression of Multiple Sclerosis. J. Fluoresc. 2017, 27, 1679–1685. [Google Scholar] [CrossRef]
- Ajay, R.F.I.; Tshoko, S.; Mgwili, Y.; Nqunqa, S.; Mulaudzi, T.; Mayedwa, N.; Iwuoha, E. Green Method Synthesised Graphene-Silver Electrochemical Nanobiosensors for Ethambutol and Pyrazinamide. Processes 2020, 8, 879. [Google Scholar] [CrossRef]
- Yi, X.; Wu, Y.; Tan, G.; Yu, P.; Zhou, L.; Zhou, Z.; Chen, J.; Wang, Z.; Pang, J.; Ning, C. Palladium Nanoparticles Entrapped in a Self-Supporting Nanoporous Gold Wire as Sensitive Dopamine Biosensor. Sci. Rep. 2017, 7, 7941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silina, Y.E.; Apushkinskaya, N.; Talagaeva, N.V.; Levchenko, M.G.; Zolotukhina, E.V. Electrochemical Operational Principles and Analytical Performance of Pd-Based Amperometric Nanobiosensors. Analyst 2021, 146, 4873–4882. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Zhou, Y.; Bai, X.; Chen, K.; Guan, B.O. High-Sensitivity and Fast-Response Fiber-Tip Fabry–Pérot Hydrogen Sensor with Suspended Palladium-Decorated Graphene. Nanoscale 2019, 11, 15821–15827. [Google Scholar] [CrossRef]
- Huang, X.; Zhu, Y.; Kianfar, E. Nano Biosensors: Properties, Applications and Electrochemical Techniques. J. Mater. Res. Technol. 2021, 12, 1649–1672. [Google Scholar] [CrossRef]
- Butyrskaya, E.V.; Korkmaz, N.; Zolotukhina, E.V.; Krasiukova, V.; Silina, Y.E. Mechanistic Aspects of Functional Layer Formation in Hybrid One-Step Designed GOx/Nafion/Pd-NPs Nanobiosensors. Analyst 2021, 146, 2172–2185. [Google Scholar] [CrossRef]
- Dhiman, T.K.; Lakshmi, G.B.V.S.; Kumar, R.; Asokan, K.; Solanki, P.R. Non-Enzymatic Detection of Glucose Using a Capacitive Nanobiosensor Based on PVA Capped CuO Synthesized via Co-Precipitation Route. IEEE Sens. J. 2020, 20, 10415–10423. [Google Scholar] [CrossRef]
- Roohizadeh, A.; Ghaffarinejad, A.; Salahandish, R.; Omidinia, E. Label-Free RNA-Based Electrochemical Nanobiosensor for Detection of Hepatitis C. Curr. Res. Biotechnol. 2020, 2, 187–192. [Google Scholar] [CrossRef]
- Bao, J.; Huang, T.; Wang, Z.; Yang, H.; Geng, X.; Xu, G.; Samalo, M.; Sakinati, M.; Huo, D.; Hou, C. 3D Graphene/Copper Oxide Nano-Flowers Based Acetylcholinesterase Biosensor for Sensitive Detection of Organophosphate Pesticides. Sens. Actuators B Chem. 2019, 279, 95–101. [Google Scholar] [CrossRef]
- Yang, Z.; Yi, C.; Lv, S.; Sheng, Y.; Wen, W.; Zhang, X.; Wang, S. Development of a Lateral Flow Strip Biosensor Based on Copper Oxide Nanoparticles for Rapid and Sensitive Detection of HPV16 DNA. Sens. Actuators B Chem. 2019, 285, 326–332. [Google Scholar] [CrossRef]
- Ain, N.U.; Safdar, N.; Yasmin, A. Additive-Based Stability Assessment of Biologically Designed CuO and GSH-CuO Nanospheres and Their Applicability as Nano-Biosensors. Colloids Surf. B Biointerfaces 2019, 178, 66–73. [Google Scholar] [CrossRef] [PubMed]
- George, J.M.; Antony, A.; Mathew, B. Metal Oxide Nanoparticles in Electrochemical Sensing and Biosensing: A Review. Microchim. Acta 2018, 185, 358. [Google Scholar] [CrossRef]
- Abbasi, A.; Ghorban, K.; Nojoomi, F.; Dadmanesh, M. Smaller Copper Oxide Nanoparticles Have More Biological Effects Versus Breast Cancer and Nosocomial Infections Bacteria. Asian Pac. J. Cancer Prev. 2021, 22, 893. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Li, T.; Yang, T.; Liang, X.; Wu, B.; Zou, D.; Hu, L.; Huang, G.; Zhang, J. NMR Rapid Detection of Salmonella in Milk Based on Ultra-Small Iron Oxide Nanobiosensor. Int. Dairy J. 2020, 110, 104807. [Google Scholar] [CrossRef]
- 25Waifalkar, P.P.; Chougale, A.D.; Kollu, P.; Patil, P.S.; Patil, P.B. Magnetic Nanoparticle Decorated Graphene Based Electrochemical Nanobiosensor for H2O2 Sensing Using HRP. Colloids Surf. B Biointerfaces 2018, 167, 425–431. [Google Scholar] [CrossRef]
- Kumar, S.; Umar, M.; Saifi, A.; Kumar, S.; Augustine, S.; Srivastava, S.; Malhotra, B.D. Electrochemical Paper Based Cancer Biosensor Using Iron Oxide Nanoparticles Decorated PEDOT:PSS. Anal. Chim. Acta 2019, 1056, 135–145. [Google Scholar] [CrossRef]
- Malalasekera, A.P.; Wang, H.; Samarakoon, T.N.; Udukala, D.N.; Yapa, A.S.; Ortega, R.; Shrestha, T.B.; Alshetaiwi, H.; McLaurin, E.J.; Troyer, D.L.; et al. A Nanobiosensor for the Detection of Arginase Activity. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 383–390. [Google Scholar] [CrossRef]
- Elahi, N.; Rizwan, M. Progress and Prospects of Magnetic Iron Oxide Nanoparticles in Biomedical Applications: A Review. Artif. Organs 2021, 45, 1272–1299. [Google Scholar] [CrossRef]
- Nadzirah, S.; Hashim, U.; Gopinath, S.C.B.; Parmin, N.A.; Hamzah, A.A.; Yu, H.W.; Dee, C.F. Titanium Dioxide–Mediated Resistive Nanobiosensor for E. Coli O157:H7. Microchim. Acta 2020, 187, 235. [Google Scholar] [CrossRef]
- Parmin, N.A.; Hashim, U.; Gopinath, S.C.B.; Nadzirah, S.; Rejali, Z.; Afzan, A.; Uda, M.N.A.; Hong, V.C.; Rajapaksha, R.D.A.A. Voltammetric Determination of Human Papillomavirus 16 DNA by Using Interdigitated Electrodes Modified with Titanium Dioxide Nanoparticles. Microchim. Acta 2019, 186, 336. [Google Scholar] [CrossRef] [PubMed]
- Zani, V.; Pedron, D.; Pilot, R.; Signorini, R. Biocompatible Temperature Nanosensors Based on Titanium Dioxide. Multidiscip. Digit. Publ. Inst. Proc. 2020, 60, 16. [Google Scholar] [CrossRef]
- Paul, K.B.; Vanjari, S.R.K.; Singh, S.G. Highly Sensitive Electrospun Multiwalled Carbon Nanotubes Embedded Zinc Oxide Nanowire Based Interface for Label Free Biosensing. Procedia Technol. 2017, 27, 217–218. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Qin, Z.; Fu, H.; Li, T.; Peng, R.; Li, Z.; Rini, J.M.; Liu, X. Enhancing the Performance of Paper-Based Electrochemical Impedance Spectroscopy Nanobiosensors: An Experimental Approach. Biosens. Bioelectron. 2021, 177, 112672. [Google Scholar] [CrossRef] [PubMed]
- Barbillon, G. Fabrication and SERS Performances of Metal/Si and Metal/ZnO Nanosensors: A Review. Coatings 2019, 9, 86. [Google Scholar] [CrossRef] [Green Version]
- Usenko, C.Y.; Harper, S.L.; Tanguay, R.L. In Vivo Evaluation of Carbon Fullerene Toxicity Using Embryonic Zebrafish. Carbon N. Y. 2007, 45, 1891. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.Q.; Hu, P.P.; Zhang, L.; Huang, S.Z.; Luo, L.F.; Huang, C.Z. Toxicity of Graphene Oxide and Multi-Walled Carbon Nanotubes against Human Cells and Zebrafish. Sci. China Chem. 2012, 55, 2209–2216. [Google Scholar] [CrossRef]
- d’Amora, M.; Lamberti, A.; Fontana, M.; Giordani, S. Toxicity Assessment of Laser-Induced Graphene by Zebrafish during Development. J. Phys. Mater. 2020, 3, 034008. [Google Scholar] [CrossRef]
- Fernández, M.N.; Muñoz-Olivas, R.; Luque-Garcia, J.L. SILAC-Based Quantitative Proteomics Identifies Size-Dependent Molecular Mechanisms Involved in Silver Nanoparticles-Induced Toxicity. Nanotoxicology 2019, 13, 812–826. [Google Scholar] [CrossRef]
- Wongrakpanich, A.; Mudunkotuwa, I.A.; Geary, S.M.; Morris, A.S.; Mapuskar, K.A.; Spitz, D.R.; Grassian, V.H.; Salem, A.K. Size-Dependent Cytotoxicity of Copper Oxide Nanoparticles in Lung Epithelial Cells. Environ. Sci. Nano 2016, 3, 365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ying, H.; Ruan, Y.; Zeng, Z.; Bai, Y.; Xu, J.; Chen, S. Iron Oxide Nanoparticles Size-Dependently Activate Mouse Primary Macrophages via Oxidative Stress and Endoplasmic Reticulum Stress. Int. Immunopharmacol. 2022, 105, 108533. [Google Scholar] [CrossRef] [PubMed]
- Liao, F.; Chen, L.; Liu, Y.; Zhao, D.; Peng, W.; Wang, W.; Feng, S. The Size-Dependent Genotoxic Potentials of Titanium Dioxide Nanoparticles to Endothelial Cells. Environ. Toxicol. 2019, 34, 1199–1207. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhang, J.; Chen, C.; Xu, G.; Qin, X.; Hong, Y.; Bose, D.D.; Qiu, F.; Zou, Z. The Size of Zinc Oxide Nanoparticles Controls Its Toxicity through Impairing Autophagic Flux in A549 Lung Epithelial Cells. Toxicol. Lett. 2018, 285, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Jia, P.P.; Sun, T.; Junaid, M.; Yang, L.; Ma, Y.B.; Cui, Z.S.; Wei, D.P.; Shi, H.F.; Pei, D.S. Nanotoxicity of Different Sizes of Graphene (G) and Graphene Oxide (GO) in Vitro and in Vivo. Environ. Pollut. 2019, 247, 595–606. [Google Scholar] [CrossRef]
- Luo, Y.; Peng, J.; Huang, C.; Cao, Y. Graphene Oxide Size-Dependently Altered Lipid Profiles in THP-1 Macrophages. Ecotoxicol. Environ. Saf. 2020, 199, 110714. [Google Scholar] [CrossRef]
- Liu, D.; Wang, L.; Wang, Z.; Cuschieri, A. Different Cellular Response Mechanisms Contribute to the Length-Dependent Cytotoxicity of Multi-Walled Carbon Nanotubes. Nanoscale Res. Lett. 2012, 7, 361. [Google Scholar] [CrossRef] [Green Version]
- Song, M.; Yuan, S.; Yin, J.; Wang, X.; Meng, Z.; Wang, H.; Jiang, G. Size-Dependent Toxicity of Nano-C60 Aggregates: More Sensitive Indication by Apoptosis-Related Bax Translocation in Cultured Human Cells. Environ. Sci. Technol. 2012, 46, 3457–3464. [Google Scholar] [CrossRef]
Nanomaterial Category | Nanomaterial Keyword | Quantity of Studies Including Keyword |
---|---|---|
Nanometal | copper | 3077 |
gold | 25,005 | |
platinum | 2920 | |
silver | 6625 | |
palladium | 864 | |
Nanometal Oxides | “copper oxide *” | 352 |
“iron oxide *” | 1119 | |
“titanium dioxide *” | 936 | |
“zinc oxide *” | 1441 | |
Carbon-Based Nanomaterials | graphene | 6474 |
“graphene oxide” | 2783 | |
“carbon quantum dots” | 257 | |
Fullerene * OR buckyball * | 2946 | |
“carbon dot *” | 709 | |
“carbon black nanoparticle *” | 17 | |
“carbon nanoparticle *” | 158 | |
“reduced graphene oxide” | 2783 | |
Composite Nanomaterials | Composite * | 9650 |
Alloy * | 1801 | |
Inorganic Two-Dimensional Nanomaterials | Phosphorene * | 54 |
“hexagonal boron nitride” | 49 | |
“molybdenum disulfide” | 512 |
Size | Shape | Zeta Potential | Organism | Findings | Refs. |
---|---|---|---|---|---|
Copper | |||||
10–30 nm | Spheroidal | NR 1 | Skeletonema costatum |
| [24] |
180.3–388.8 nm | NR | −12.3 mV | Skeletonema costatum |
| [25] |
NR | NR | NR | Daphnia pulex |
| [26] |
40 nm | Spherical | NR | Red swamp crayfish (Procambarus clarkii) |
| [27] |
50 nm | Spherical | −13 ± 2.1 to −22.8 ± 4.2 mV (15 °C) −16.2 ± 2.1 to −20.2 ± 4.7 mV (26 °C) | Juvenile rainbow trout (Oncorhynchus mykiss); Fathead minnow (Pimephales promelas); Zebrafish (Danio rerio) |
| [28] |
<50 nm | NR | 29.5 ± 0.7 mV | Rainbow trout (Oncorhynchus mykiss) |
| [29] |
Gold | |||||
61.69 ± 22.35 nm | Spherical | −23.50 ± 0.21 mV | Aspergillus Niger; Mucor hiemalis; Penicillium chrysogenum |
| [30] |
50 nm | Hexagonal and round | NR | Mouse fibroblast cell line (NIH3T3); Wistar male rats |
| [31] |
NR | NR | NR | Daphnia pulex |
| [26] |
10, 30, 60 nm | NR | NR | HT-29 cell lines; HepG2 cell lines; Wistar rats |
| [32] |
8–28 nm (hydrodynamic radius) | Crystals | −48 to −47 mV | Wistar rats; Specific pathogen-free (SPF) Win: NMRI mice; Male Chinese; hamster lung cells; Salmonella typhimurium and Escherichia coli |
| [33] |
30.5 nm | Spherical | −34.1 mV | Mix Breed Cobb chicks |
| [34] |
Platinum | |||||
30 to 60 nm | Irregular polyhedra | NR | Pseudo- kirchneriella subcapitata |
| [35] |
4–9 nm | Spherical | 41.2 to 0.1 mV | Epithelioma papulosum cyprini (EPC); Bluegill fibroblast cell line BF-2 (BF) |
| [36] |
5 and 70 nm | Spherical | −54.20 ± 0.44 to –11.40 ± 0.40 (5 nm particles; media dependent) –39.43 ± 0.62 to –10.04 ± 0.17 (70 nm particles; media dependent) | Neonatal mice ventricular cardio- myocytes |
| [37] |
20.12 nm (average) | Spherical | NR | MCF-7 cell line |
| [38] |
Silver | |||||
58.3 ± 12.9 nm pristine (AgNP) 64.5 ± 19.4 nm sulfidized (sAgNP) | Spherical | −6.1 mV for AgNPs −28.1 mV for sAgNPs | Caenorhabditis elegans |
| [39] |
2.7 and 6.5 nm | NR | NR | Enchytraeus crypticus; FolsomiaCandida |
| [40] |
100 nm | Spherical | −18.9 mV | Male Rats |
| [41] |
<100 nm | Spherical | 29.5 ± 0.7 mV | Rainbow trout (Oncorhynchus mykiss) |
| [29] |
10–40 nm | Spherical | NR | Pseudokirchneriella subcapitata |
| [35] |
Manufactured = 20 nm aggregation: 70.15 nm (± 21.81 nm), range of 44–95 nm | NR | −25 to −0.06 mV | Human hTERT-immortalized retinal pigmented epithelial (RPE-1) cells |
| [42] |
20 nm | Spherical | NR | Human embryonic stem cell (H9 hESCs) |
| [43] |
Palladium | |||||
3 to 6 nm | Amorphous | −3.36 mV (negative) and 48.3 mV (positive) | Wild type adult zebrafish |
| [44] |
10 ± 6 nm (average) | NR | NR | Female Wistar rats |
| [45] |
Diameter ∼14 nm Thickness of ∼2 nm | Hexagonal sheets | NR | MCF-7 cells |
| [46] |
<10 nm | Non-uniform | NR | Human oral keratinocyte cell line RT-7 |
| [47] |
3 to 15 nm | Spherical | NR | Candida albicans and Aspergillus niger |
| [48] |
Size | Shape | Zeta Potential | Organism | Findings | Refs. |
---|---|---|---|---|---|
Copper Oxide | |||||
20 to 40 nm | Hexagonal | 12.85 and −17.13 mV (media dependent) | Male Wistar rats |
| [49] |
5 nm (diameter) | Crystalline | −63.6 ± 7.9 and −13.1 ± 0.3 mV (media dependent) | Glial cells |
| [50] |
50 nm | Spherical | NR 1 | Male Wistar rats |
| [51] |
34 ± 4.5 nm (Size; FESEM) 49.65 ± 2.36 nm (Diameter; TEM) | Polyhedral | 1.3 mV | Indian freshwater mussel (L. marginalis) |
| [52] |
50 nm | NR | −20.72 ± 0.59 mV | Arthrospira platensis |
| [53] |
Iron Oxide(s) | |||||
12 nm (average) | Spherical | NR | Lemna minor |
| [54] |
20–40 nm | Predominantly round or spherical with few rods observed | +32.1 or +20.1 (alpha- or gamma-iron oxide) | Selenastrum capricornutum; Nannochloropsis oculata |
| [55] |
16 ± 2 and 7.6 ± 0.9 | NR | −27.1 mV (16 nm size) and −18 mV (8 nm size) | Chlamy- domonas reinhardtii |
| [56] |
2.3, 4.2, and 9.3 nm (diameter) | Spherical | NR | Male ICR mice |
| [57] |
Titanium Dioxide | |||||
56.08 nm (average) | NR | NR | Human mammary epithelial cells (MCF-7 cells) |
| [58] |
22.75 ± 7.04 nm (average diameter) | Spherical | NR | Kunming female mice |
| [59] |
Zinc Oxide | |||||
15.15 nm and 18.17 nm (crystalline sizes dependent on synthesis method) | Rod | NR | Testis of mature Capra hircus |
| [60] |
Thickness less than 40 nm | Sheet-like | NR | Human serum albumin (HSA); Molecular dynamics (MD) simulation |
| [61] |
20 to 35 nm (crystalline size) | Spherical and hexagonal | NR | Trigonella foenum graecum L. |
| [62] |
Nanoalloy | Atomic Percentage of Metal (x:y) | Size (nm) | Major Outcomes | References |
---|---|---|---|---|
Agx: Pty | 10:90 to 90:10 mol% in steps of 10 mol% | 15–25 |
| [147] |
Aux: Agy | 70:30 mol% 40:60 mol% 20:80 mol% | 10−20 |
| [148] |
PEG coated Aux: Agy | Not reported | <10.0 |
| [149] |
Agx: Auy | 20:80 wt% 80:20 wt% | ~30.0 ~77.0 |
| [150] |
Aux: Coy | Not known | 12 ± 1.5 |
| [151] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McCourt, K.M.; Cochran, J.; Abdelbasir, S.M.; Carraway, E.R.; Tzeng, T.-R.J.; Tsyusko, O.V.; Vanegas, D.C. Potential Environmental and Health Implications from the Scaled-Up Production and Disposal of Nanomaterials Used in Biosensors. Biosensors 2022, 12, 1082. https://doi.org/10.3390/bios12121082
McCourt KM, Cochran J, Abdelbasir SM, Carraway ER, Tzeng T-RJ, Tsyusko OV, Vanegas DC. Potential Environmental and Health Implications from the Scaled-Up Production and Disposal of Nanomaterials Used in Biosensors. Biosensors. 2022; 12(12):1082. https://doi.org/10.3390/bios12121082
Chicago/Turabian StyleMcCourt, Kelli M., Jarad Cochran, Sabah M. Abdelbasir, Elizabeth R. Carraway, Tzuen-Rong J. Tzeng, Olga V. Tsyusko, and Diana C. Vanegas. 2022. "Potential Environmental and Health Implications from the Scaled-Up Production and Disposal of Nanomaterials Used in Biosensors" Biosensors 12, no. 12: 1082. https://doi.org/10.3390/bios12121082
APA StyleMcCourt, K. M., Cochran, J., Abdelbasir, S. M., Carraway, E. R., Tzeng, T.-R. J., Tsyusko, O. V., & Vanegas, D. C. (2022). Potential Environmental and Health Implications from the Scaled-Up Production and Disposal of Nanomaterials Used in Biosensors. Biosensors, 12(12), 1082. https://doi.org/10.3390/bios12121082