Emerging Trends in Non-Enzymatic Cholesterol Biosensors: Challenges and Advancements
Abstract
:1. Introduction
2. Nanomaterials for Non-Enzymatic Cholesterol Biosensor
2.1. Metal/Metal Oxide Cholesterol Biosensor
2.2. Metal Sulfides Biosensor
2.3. Carbon Nanostructures Biosensor
2.4. Conducting Polymers and Cavity Molecules-Based Bio-Sensors
3. Strategies to Enhance the Performance of a Biosensor
4. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rinken, T. (Ed.) State of the Art in Biosensors: Environmental and Medical Applications; InTech: Rijeka, Croatia, 2013; ISBN 978-953-51-1035-4. [Google Scholar]
- Patel, S.; Nanda, R.; Sahoo, S.; Mohapatra, E. Biosensors in health care: The milestones achieved in their development towards lab-on-chip-analysis. Biochem. Res. Int. 2016, 2016, 3130469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikonen, E. Mechanisms of cellular cholesterol compartmentalization: Recent insights. Curr. Opin. Cell Biol. 2018, 53, 77–83. [Google Scholar] [CrossRef]
- Ikonen, E. Mechanisms for cellular cholesterol transport: Defects and human disease. Physiol. Rev. 2006, 86, 1237–1261. [Google Scholar] [CrossRef] [PubMed]
- Maxfield, F.R.; Tabas, I. Role of cholesterol and lipid organization in disease. Nature 2005, 438, 612–621. [Google Scholar] [CrossRef] [PubMed]
- Kogularasu, S.; Govindasamy, M.; Chen, S.M.; Akilarasan, M.; Mani, V. 3D graphene oxide-cobalt oxide polyhedrons for highly sensitive non-enzymatic electrochemical determination of hydrogen peroxide. Sens. Actuators B Chem. 2017, 253, 773–783. [Google Scholar] [CrossRef]
- Xu, L.; Hou, Y.; Zhang, M.; Cheng, T.; Huang, W.; Yao, C.; Wu, Q. Electrochemical sensor based on a silver nanowires modified electrode for the determination of cholesterol. Anal. Methods 2015, 7, 5649–5653. [Google Scholar] [CrossRef]
- Alagappan, M.; Immanuel, S.; Sivasubramanian, R.; Kandaswamy, A. Development of cholesterol biosensor using Au nanoparticles decorated f-MWCNT covered with polypyrrole network. Arab. J. Chem. 2020, 13, 2001–2010. [Google Scholar] [CrossRef]
- Liang, Y.; Vetrano, D.L.; Qiu, C. Serum total cholesterol and risk of cardiovascular and non-cardiovascular mortality in old age: A population-based study. BMC Geriatr. 2017, 17, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Wu, K.; Yang, B.; Zhu, X.; Chen, W.; Luo, X.; Liu, Z.; Zhang, X.; Liu, Q. Cobalt and nickel bimetallic sulfide nanoparticles immobilized on montmorillonite demonstrating peroxidase-like activity for H2O2 detection. New J. Chem. 2018, 42, 18749–18758. [Google Scholar] [CrossRef]
- Amiri, M.; Arshi, S. An overview on electrochemical determination of cholesterol. Electroanalysis 2020, 32, 1391–1407. [Google Scholar] [CrossRef]
- Gaddes, D.; Reeves, W.B.; Tadigadapa, S. Calorimetric biosensing system for quantification of urinary creatinine. ACS Sens. 2017, 2, 796–802. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, M.; Veeramani, V.; Chen, S.M.; Madhu, R.; Liu, S.B. Porous carbon-NiOnanocomposites for amperometric detection of hydrazine and hydrogen peroxide. Microchim. Acta 2019, 186, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Q.; Shen, Y.; Zhang, J.; Zheng, J. Ni doped Ag@ C core–shell nanomaterials and their application in electrochemical H2O2 sensing. Anal. Methods 2017, 9, 163–169. [Google Scholar] [CrossRef]
- Zhou, J.; Min, M.; Liu, Y.; Tang, J.; Tang, W. Layered assembly of NiMn-layered double hydroxide on graphene oxide for enhanced non-enzymatic sugars and hydrogen peroxide detection. Sens. Actuators B Chem. 2018, 260, 408–417. [Google Scholar] [CrossRef]
- Ahmad, M.; Pan, C.; Zhu, J. Electrochemical determination of L-Cysteine by an elbow shaped, Sb-doped ZnO nanowire-modified electrode. J. Mater. Chem. 2010, 20, 7169–7174. [Google Scholar] [CrossRef]
- Dey, R.S.; Raj, C.R. Redox-functionalized graphene oxide architecture for the development of amperometricbiosensing platform. ACS Appl. Mater. Interfaces 2013, 5, 4791–4798. [Google Scholar] [CrossRef]
- Ullah, R.; Muhammad, A.R.; Abbas, S.; Khalil-ul, R.; Shah, A.; Ullah, K.; Khan, Y.; Bibi, M.; Ahmad, M.; Ali, G. Electrochemical sensing of H2O2 using cobalt oxide modified TiO2 nanotubes. Curr. Appl. Phys. 2022, 38, 40–48. [Google Scholar] [CrossRef]
- Saxena, U.; Das, A.B. Nanomaterials towards fabrication of cholesterol biosensors: Key roles and design approaches. Biosens. Bioelectron. 2016, 75, 196–205. [Google Scholar] [CrossRef]
- Lv, Y.; Fang, Y.; Wu, Z.; Qian, X.; Song, Y.; Che, R.; Asiri, A.M.; Xia, Y.; Tu, B.; Zhao, D. In-Situ Confined Growth of Monodisperse Pt Nanoparticle@ Graphene Nanobox Composites as Electrocatalytic Nanoreactors. Small 2015, 11, 1003–1010. [Google Scholar] [CrossRef]
- Haldorai, Y.; Voit, W.; Shim, J.J. Nano ZnO@ reduced graphene oxide composite for high performance supercapacitor: Green synthesis in supercritical fluid. Electrochim. Acta 2014, 120, 65–72. [Google Scholar] [CrossRef]
- Choi, B.G.; Yang, M.; Hong, W.H.; Choi, J.W.; Huh, Y.S. 3D macroporousgraphene frameworks for supercapacitors with high energy and power densities. ACS Nano 2012, 6, 4020–4028. [Google Scholar] [CrossRef] [PubMed]
- David, L.; Bhandavat, R.; Singh, G. MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 2014, 8, 1759–1770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.L.; Xiong, Z.; Zhao, X.S. A composite electrode consisting of nickel hydroxide, carbon nanotubes, and reduced graphene oxide with an ultrahigh electrocapacitance. J. Power Sources 2013, 222, 326–332. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Q.; Umar, A.; Sun, S.; Huang, L.; Wang, J.; Gao, Y. Highly sensitive p-nitrophenol chemical sensor based on crystalline α-MnO 2 nanotubes. New J. Chem. 2014, 38, 4420–4426. [Google Scholar] [CrossRef]
- Ahmad, M.; Pan, C.; Gan, L.; Nawaz, Z.; Zhu, J. Highly sensitive amperometric cholesterol biosensor based on Pt-incorporated fullerene-like ZnOnanospheres. J. Phys. Chem. C 2010, 114, 243–250. [Google Scholar] [CrossRef]
- Batra, B.; Narwal, V.; Ahlawat, J.; Sharma, M. An amperometric cholesterol biosensor based on immobilization of cholesterol oxidase onto titanium dioxide nanoparticles. Sens. Int. 2021, 2, 100111. [Google Scholar] [CrossRef]
- Sharma, S.; Joshi, P.; Mehtab, S.; Zaidi, M.; Haider, G.; Singhal, K.; Siddiqi, T.I. Development of non-enzymatic cholesterol electrochemical sensor based on polyindole/tungsten carbide nanocomposite. J. Anal. Test. 2020, 4, 13–22. [Google Scholar] [CrossRef]
- Tığ, G.A.; Zeybek, D.K.; Pekyardımcı, Ş. Fabrication of amperometric cholesterol biosensor based on SnO2 nanoparticles and Nafion-modified carbon paste electrode. Chem. Pap. 2016, 70, 695–705. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, L.; Li, S.; Dang, Y. A novel electrochemical sensor for highly sensitive detection of bisphenol A based on the hydrothermal synthesized Na-doped WO3 nanorods. Sens. Actuators B Chem. 2017, 245, 238–246. [Google Scholar] [CrossRef]
- Mazaheri, M.; Aashuri, H.; Simchi, A. Three-dimensional hybrid graphene/nickel electrodes on zinc oxide nanorod arrays as non-enzymatic glucose biosensors. Sens. Actuators B Chem. 2017, 251, 462–471. [Google Scholar] [CrossRef]
- Ahmad, R.; Tripathy, N.; Park, J.H.; Hahn, Y.B. A comprehensive biosensor integrated with a ZnOnanorod FET array for selective detection of glucose, cholesterol and urea. Chem. Commun. 2015, 51, 11968–11971. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Liu, M.; Yan, Z.; Chen, J. Highly selective and stable glucose biosensor based on incorporation of platinum nanoparticles into polyaniline-montmorillonite hybrid composites. Microchem. J. 2020, 152, 104266. [Google Scholar] [CrossRef]
- Elhag, S.; Ibupoto, Z.H.; Nour, O.; Willander, M. Synthesis of Co3O4 cotton-like nanostructures for cholesterol biosensor. Materials 2014, 8, 149–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khaliq, N.; Rasheed, M.A.; Cha, G.; Khan, M.; Karim, S.; Schmuki, P.; Ali, G. Development of non-enzymatic cholesterol bio-sensor based on TiO2 nanotubes decorated with Cu2O nanoparticles. Sens. Actuators B Chem. 2020, 302, 127200. [Google Scholar] [CrossRef]
- Naz, S.; Nisar, A.; Qian, L.; Hussain, S.; Karim, S.; Hussain, S.Z.; Liu, Y.; Sun, H.; Rahman AAhmad, M. Graphene Oxide functionalized with silver nanoparticles and ZnO synergic nanocomposite as an efficient electrochemical sensor for diclofenac sodium. Nano 2021, 16, 2150139. [Google Scholar] [CrossRef]
- Hussain, M.; Nisar, A.; Qian, L.; Karim, S.; Khan, M.; Liu, Y.; Sun, H.; Ahmad, M. Ni and Co synergy in bimetallic nanowires for the electrochemical detection of hydrogen peroxide. Nanotechnology 2021, 32, 205501. [Google Scholar] [CrossRef]
- Ahmad, M.; Pan, C.; Luo, Z.; Zhu, J. A Single ZnO nanofiber-based highly sensitive amperometric glucose biosensor. J. Phys. Chem. C 2010, 114, 9309. [Google Scholar] [CrossRef]
- Nagal, V.; Kumar, V.; Khan, M.; AlOmar, S.Y.; Tripathy, N.; Singh, K.; Khosla, A.; Ahmad, N.; Hafiz, A.K.; Ahmad, R. A highly sensitive uric acid biosensor based on vertically arranged ZnO nanorods on a ZnO nanoparticle-seeded electrode. New J. Chem. 2021, 45, 18863–18870. [Google Scholar] [CrossRef]
- Luqman, M.N.M.; Fakhrurrazi, A.N.A.; Loong, P.T.M.; Jamaluddin, H.; Abd, H.F.; Khairul, A.M.; Mohd, R.U.H.A.; Mohamed, S.S. Three Dimensional Zinc Oxide Nanostructures as an Active Site Platform for Biosensor: Recent Trend in Healthcare Diagnosis. J. Electrochem. Soc. 2020, 167, 137501. [Google Scholar]
- Anh, T.T.; Lan, H.; Tam, L.T.; Pham, V.H.; Tam, P.D. Highly sensitive non-enzymatic cholesterol sensor based on zinc oxide nanorods. J. Electron. Mater. 2018, 47, 6701–6708. [Google Scholar] [CrossRef]
- Li, Y.; Bai, H.; Liu, Q.; Bao, J.; Han, M.; Dai, Z. A non-enzymatic cholesterol sensor constructed by using porous tubular silver nanoparticles. Biosens. Bioelectron. 2010, 25, 2356–2360. [Google Scholar] [CrossRef]
- Yoon, H.S.; Lee, S.J.; Park, J.Y.; Paik, S.J.; Allen, M.G. A non-enzymatic micro-needle patch sensor for free cholesterol continuous monitoring. Sensors 2014, 2014, 347–350. [Google Scholar]
- Raj, V.; Johnson, T.; Joseph, K. Cholesterol aided etching of tomatine gold nanoparticles: A non-enzymatic blood cholesterol monitor. Biosens. Bioelectron. 2014, 60, 191–194. [Google Scholar] [CrossRef] [PubMed]
- Gul, E.; Rahman, G.; Wu, Y.; Bokhari, T.H.; ur Rahman, A.; Zafar, A.; Rana, Z.; Shah, A.; Hussain, S.; Maaz, K.; et al. An amphiphilic polyoxometalate–CNT nanohybrid as a highly efficient enzyme-free electrocatalyst for H2O2 sensing. New J. Chem. 2022, 46, 16280–16288. [Google Scholar] [CrossRef]
- Thakur, N.; Kumar, M.; Adhikary, S.D.; Mandal, D.; Nagaiah, T.C. PVIM–Co 5 POM/MNC composite as a flexible electrode for the ultrasensitive and highly selective non-enzymatic electrochemical detection of cholesterol. Chem. Commun. 2019, 55, 5021–5024. [Google Scholar] [CrossRef] [PubMed]
- Willyam, S.J.; Saepudin, E.; Ivandini, T.A. β-Cyclodextrin/Fe3O4 nanocomposites for an electrochemical non-enzymatic cholesterol sensor. Anal. Methods 2020, 12, 3454–3461. [Google Scholar] [CrossRef]
- Joshi, N.; Sharma, A.; Asokan, K.; Rawat, K.; Kanjilal, D. Effect of hydrogen ion implantation on cholesterol sensing using enzyme-free LAPONITE®-montmorillonite electrodes. RSC Adv. 2016, 6, 22664–22672. [Google Scholar] [CrossRef]
- Cao, M.; Wang, H.; Kannan, P.; Ji, S.; Wang, X.; Zhao, Q.; Linkov, V.; Wang, R. Highly efficient non-enzymatic glucose sensor based on CuxS hollow nanospheres. Appl. Surf. Sci. 2019, 492, 407–416. [Google Scholar] [CrossRef]
- Chen, L.; Ji, L.; Zhao, J.; Zhang, X.; Yang, F.; Liu, J. Facile exfoliation of molybdenum disulfide nanosheets as highly efficient electrocatalyst for detection of m-nitrophenol. J. Electroanal. Chem. 2017, 801, 300–305. [Google Scholar] [CrossRef]
- Fang, L.; Wang, F.; Chen, Z.; Qiu, Y.; Zhai, T.; Hu, M.; Zhang, C.; Huang, K. Flower-like MoS2 decorated with Cu2O nanoparticles for non-enzymatic amperometric sensing of glucose. Talanta 2017, 167, 593–599. [Google Scholar] [CrossRef]
- Geng, D.; Bo, X.; Guo, L. Ni-doped molybdenum disulfide nanoparticles anchored on reduced graphene oxide as novel electroactive material for a non-enzymatic glucose sensor. Sens. Actuators B Chem. 2017, 244, 131–141. [Google Scholar] [CrossRef]
- Wang, M.; Ma, J.; Guan, X.; Peng, W.; Fan, X.; Zhang, G.; Zhang, F.; Li, Y. A novel H2O2 electrochemical sensor based on NiCo2S4 functionalized reduced graphene oxide. J. Alloys Compd. 2019, 784, 827–833. [Google Scholar] [CrossRef]
- Umeshbabu, E.; Rajeshkhanna, G.; Justin, P.; Rao, G.R. Magnetic, optical and electrocatalytic properties of urchin and sheaf-like NiCo2O4 nanostructures. Mater. Chem. Phys. 2015, 165, 235–244. [Google Scholar] [CrossRef]
- Guan, C.; Liu, X.; Ren, W.; Li, X.; Cheng, C.; Wang, J. Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis. Adv. Energy Mater. 2017, 7, 1602391. [Google Scholar] [CrossRef]
- Xiao, J.; Wan, L.; Yang, S.; Xiao, F.; Wang, S. Design hierarchical electrodes with highly conductive NiCo2O4 nanotube arrays grown on carbon fiber paper for high-performance pseudo capacitors. Nano Lett. 2014, 14, 831–838. [Google Scholar] [CrossRef]
- Babu, K.J.; Raj Kumar, T.; Yoo, D.J.; Phang, S.M.; Gnana Kumar, G. Electrodeposited nickel cobalt sulfide flowerlike architectures on disposable cellulose filter paper for enzyme-free glucose sensor applications. ACS Sustain. Chem. Eng. 2018, 6, 16982–16989. [Google Scholar] [CrossRef]
- Rabbani, S.S.; Nisar, A.; Zafar, A.; Liu, Y.; Sun, H.; Karim, S.; Hussain, S.; Shah, A.U.; Hussain, S.Z.; Mehboob, N.; et al. Mesoporous NiCo2O4 nanoflakes as an efficient and durable electrocatalyst for non-enzymatic detection of cholesterol. Nanotechnology 2022, 33, 375502. [Google Scholar] [CrossRef]
- Khaliq, N.; Rasheed, M.A.; Khan, M.; Maqbool, M.; Ahmad, M.; Karim, S.; Nisar, A.; Schmuki, P.; Cho, S.O.; Ali, G. Voltage-switchable biosensor with gold nanoparticles on TiO2 nanotubes decorated with CdS quantum dots for the detection of cholesterol and H2O2. ACS Appl. Mater. Interfaces 2021, 13, 3653–3668. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, L.; Ji, R.; Yu, L. Non-enzymatic glucose sensor based on Cu-Cu2S nanocomposite electrode. Electrochem. Commun. 2012, 24, 53–56. [Google Scholar] [CrossRef]
- Panahi, Z.; Custer, L.; Halpern, J.M. Recent advances in non-enzymatic electrochemical detection of hydrophobic metabolites in biofluids. Sens. Actuators Rep. 2021, 3, 100051. [Google Scholar] [CrossRef]
- Liao, Y.; Du, Q.; Sun, S.; Shi, N.; Yin, G.; Huang, Z.; Liao, X. Quasi-aligned Cu2S/Cu(OH)2 nanorod arrays anchored on Cu foam as self-supported electrode for non-enzymatic glucose detection. Nanotechnology 2022, 33, 385501. [Google Scholar] [CrossRef] [PubMed]
- Ji, R.; Ling, L.; Guang, W.; Wang, F.; Zhang, X. Synthesize Thickness Copper (I) Sulfide nanoplates on Copper Rod and It’s Application as Nonenzymatic Cholesterol Sensor. Electrochim. Acta 2014, 130, 239–244. [Google Scholar] [CrossRef]
- Ahmad, M.I.; Kumar, S.; Ahmad, B.M.; Ullah, K.Q.; Ahmad, W.A.; Zhu, L. Green Synthesis of Ag2S Quantum Dots as Sensing Probe: An Optical Sensor for the Detection of Cholesterol. Cryst. Res. Technol. 2022, 57, 2100067. [Google Scholar]
- Peña-Bahamonde, J.; Nguyen, H.N.; Fanourakis, S.K.; Rodrigues, D.F. Recent advances in graphene-based biosensor technology with applications in life sciences. J. Nanobiotechnol. 2018, 16, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Alessandra Bonanni and Martin Pumera, Graphene Platform for Hairpin-DNA Based Impedimetric Genosensing. ACS Nano 2011, 5, 2356–2361. [CrossRef]
- Mao, S.; Lu, G.; Yu, K.; Bo, Z.; Chen, J. Specific protein detection using thermally reduced graphene oxide sheet decorated with gold nanoparticle-antibody conjugates. Adv. Mater. 2010, 22, 3521. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183. [Google Scholar] [CrossRef]
- Pankaj, G.; Vandna, K.G.; Artur, H.; Connor, E.R.; Kiera, G.; Noe, T.A. Highly sensitive non-enzymatic glucose sensor based on carbon nanotube microelectrode set. Sens. Actuators B Chem. 2021, 348, 130688. [Google Scholar]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.; Dubonos, S.; Firsov, A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200. [Google Scholar] [CrossRef] [Green Version]
- Theeazen, A.-G.; Gajanan, B.; Pasha, S.; Nikesh, I.; Manasi, M.; Sumedh, M.S.; Megha, D.; Nadeem, M.; Mehendra, S. Electrochemical Sensor: L-Cysteine Induced Selectivity Enhancement of Electrochemically Reduced Graphene Oxide–Multiwalled Carbon Nanotubes Hybrid for Detection of Lead (Pb2+) Ions. Front. Mater. 2020, 7, 68. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906–3924. [Google Scholar] [CrossRef] [PubMed]
- Morales-Narváez, E.; Baptista-Pires, L.; Zamora-Gálvez, A.; Merkoçi, A. Graphene-based biosensors: Going simple. Adv. Mater. 2017, 29, 1604905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chauhan, N.; Maekawa, T.; Kumar, D.N. Graphene based biosensors—Accelerating medical diagnostics to new-dimensions. J. Mater. Res. 2017, 32, 2860–2882. [Google Scholar] [CrossRef] [Green Version]
- Janegitz, B.C.; Silva, T.A.; Wong, A.; Ribovski, L.; Vicentini, F.C.; Sotomayor, M.D.P.T.; Fatibello-Filho, O. The application of graphene for in vitro and in vivo electrochemical biosensing. Biosens. Bioelectron. 2017, 89, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Rengaraj, A.; Haldorai, Y.; Kwak, C.H.; Ahn, S.; Jeon, K.J.; Park, S.H.; Han, Y.K.; Huh, Y.S. Electrodeposition of flower-like nickel oxide on CVD-grown graphene to develop an electrochemical non-enzymatic biosensor. J. Mater. Chem. B 2015, 3, 6301–6309. [Google Scholar] [CrossRef] [PubMed]
- Rison, S.; Akshaya, K.B.; Bhat, V.S.; Shanker, G.; Maiyalagan, T.; Joice, E.K.; Hegde, G.; Varghese, A. MnO2 Nanoclusters Decorated on GrapheneModified Pencil Graphite Electrode for Non-Enzymatic Determination of Cholesterol. Electroanalysis 2020, 32, 2128–2136. [Google Scholar] [CrossRef]
- Agnihotri, N.; Chowdhury, A.D.; De, A. Non-enzymatic electrochemical detection of cholesterol using β-cyclodextrin functionalized graphene. Biosens. Bioelectron. 2015, 63, 212–217. [Google Scholar] [CrossRef]
- Alexander, S.; Baraneedharan, P.; Balasubrahmanyan, S.; Ramaprabhu, S. Modified graphene based molecular imprinted polymer for electrochemical non-enzymatic cholesterol biosensor. Eur. Polym. J. 2017, 86, 106–116. [Google Scholar] [CrossRef]
- Yang, J.; Lee, H.; Cho, M.; Nam, J.; Lee, Y. Nonenzymatic cholesterol sensor based on spontaneous deposition of platinum nanoparticles on layer-by-layer assembled CNT thin film. Sens. Actuators B Chem. 2012, 171, 374–379. [Google Scholar] [CrossRef]
- Saha, M.; Das, S. Fabrication of a nonenzymatic cholesterol biosensor using carbon nanotubes from coconut oil. J. Nanostruct. Chem. 2014, 4, 94. [Google Scholar] [CrossRef] [Green Version]
- Ji, J.; Zhou, Z.; Zhao, X.; Sun, J.; Sun, X. Electrochemical sensor based on molecularly imprinted film at Au nanoparticles-carbon nanotubes modified electrode for determination of cholesterol. Biosens. Bioelectron. 2015, 66, 590–595. [Google Scholar] [CrossRef] [PubMed]
- Azhar, H.N.M.; Majdinasab, M.; Latif, U.; Nasir, M.; Gokce, G.; Waqas, A.M.; Hayat, A. Development of a disposable electrochemical sensor for detection of cholesterol using differential pulse voltammetry. J. Pharm. Biomed. Anal. 2018, 159, 398–405. [Google Scholar]
- Dakshayini, B.S.; Reddy, K.R.; Mishra, A.; Shetti, N.P.; Malode, S.J.; Basu, S.; Naveen, S.; Raghu, A.V. Role of conducting polymer and metal oxide-based hybrids for applications in ampereometric sensors and biosensors. Microchem. J. 2019, 147, 7–24. [Google Scholar] [CrossRef]
- Borole, D.D.; Kapadi, U.R.; Mahulikar, P.P.; Hundiwale, D.G. Conducting polymers: An emerging field of biosensors. Des. Monomers Polym. 2006, 9, 1–11. [Google Scholar] [CrossRef]
- Dong, R.; Ma, P.X.; Guo, B. Conductive biomaterials for muscle tissue engineering. Biomaterials 2020, 229, 119584. [Google Scholar] [CrossRef]
- Gerard, M.; Chaubey, A.; Malhotra, B.D. Application of conducting polymers to biosensors. Biosens. Bioelectron. 2002, 17, 345–359. [Google Scholar] [CrossRef]
- Nair, S.S.; Mishra, S.K.; Kumar, D. Recent progress in conductive polymeric materials for biomedical applications. Polym. Adv. Technol. 2019, 30, 2932–2953. [Google Scholar] [CrossRef]
- Ramanavičius, A.; Kaušaitė, A.; Ramanavičienė, A. Polypyrrole-coated glucose oxidase nanoparticles for biosensor design. Sens. Actuators B Chem. 2005, 111, 532–539. [Google Scholar] [CrossRef]
- Katrlík, J.; Pizzariello, A.; Mastihuba, V.; Švorc, J.; Stred’anský, M.; Miertuš, S. Biosensors for L-malate and L-lactate based on solid binding matrix. Anal. Chim. Acta 1999, 379, 193–200. [Google Scholar] [CrossRef]
- Patil, S.L.; Pawar, S.G.; Chougule, M.A.; Raut, B.T.; Godse, P.R.; Sen, S.; Patil, V.B. Structural, morphological, optical, and electrical properties of PANi-ZnOnanocomposites. Int. J. Polym. Mater. 2012, 61, 809–820. [Google Scholar] [CrossRef]
- Lim, Y.F.; Choi, J.J.; Hanrath, T. Facile synthesis of colloidal CuOnanocrystals for light-harvesting applications. J. Nanomater. 2012, 1, 2012. [Google Scholar]
- Miao, X.M.; Yuan, R.; Chai, Y.Q.; Shi, Y.T.; Yuan, Y.Y. Direct electrocatalytic reduction of hydrogen peroxide based on Nafion and copper oxide nanoparticles modified Pt electrode. J. Electroanal. Chem. 2008, 612, 157–163. [Google Scholar] [CrossRef]
- Ren, G.; Hu, D.; Cheng, E.W.; Vargas-Reus, M.A.; Reip, P.; Allaker, R.P. Characterisation of copper oxide nanoparticles for antimicrobial applications. Int. J. Antimicrob. Agents 2009, 33, 587–590. [Google Scholar] [CrossRef]
- Deka, P.; Borah, B.J.; Saikia, H.; Bharali, P. Cu-Based Nanoparticles as Emerging Environmental Catalysts. Chem. Rec. 2019, 19, 462–473. [Google Scholar] [CrossRef] [PubMed]
- Razmi, H.; Nasiri, H.; Mohammad-Rezaei, R. Amperometric determination of L-tyrosine by an enzymeless sensor based on a carbon ceramic electrode modified with copper oxide nanoparticles. Microchim. Acta 2011, 173, 59–64. [Google Scholar] [CrossRef]
- Fisseha, A.B.; Shepherd, M.T.; Evans, M.N.C. Fabrication of monodispersed copper oxide nanoparticles with potential application as antimicrobial agents. Sci. Rep. 2020, 10, 16680. [Google Scholar] [CrossRef]
- Hassine, C.B.A.; Kahri, H.; Barhoumi, H. Development of non-enzymatic cholesterol electrochemical sensor based on CuO(NPs)-Polyaniline-Murexide composite. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Thivya, P.; Ramya, R.; Wilson, J. Poly(3,4-ethylenedioxythiophene)/taurinebiocomposite on screen printed electrode: Non-enzymatic cholesterol biosensor. Microchem. J. 2020, 157, 105037. [Google Scholar] [CrossRef]
- Akshaya, K.B.; Anitha, V.; Nidhin, M.; Louis, G. Amorphous Ru-Pi Nanoclusters Coated on Polypyrrole Modified Carbon Fiber Paper for Non-Enzymatic Electrochemical Determination of Cholesterol. J. Electrochem. Soc. 2019, 166, B1016–B1027. [Google Scholar]
- Yang, L.; Zhao, H.; Fan, S.; Zhao, G.; Ran, X.; Li, C.P. Electrochemical detection of cholesterol based on competitive host–guest recognition using a β-cyclodextrin/poly(N-acetylaniline)/graphene-modified electrode. RSC Adv. 2015, 5, 64146–64155. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, H.; Li, Y.; Ran, X.; Deng, G.; Zhang, Y.; Ye, H.; Zhao, G.; Li, C.P. Indicator displacement assay for cholesterol electrochemical sensing using a calix[6]arene functionalized graphene-modified electrode. Analyst 2016, 141, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Ganganboin, A.B.; Doong, R.-A. Functionalized N-doped graphene quantum dots for electrochemical determination of cholesterol through host-guest inclusion. Microchim. Acta 2018, 185, 526. [Google Scholar] [CrossRef] [PubMed]
- Shah, K.A.; Parvaiz, M.S. Chemical Functionalization of Carbon Nanotubes and Applications to Sensors. Spectrosc. Charact. Nanomater. Nov. Mater. Exp. Model. Simul. Appl. 2022, 7, 261–286. [Google Scholar]
- Hussain, M.; Nisar, A.; Hussain, S.; Qian, L.; Karim, S.; Liu, Y.; Zafar, A.; Sun, H.; Ahmad, M. Oxygen vacancies boosted vanadium doped ZnO nanostructures-based voltage-switchable binary biosensor. Nanotechnology 2021, 33, 025502. [Google Scholar] [CrossRef]
- Tabassum, S.; Naz, S.; Nisar, A.; Sun, H.; Karim, S.; Khan, M.; Shahzada, S.; ur Rahman, A.; Ahmad, M. Synergic effect of plasmonic gold nanoparticles and graphene oxide on the performance of glucose sensing. New J. Chem. 2019, 43, 18925–18934. [Google Scholar] [CrossRef]
- Derina, K.; Korotkova, E.; Taishibekova, Y.; Salkeeva, L.; Kratochvil, B.; Barek, J. Electrochemical nonenzymatic sensor for cholesterol determination in food. Anal. Bioanal. Chem. 2018, 410, 5085–5092. [Google Scholar] [CrossRef] [PubMed]
- Umar, A.; Rahman, M.M.; Vaseem, M.; Hahn, Y.B. Ultra-sensitive cholesterol biosensor based on low-temperature grown ZnO nanoparticles. Electrochem. Commun. 2009, 11, 118–121. [Google Scholar] [CrossRef]
- Navaneeth, P.; Jeethu, R.; Suneesh, P.V.; Bipin, G.N.; Satheesh, B.T.G. Highly Sensitive and Wide Range Non-Enzymatic Electrochemical Detection of Cholesterol using Pencil Lead Electrodes. J. Electrochem. Soc. 2021, 168, 047515. [Google Scholar]
- Thakur, N.; Mandal, D.; Nagaiah, T.C. A novel NiVP/Pi-based flexible sensor for direct electrochemical ultrasensitive detection of cholesterol. Chem. Commun. 2022, 58, 2706–2709. [Google Scholar] [CrossRef]
- Derina, K.; Korotkova, E.; Barek, J. Non-enzymatic electrochemical approaches to cholesterol determination. J. Pharm. Biomed. Anal. 2020, 191, 113538. [Google Scholar] [CrossRef]
- Yang, M.; Kim, D.S.; Lee, T.J.; Lee, S.J.; Lee, K.G.; Choi, B.G. Polyoxometalate-grafted graphenenanohybrid for electrochemical detection of hydrogen peroxide and glucose. J. Colloid Interface Sci. 2016, 468, 51–56. [Google Scholar] [CrossRef]
- Bairagi, P.K.; Verma, N. Electrochemically deposited dendritic poly (methyl orange) nanofilm on metal-carbon-polymer nanocomposite: A novel non-enzymatic electrochemical biosensor for cholesterol. J. Electroanal. Chem. 2018, 814, 134–143. [Google Scholar] [CrossRef]
- Kaur, G.; Tomar, M.; Gupta, V. Development of a microfluidic electrochemical biosensor: Prospect for point-of-care cholesterol monitoring. Sens. Actuators B Chem. 2018, 261, 460–466. [Google Scholar] [CrossRef]
- Qi, C.C.; Zheng, J.B. Synthesis of Fe3O4–Ag nanocomposites and their application to enzyme-less hydrogen peroxide detection. Chem. Pap. 2016, 70, 404–411. [Google Scholar] [CrossRef]
- Shrestha, B.K.; Ahmad, R.; Shrestha, S.; Park, C.H.; Kim, C.S. In situ synthesis of cylindrical spongy polypyrrole doped protonated graphitic carbon nitride for cholesterol sensing application. Biosens. Bioelectron. 2017, 94, 686–693. [Google Scholar] [CrossRef]
- Martín, M.; Salazar, P.; Álvarez, R.; Palmero, A.; López-Santos, C.; González-Mora, J.L.; González-Elipe, A.R. Cholesterol biosensing with a polydopamine-modified nanostructured platinum electrode prepared by oblique angle physical vacuum deposition. Sens. Actuators B Chem. 2017, 240, 37–45. [Google Scholar] [CrossRef]
- Kaur, G.; Tomar, M.; Gupta, V. Nanostructured NiO-based reagentless biosensor for total cholesterol and low density lipoprotein detection. Anal. Bioanal. Chem. 2017, 409, 1995–2005. [Google Scholar] [CrossRef]
- Rahman, M.M.; Lopa, N.S.; Kim, K.; Lee, J.J. Selective detection of L-tyrosine in the presence of ascorbic acid, dopamine, and uric acid at poly (thionine)-modified glassy carbon electrode. J. Electroanal. Chem. 2015, 754, 87–93. [Google Scholar] [CrossRef]
- Ruecha, N.; Rangkupan, R.; Rodthongkum, N.; Chailapakul, O. Novel paper-based cholesterol biosensor using graphene/polyvinylpyrrolidone/polyanilinenanocomposite. Biosens. Bioelectron. 2014, 52, 13–19. [Google Scholar] [CrossRef]
- Umar, A.; Ahmad, R.; Kumar, R.; Ibrahim, A.A.; Baskoutas, S. Bi2O2CO3 nanoplates: Fabrication and characterization of highly sensitive and selective cholesterol biosensor. J. Alloys Compd. 2016, 683, 433–438. [Google Scholar] [CrossRef]
- Komathi, S.; Muthuchamy, N.; Lee, K.P.; Gopalan, A.I. Fabrication of a novel dual mode cholesterol biosensor using titanium dioxide nanowire bridged 3D graphene nanostacks, Biosens. Bioelectron. 2016, 84, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Maluin, F.N.; Sharifah, M.; Rattanarat, P.; Siangproh, W.; Chailapakul, O.; Issam, A.M.; Manan, N.S. Synthesis of PANI/hematite/PB hybrid nanocomposites and fabrication as screen printed paper based sensors for cholesterol detection. Anal. Methods 2016, 8, 8049–8058. [Google Scholar] [CrossRef]
- Batra, N.; Tomar, M.; Gupta, V. ZnO–CuO composite matrix based reagentless biosensor for detection of total cholesterol. Biosens. Bioelectron. 2015, 67, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Cinti, S.; Arduini, F.; Moscone, D.; Palleschi, G.; Gonzalez-Macia, L.; Killard, A.J. Cholesterol biosensor based on inkjet-printed Prussian blue nanoparticle-modified screen-printed electrodes. Sens. Actuators B Chem. 2015, 221, 187–190. [Google Scholar] [CrossRef]
- Giri, A.K.; Charan, C.; Ghosh, S.C.; Shahi, V.K.; Panda, A.B. Phase and composition selective superior cholesterol sensing performance of ZnO@ ZnSnano-heterostructure and ZnS nanotubes. Sens. Actuators B Chem. 2016, 229, 14–24. [Google Scholar] [CrossRef]
- Dey, R.S.; Raj, C.R. Development of an amperometric cholesterol biosensor based on graphene− Pt nanoparticle hybrid material. J. Phys. Chem. C 2010, 114, 21427–21433. [Google Scholar] [CrossRef]
- Cao, S.; Zhang, L.; Chai, Y.; Yuan, R. Electrochemistry of cholesterol biosensor based on a novel Pt–Pd bimetallic nanoparticle decorated graphene catalyst. Talanta 2013, 109, 167–172. [Google Scholar] [CrossRef]
- Parlak, O.; Tiwari, A.; Turner, A.P.; Tiwari, A. Template-directed hierarchical self-assembly of graphene based hybrid structure for electrochemical biosensing. Biosens. Bioelectron. 2013, 49, 53–62. [Google Scholar] [CrossRef]
- Gholivand, M.B.; Khodadadian, M. Amperometric cholesterol biosensor based on the direct electrochemistry of cholesterol oxidase and catalase on a graphene/ionic liquid-modified glassy carbon electrode. Biosens. Bioelectron. 2014, 53, 472–478. [Google Scholar] [CrossRef]
- Li, Z.; Xie, C.; Wang, J.; Meng, A.; Zhang, F. Direct electrochemistry of cholesterol oxidase immobilized on chitosan–graphene and cholesterol sensing. Sens. Actuators B Chem. 2015, 208, 505–511. [Google Scholar] [CrossRef]
- Wu, Q.; Hou, Y.; Zhang, M.; Hou, X.; Xu, L.; Wang, N.; Wang, J.; Huang, W. Amperometric cholesterol biosensor based on zinc oxide films on a silver nanowire–graphene oxide modified electrode. Anal. Methods 2016, 8, 1806–1812. [Google Scholar] [CrossRef]
- Nandini, S.; Nalini, S.; Reddy, M.M.; Suresh, G.S.; Melo, J.S.; Niranjana, P.; Sanetuntikul, J.; Shanmugam, S. Synthesis of one-dimensional gold nanostructures and the electrochemical application of the nanohybrid containing functionalized graphene oxide for cholesterol biosensing. Bioelectrochemistry 2016, 110, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.A.; Solanki, P.R.; Patel, M.K.; Dhayani, H.; Agrawal, V.V.; John, R.; Malhotra, B.D. A highly efficient microfluidic nano biochip based on nanostructured nickel oxide. Nanoscale 2013, 5, 2883–2891. [Google Scholar] [CrossRef]
- Gautam, V.; Singh, K.P.; Yadav, V.L. Polyaniline/MWCNTs/starch modified carbon paste electrode for non-enzymatic detection of cholesterol: Application to real sample (cow milk). Anal. Bioanal. Chem. 2018, 410, 2173–2181. [Google Scholar] [CrossRef]
- Xiang, G.; Meng, Y.; Qu, G.; Yin, J.; Teng, B.; Wei, Q.; Xu, X. Dual-functional NiCo2S4 polyhedral architecture with superior electrochemical performance for supercapacitors and lithium-ion batteries. Sci. Bull. 2020, 65, 443–451. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.J.; Park, J.Y. Nonenzymatic free-cholesterol detection via a modified highly sensitive macroporous gold electrode with platinum nanoparticles. Biosens. Bioelectron. 2010, 26, 1353–1358. [Google Scholar] [CrossRef] [PubMed]
Sr. No. | Electrode Material | Linear Range (µM) | Detection Limit (µM) | Applied Potential (V) | Sensitivity (µAmM−1cm−2) | Response Time (s) | References |
---|---|---|---|---|---|---|---|
1. | Ag NPs/polydopamine/graphenenanocomposites | 0.005–997 | 0.68 | 0.0 | 140 | >3 | [15] |
2. | Cu2O-TiO2 | 24.4–622 | 0.05 | −0.46 | 6034.4 | 3 | [35] |
3. | Ag NPs-ZnO NRs | 1–9 | 0.184 | 0.5 | 135.5 | 25 | [41] |
4. | PVIM-Co5POM-MNC | 0.5–5000 | 1 × 10−9 | — | 64 | [46] | |
5. | MB/BCD/Fe3O4/SPCE | 2.88–150 | 2.88 | −0.43 | 0.015 | — | [47] |
6. | NiCo2O4nanosheets | 10–300 | 0.10 | 0.52 | 6150.7 | <4 | [58] |
7. | NiCo2O4nanoflakes | 10–250 | 0.01 | 0.45 | 8623.6 | <2 | [58] |
8. | Au/CdS QDs/TNTs | 0.024–1.2 | 0.012 | — | 10,790 | ~1 | [59] |
9. | Cu2S NRs/CRIE | 10–6800 | 0.1 | — | 62.5 | 3 | [63] |
10. | NiO/CVD-grown Graphene | 2–40 | 130 | — | 40,600 | 5 | [76] |
11. | MnO2/GR@PGE | 0.0012 | 0.00042 | — | — | — | [77] |
12. | Graphene/β-CD | 5–30 | 1 | — | 0.01 | — | [78] |
13. | GO-MIP | 0.024 | 0.0001 | — | — | ~2 | [79] |
14. | CNT | 1–50 | 0.01708 | — | 15.31 | 6 | [80] |
15. | Pt-CNT | 5–10,000 | 2.8 | 0.7 | 8.7 | — | [80] |
16. | CuO/PANI/Mu | 0.0005–50,000 | — | — | 5575 Ω/M | — | [81] |
17. | β-CD/SPCE/CNTs | 0.001–3 | 0.0005 | — | — | [83] | |
18. | β-CD/N-GQDs | 0.5–100 | 0.08 | — | — | [103] | |
19. | Carbon containing composite | 1–200 | 1.53 | 0.4 | 20000 | - | [107] |
20. | ZnO nanoparticles | 0.001–0.5 | — | 0.355 | 23.7 | >5 | [108] |
21. | Pencil Lead Electrode | 625-9375 | — | — | 1422.22 | — | [109] |
22. | MoS2-Au | 0.5–48 | 0.26 | 0.3 | 4460 | — | [110] |
23. | GCE | 2–41 | 0.13 | — | 40.6 | 5 | [111] |
24. | Polyoxometalate/rGO composite | 100–2 × 104 | 1.02 | 0.02 | 95.6 | 5 | [112] |
25. | Cu/Ni bimetal-dispersed CNf/polymer nanocomposite | 3.54–53,040 | 0.17 | 0.3 | 226.30 | 2.7 | [113] |
26. | PDMS/NiO/Pt | 0.12–10.23 | 100 | 0.5 | 0.5 | — | [114] |
27. | Ag NPs/magnetic ferrous ferric oxide matrix | 0.5–4 × 103 | 0.2 | −0.2 | 135 | — | [115] |
28. | CSPPy-g-C3N4H+/GCE | 20–5000 | 8.0 | — | 645.7 | ~3 | [116] |
29. | Au-SPE/Pt/PDA | up to 500 | 10.5 | — | 14,300 | <8 | [117] |
30. | NiO/ITO/glass | 1000–12,000 | 500 | — | 63 | 5 | [118] |
31. | GCE/PTH | 25–125 | 6.3 | — | 0.18 | — | [119] |
32. | G/PVP/PANI/paper | 50–10,000 | 1 | — | 34.77 | — | [120] |
33. | Bi2O2CO3nanoplates | 50–7400 | 10 | — | 139.5 | ~4 | [121] |
34. | G/Ti(G)-3DNS | 50–8000 | 6 | — | 3.82 | 2 | [122] |
35. | PB/CPANI | 600–6000 | 520 | — | 411.7 | — | [123] |
36. | (ZnO-CuO)/ITO/glass | 500–12,000 | — | — | 760 | 5 | [124] |
37. | PBNPs | 0–15,000 | 200 | — | 2.1 | 200 | [125] |
38. | ZnSZB nanotube | 400–2000 | 440 | — | 598,000 | <5 | [126] |
39. | GR-PtNPs hybrid | up to 12,000 | 0.2 | — | 2.07 | — | [127] |
40. | Pd-Pt NPs/GR nanocomposite | 2.2–520 | 0.75 | — | — | — | [128] |
41. | Self-assembled GR | 50–350 | 0.05 | — | 124.57 | — | [129] |
42. | GR/IL | 0.25–215 | 500 | — | 4163 | — | [130] |
43. | CS/GR nanocomposites | 5–1000 | 0.715 | — | — | — | [131] |
44. | ZnO/AgNWs/GR-CS nanocompostes | 6.5–10,000 | 0.287 | — | 9.2 | — | [132] |
45. | GO-SH/AuNPs composite | 50–11,450 | 0.0002 | — | 273 | — | [133] |
46. | NiOnanorods | 640–10,300 | 650 | — | 120,000 | — | [134] |
47. | PANI/MWCNTs/Starch | 32–5000 | 10 | — | 800 | 4–6 | [135] |
48. | ZnONanoporous Thin Film | 1100–4830 | — | 0.9 | 3010 | — | [136] |
49. | Au/nPts | 15–5000 | 15 | — | 226.2 | — | [137] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, M.; Nisar, A.; Sun, H. Emerging Trends in Non-Enzymatic Cholesterol Biosensors: Challenges and Advancements. Biosensors 2022, 12, 955. https://doi.org/10.3390/bios12110955
Ahmad M, Nisar A, Sun H. Emerging Trends in Non-Enzymatic Cholesterol Biosensors: Challenges and Advancements. Biosensors. 2022; 12(11):955. https://doi.org/10.3390/bios12110955
Chicago/Turabian StyleAhmad, Mashkoor, Amjad Nisar, and Hongyu Sun. 2022. "Emerging Trends in Non-Enzymatic Cholesterol Biosensors: Challenges and Advancements" Biosensors 12, no. 11: 955. https://doi.org/10.3390/bios12110955
APA StyleAhmad, M., Nisar, A., & Sun, H. (2022). Emerging Trends in Non-Enzymatic Cholesterol Biosensors: Challenges and Advancements. Biosensors, 12(11), 955. https://doi.org/10.3390/bios12110955