A Review on Non-Enzymatic Electrochemical Biosensors of Glucose Using Carbon Nanofiber Nanocomposites
Abstract
:1. Introduction
2. Enzymatic Electrochemical Biosensors for Glucose Sensing
3. Non-Enzymatic Electrochemical Biosensors for Glucose Sensing
4. Non-Enzymatic Glucose Biosensors Based on Nanocomposites of CNF
4.1. Mono Metallic (Metal Oxide)/CNF Nanocomposites as Non-Enzymatic Glucose Biosensors
4.2. Hybrid Nanoparticle/CNF Nanocomposites as a Non-Enzymatic Glucose Biosensor
5. Conclusions and Future Challenges
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bamgboje, D.; Christoulakis, I.; Smanis, I.; Chavan, G.; Shah, R.; Malekzadeh, M.; Violaris, I.; Giannakeas, N.; Tsipouras, M.; Kalafatakis, K.; et al. Continuous Non-Invasive Glucose Monitoring via Contact Lenses: Current Approaches and Future Perspectives. Biosensors 2021, 11, 189. [Google Scholar] [CrossRef] [PubMed]
- Cano Perez, J.L.; Gutiérrez-Gutiérrez, J.; Perezcampos Mayoral, C.; Pérez-Campos, E.L.; Pina Canseco, M.d.S.; Tepech Carrillo, L.; Mayoral, L.P.-C.; Vargas Treviño, M.; Apreza, E.L.; Rojas Laguna, R. Fiber Optic Sensors: A Review for Glucose Measurement. Biosensors 2021, 11, 61. [Google Scholar] [CrossRef] [PubMed]
- Tian, K.; Prestgard, M.; Tiwari, A. A Review of Recent Advances in Nonenzymatic Glucose Sensors. Mater. Sci. Eng. C 2014, 41, 100–118. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, J.; Rashed, M.A.; Faisal, M.; Harraz, F.A.; Jalalah, M.; Alsareii, S.A. Novel SWCNTs-Mesoporous Silicon Nanocomposite as Efficient Non-Enzymatic Glucose Biosensor. Appl. Surf. Sci. 2021, 552, 149477. [Google Scholar] [CrossRef]
- WHO. Global Status Report on Noncommunicable Diseases 2010; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- WHO. Global Report on Diabetes; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Shaye, K.; Amir, T.; Shlomo, S.; Yechezkel, S. Fasting Glucose Levels within the High Normal Range Predict Cardiovascular Outcome. Am. Heart J. 2012, 164, 111–116. [Google Scholar] [CrossRef] [Green Version]
- Luo, D.; Mu, T.; Sun, H. Sweet Potato (Ipomoea Batatas L.) Leaf Polyphenols Ameliorate Hyperglycemia in Type 2 Diabetes Mellitus Mice. Food Funct. 2021, 12, 4117–4131. [Google Scholar] [CrossRef]
- Perlmuter, L.C.; Flanagan, B.P.; Shah, P.H.; Singh, S.P. Glycemic Control and Hypoglycemia: Is the Loser the Winner? Diabetes Care 2008, 31, 2072–2076. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhu, C.-K.; Yu, J.-Q.; Tan, R.; Yang, P.-L. Hypoglycemia and Mortality in Sepsis Patients: A Systematic Review and Meta-Analysis. Heart Lung 2021, 50, 933–940. [Google Scholar] [CrossRef]
- Ortiz-Martinez, M.; Flores-DelaToba, R.; González-González, M.; Rito-Palomares, M. Current Challenges and Future Trends of Enzymatic Paper-Based Point-of-Care Testing for Diabetes Mellitus Type 2. Biosensors 2021, 11, 482. [Google Scholar] [CrossRef]
- Bellary, S.; Kyrou, I.; Brown, J.E.; Bailey, C.J. Type 2 Diabetes Mellitus in Older Adults: Clinical Considerations and Management. Nat. Rev. Endocrinol. 2021, 17, 534–548. [Google Scholar] [CrossRef]
- Von Scholten, B.J.; Kreiner, F.F.; Gough, S.C.L.; von Herrath, M. Current and Future Therapies for Type 1 Diabetes. Diabetologia 2021, 64, 1037–1048. [Google Scholar] [CrossRef]
- Teju, V.; Sowmya, K.V.; Yuvanika, C.; Saikumar, K.; Krishna, T.B.D.S. Detection of Diabetes Melittus, Kidney Disease with ML. In Proceedings of the 2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), Greater Noida, India, 17–18 December 2021; pp. 217–222. [Google Scholar]
- Jwad, S.M.; AL-Fatlawi, H.Y. Types of Diabetes and Their Effect on the Immune System. J. Adv. Pharm. Pract. 2022, 4, 21–30. [Google Scholar]
- Lin, M.-H.; Gupta, S.; Chang, C.; Lee, C.-Y.; Tai, N.-H. Carbon Nanotubes/Polyethylenimine/Glucose Oxidase as a Non-Invasive Electrochemical Biosensor Performs High Sensitivity for Detecting Glucose in Saliva. Microchem. J. 2022, 180, 107547. [Google Scholar] [CrossRef]
- Settu, K.; Chiu, P.-T.; Huang, Y.-M. Laser-Induced Graphene-Based Enzymatic Biosensor for Glucose Detection. Polymers 2021, 13, 2795. [Google Scholar] [CrossRef]
- Zare, Y.; Rhee, K.Y. Effects of Interphase Regions and Filler Networks on the Viscosity of PLA/PEO/Carbon Nanotubes Biosensor. Polym. Compos. 2019, 40, 4135–4141. [Google Scholar] [CrossRef]
- Zare, Y.; Rhee, K.Y.; Park, S.-J. Simple Model for Hydrolytic Degradation of Poly (Lactic Acid)/Poly (Ethylene Oxide)/Carbon Nanotubes Nanobiosensor in Neutral Phosphate-Buffered Saline Solution. J. Biomed. Mater. Res. Part A 2019, 107, 2706–2717. [Google Scholar] [CrossRef]
- Zare, Y.; Rhee, K.Y. Effect of Contact Resistance on the Electrical Conductivity of Polymer Graphene Nanocomposites to Optimize the Biosensors Detecting Breast Cancer Cells. Sci. Rep. 2022, 12, 5406. [Google Scholar] [CrossRef]
- Mohammadpour-Haratbar, A.; Zare, Y.; Rhee, K.Y. Electrochemical Biosensors Based on Polymer Nanocomposites for Detecting Breast Cancer: Recent Progress and Future Prospects. Adv. Colloid Interface Sci. 2022, 309, 102795. [Google Scholar] [CrossRef]
- Nashruddin, S.N.A.; Abdullah, J.; Mohammad Haniff, M.A.S.; Mat Zaid, M.H.; Choon, O.P.; Mohd Razip Wee, M.F. Label Free Glucose Electrochemical Biosensor Based on Poly(3,4-Ethylenedioxy Thiophene): Polystyrene Sulfonate/Titanium Carbide/Graphene Quantum Dots. Biosensors 2021, 11, 267. [Google Scholar] [CrossRef]
- Madden, J.; Barrett, C.; Laffir, F.R.; Thompson, M.; Galvin, P.; O’Riordan, A. On-Chip Glucose Detection Based on Glucose Oxidase Immobilized on a Platinum-Modified, Gold Microband Electrode. Biosensors 2021, 11, 249. [Google Scholar] [CrossRef]
- Mohammadpour-Haratbar, A.; Zare, Y.; Rhee, K.Y. Development of a Theoretical Model for Estimating the Electrical Conductivity of a Polymeric System Reinforced with Silver Nanowires Applicable for the Biosensing of Breast Cancer Cells. J. Mater. Res. Technol. 2022, 18, 4894–4902. [Google Scholar] [CrossRef]
- Dhara, K.; Mahapatra, D.R. Electrochemical Nonenzymatic Sensing of Glucose Using Advanced Nanomaterials. Microchim. Acta 2018, 185, 49. [Google Scholar] [CrossRef]
- Si, P.; Huang, Y.; Wang, T.; Ma, J. Nanomaterials for Electrochemical Non-Enzymatic Glucose Biosensors. RSC Adv. 2013, 3, 3487–3502. [Google Scholar] [CrossRef]
- Heli, H.; Pishahang, J. Cobalt Oxide Nanoparticles Anchored to Multiwalled Carbon Nanotubes: Synthesis and Application for Enhanced Electrocatalytic Reaction and Highly Sensitive Nonenzymatic Detection of Hydrogen Peroxide. Electrochim. Acta 2014, 123, 518–526. [Google Scholar] [CrossRef]
- Goldoni, A.; Alijani, V.; Sangaletti, L.; D’Arsiè, L. Advanced Promising Routes of Carbon/Metal Oxides Hybrids in Sensors: A Review. Electrochim. Acta 2018, 266, 139–150. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, B.; Chen, Y.; Guo, L.; Wei, G. Carbon Nanofiber-Based Three-Dimensional Nanomaterials for Energy and Environmental Applications. Mater. Adv. 2020, 1, 2163–2181. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, M.; Zhang, X.; Xie, G.; Su, Z.; Wei, G. Nanoporous Carbon Nanofibers Decorated with Platinum Nanoparticles for Non-Enzymatic Electrochemical Sensing of H2O2. Nanomaterials 2015, 5, 1891–1905. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wu, S.; Wang, J.; Yu, A.; Wei, G. Carbon Nanofiber-Based Functional Nanomaterials for Sensor Applications. Nanomaterials 2019, 9, 1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadav, D.; Amini, F.; Ehrmann, A. Recent Advances in Carbon Nanofibers and Their Applications—A Review. Eur. Polym. J. 2020, 138, 109963. [Google Scholar] [CrossRef]
- Zare, Y. Study on Interfacial Properties in Polymer Blend Ternary Nanocomposites: Role of Nanofiller Content. Comput. Mater. Sci. 2016, 111, 334–338. [Google Scholar] [CrossRef]
- Zare, Y.; Rhee, K.Y. Modeling of Stress Relaxation Modulus for a Nanocomposite Biosensor by Relaxation Time, Yield Stress, and Zero Complex Viscosity. JOM 2021, 73, 3693–3701. [Google Scholar] [CrossRef]
- Zare, Y. A Model for Tensile Strength of Polymer/Clay Nanocomposites Assuming Complete and Incomplete Interfacial Adhesion between the Polymer Matrix and Nanoparticles by the Average Normal Stress in Clay Platelets. RSC Adv. 2016, 6, 57969–57976. [Google Scholar] [CrossRef]
- Zare, Y.; Garmabi, H. Nonisothermal Crystallization and Melting Behavior of PP/Nanoclay/CaCO3 Ternary Nanocomposite. J. Appl. Polym. Sci. 2012, 124, 1225–1233. [Google Scholar] [CrossRef]
- Zare, Y.; Rhee, K.Y. Dependence of Z Parameter for Tensile Strength of Multi-Layered Interphase in Polymer Nanocomposites to Material and Interphase Properties. Nanoscale Res. Lett. 2017, 12, 42. [Google Scholar] [CrossRef] [Green Version]
- Zare, Y. “A” Interfacial Parameter in Nicolais-Narkis Model for Yield Strength of Polymer Particulate Nanocomposites as a Function of Material and Interphase Properties. J. Colloid Interface Sci. 2016, 470, 245–249. [Google Scholar] [CrossRef]
- Peng, W.; Rhim, S.; Zare, Y.; Rhee, K.Y. Effect of “Z” Factor for Strength of Interphase Layers on the Tensile Strength of Polymer Nanocomposites. Polym. Compos. 2019, 40, 1117–1122. [Google Scholar] [CrossRef]
- Zare, Y.; Rhee, K.Y. Experimental Data and Modeling of Storage and Loss Moduli for a Biosensor Based on Polymer Nanocomposites. Results Phys. 2020, 19, 103537. [Google Scholar] [CrossRef]
- Zare, Y.; Rhim, S.S.; Rhee, K.Y. The Interphase Degradation in a Nanobiosensor Including Biopolymers and Carbon Nanotubes. Sens. Actuators A Phys. 2021, 331, 112967. [Google Scholar] [CrossRef]
- Razavi, R.; Zare, Y.; Rhee, K.Y. A Two-Step Model for the Tunneling Conductivity of Polymer Carbon Nanotube Nanocomposites Assuming the Conduction of Interphase Regions. RSC Adv. 2017, 7, 50225–50233. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Liu, Y.; You, T. Carbon Nanofiber Based Electrochemical Biosensors: A Review. Anal. Methods 2010, 2, 202–211. [Google Scholar] [CrossRef]
- Ruiz-Cornejo, J.C.; Sebastián, D.; Lázaro, M.J. Synthesis and Applications of Carbon Nanofibers: A Review. Rev. Chem. Eng. 2020, 36, 493–511. [Google Scholar] [CrossRef]
- Feng, L.; Xie, N.; Zhong, J. Carbon Nanofibers and Their Composites: A Review of Synthesizing, Properties and Applications. Materials 2014, 7, 3919–3945. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yin, M.; Wei, X.; Sun, J.; Xu, D. Recent Advances in Morphology, Aperture Control, Functional Control and Electrochemical Sensors Applications of Carbon Nanofibers. Anal. Biochem. 2022, 656, 114882. [Google Scholar] [CrossRef] [PubMed]
- You, T.; Liu, D.; Li, L. Carbon Nanofibers for Electroanalysis; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 27–53. [Google Scholar]
- Hu, G.; Zhang, X.; Liu, X.; Yu, J.; Ding, B. Strategies in Precursors and Post Treatments to Strengthen Carbon Nanofibers. Adv. Fiber Mater. 2020, 2, 46–63. [Google Scholar] [CrossRef] [Green Version]
- Teo, W.E.; Ramakrishna, S. A Review on Electrospinning Design and Nanofibre Assemblies. Nanotechnology 2006, 17, R89. [Google Scholar] [CrossRef]
- Inagaki, M.; Yang, Y.; Kang, F. Carbon Nanofibers Prepared via Electrospinning. Adv. Mater. 2012, 24, 2547–2566. [Google Scholar] [CrossRef]
- Alegre, C.; Modica, E.; Di Blasi, A.; Di Blasi, O.; Busacca, C.; Ferraro, M.; Aricò, A.S.; Antonucci, V.; Baglio, V. NiCo-Loaded Carbon Nanofibers Obtained by Electrospinning: Bifunctional Behavior as Air Electrodes. Renew. Energy 2018, 125, 250–259. [Google Scholar] [CrossRef]
- Kausar, A. Polyacrylonitrile-Based Nanocomposite Fibers: A Review of Current Developments. J. Plast. Film. Sheeting 2019, 35, 295–316. [Google Scholar] [CrossRef]
- Nataraj, S.K.; Yang, K.S.; Aminabhavi, T.M. Polyacrylonitrile-Based Nanofibers—A State-of-the-Art Review. Prog. Polym. Sci. 2012, 37, 487–513. [Google Scholar] [CrossRef]
- Fang, W.; Yang, S.; Wang, X.-L.; Yuan, T.-Q.; Sun, R.-C. Manufacture and Application of Lignin-Based Carbon Fibers (LCFs) and Lignin-Based Carbon Nanofibers (LCNFs). Green Chem. 2017, 19, 1794–1827. [Google Scholar] [CrossRef]
- Gaminian, H.; Montazer, M.; Bahi, A.; Karaaslan, M.; Ko, F. Capacitance Performance Boost of Cellulose-Derived Carbon Nanofibers via Carbon and Silver Nanoparticles. Cellulose 2019, 26, 2499–2512. [Google Scholar] [CrossRef]
- Lu, W.; He, T.; Xu, B.; He, X.; Adidharma, H.; Radosz, M.; Gasem, K.; Fan, M. Progress in Catalytic Synthesis of Advanced Carbon Nanofibers. J. Mater. Chem. A 2017, 5, 13863–13881. [Google Scholar] [CrossRef]
- Huang, Y.; Zhu, F.; Guan, J.; Wei, W.; Zou, L. Label-Free Amperometric Immunosensor Based on Versatile Carbon Nanofibers Network Coupled with Au Nanoparticles for Aflatoxin B1 Detection. Biosensors 2020, 11, 5. [Google Scholar] [CrossRef]
- Abdo, G.G.; Zagho, M.M.; Al Moustafa, A.-E.; Khalil, A.; Elzatahry, A.A. A Comprehensive Review Summarizing the Recent Biomedical Applications of Functionalized Carbon Nanofibers. J. Biomed. Mater. Res. Part B Appl. Biomater. 2021, 109, 1893–1908. [Google Scholar] [CrossRef]
- Mohammadi, M.A.; Tabar, F.A.; Mohammadpour-Haratbar, A.; Bazargan, A.M.; Mazinani, S.; Keihan, A.H.; Sharif, F. Preparation and Evaluation of Electrospun Carbon Nanofibers Infused by Metal Nanoparticles for Supercapacitor Electrodes Application. Synth. Met. 2021, 274, 116706. [Google Scholar] [CrossRef]
- Mohammadpour-Haratbar, A.; Kiaeerad, P.; Mazinani, S.; Bazargan, A.M.; Sharif, F. Bimetallic Nickel-Cobalt Oxide Nanoparticle/Electrospun Carbon Nanofiber Composites: Preparation and Application for Supercapacitor Electrode. Ceram. Int. 2021, 48, 10015–10023. [Google Scholar] [CrossRef]
- Mohammadpour-Haratbar, A.; Mazinani, S.; Sharif, F.; Bazargan, A.M. Improving Nonenzymatic Biosensing Performance of Electrospun Carbon Nanofibers Decorated with Ni/Co Particles via Oxidation. Appl. Biochem. Biotechnol. 2022, 194, 2542–2564. [Google Scholar] [CrossRef]
- Mohammadpour-Haratbar, A.; Mosallanejad, B.; Zare, Y.; Rhee, K.Y.; Park, S.-J. Co3O4 Nanoparticles Embedded in Electrospun Carbon Nanofibers as Free-Standing Nanocomposite Electrodes as Highly Sensitive Enzyme-Free Glucose Biosensors. Rev. Adv. Mater. Sci. 2022, 61, 744–755. [Google Scholar] [CrossRef]
- Chansaenpak, K.; Kamkaew, A.; Lisnund, S.; Prachai, P.; Ratwirunkit, P.; Jingpho, T.; Blay, V.; Pinyou, P. Development of a Sensitive Self-Powered Glucose Biosensor Based on an Enzymatic Biofuel Cell. Biosensors 2021, 11, 16. [Google Scholar] [CrossRef]
- Liu, B.; Dai, Q.; Liu, P.; Gopinath, S.C.B.; Zhang, L. Nanostructure-Mediated Glucose Oxidase Biofunctionalization for Monitoring Gestational Diabetes. Process Biochem. 2021, 110, 19–25. [Google Scholar] [CrossRef]
- Mahdizadeh, B.; Nouri, A.; Baharinikoo, L.; Lotfalipour, B. Enzymatic Glucose Biosensors: A Review on Recent Progress in Materials and Fabrication Techniques. Anal. Bioanal. Chem. Res. 2022, 9, 1–19. [Google Scholar]
- Clark, L.C., Jr.; Lyons, C. Electrode Systems for Continuous Monitoring in Cardiovascular Surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29–45. [Google Scholar] [CrossRef]
- Hovancová, J.; Šišoláková, I.; Orivnaková, R.; Orivnak, A. Nanomaterial-Based Electrochemical Sensors for Detection of Glucose and Insulin. J. Solid State Electrochem. 2017, 21, 2147–2166. [Google Scholar] [CrossRef]
- Ou, L.; Liu, G.; Xia, N. Research Progress and Application Prospects of Electrochemical Glucose Sensors. Int. J. Electrochem. Sci. 2021, 16, 210633. [Google Scholar] [CrossRef]
- Hassan, I.U.; Salim, H.; Naikoo, G.A.; Awan, T.; Dar, R.A.; Arshad, F.; Tabidi, M.A.; Das, R.; Ahmed, W.; Asiri, A.M.; et al. A Review on Recent Advances in Hierarchically Porous Metal and Metal Oxide Nanostructures as Electrode Materials for Supercapacitors and Non-Enzymatic Glucose Sensors. J. Saudi Chem. Soc. 2021, 25, 101228. [Google Scholar] [CrossRef]
- Pullano, S.A.; Greco, M.; Bianco, M.G.; Foti, D.; Brunetti, A.; Fiorillo, A.S. Glucose Biosensors in Clinical Practice: Principles, Limits and Perspectives of Currently Used Devices. Theranostics 2022, 12, 493. [Google Scholar] [CrossRef] [PubMed]
- Naikoo, G.A.; Awan, T.; Salim, H.; Arshad, F.; Hassan, I.U.; Pedram, M.Z.; Ahmed, W.; Faruck, H.L.; Aljabali, A.A.A.; Mishra, V.; et al. Fourth-Generation Glucose Sensors Composed of Copper Nanostructures for Diabetes Management: A Critical Review. Bioeng. Transl. Med. 2022, 7, e10248. [Google Scholar] [CrossRef] [PubMed]
- Adeel, M.; Rahman, M.M.; Caligiuri, I.; Canzonieri, V.; Rizzolio, F.; Daniele, S. Recent Advances of Electrochemical and Optical Enzyme-Free Glucose Sensors Operating at Physiological Conditions. Biosens. Bioelectron. 2020, 165, 112331. [Google Scholar] [CrossRef] [PubMed]
- Teymourian, H.; Barfidokht, A.; Wang, J. Electrochemical Glucose Sensors in Diabetes Management: An Updated Review (2010–2020). Chem. Soc. Rev. 2020, 49, 7671–7709. [Google Scholar] [CrossRef] [PubMed]
- Koide, S.; Yokoyama, K. Electrochemical Characterization of an Enzyme Electrode Based on a Ferrocene-Containing Redox Polymer. J. Electroanal. Chem. 1999, 468, 193–201. [Google Scholar] [CrossRef]
- Wang, G.; He, X.; Wang, L.; Gu, A.; Huang, Y.; Fang, B.; Geng, B.; Zhang, X. Non-Enzymatic Electrochemical Sensing of Glucose. Microchim. Acta 2013, 180, 161–186. [Google Scholar] [CrossRef]
- Chu, Z.; Liu, Y.; Xu, Y.; Shi, L.; Peng, J.; Jin, W. In-Situ Fabrication of Well-Distributed Gold Nanocubes on Thiol Graphene as a Third-Generation Biosensor for Ultrasensitive Glucose Detection. Electrochim. Acta 2015, 176, 162–171. [Google Scholar] [CrossRef]
- Zaidi, S.A.; Shin, J.H. Recent Developments in Nanostructure Based Electrochemical Glucose Sensors. Talanta 2016, 149, 30–42. [Google Scholar] [CrossRef]
- Adeel, M.; Asif, K.; Rahman, M.M.; Daniele, S.; Canzonieri, V.; Rizzolio, F. Glucose Detection Devices and Methods Based on Metal-Organic Frameworks and Related Materials. Adv. Funct. Mater. 2021, 31, 2106023. [Google Scholar] [CrossRef]
- Jeong, H.; Yoo, J.; Park, S.; Lu, J.; Park, S.; Lee, J. Non-Enzymatic Glucose Biosensor Based on Highly Pure TiO2 Nanoparticles. Biosensors 2021, 11, 149. [Google Scholar] [CrossRef]
- Duan, X.; Liu, K.; Xu, Y.; Yuan, M.; Gao, T.; Wang, J. Nonenzymatic Electrochemical Glucose Biosensor Constructed by NiCo2O4@ Ppy Nanowires on Nickel Foam Substrate. Sens. Actuators B Chem. 2019, 292, 121–128. [Google Scholar] [CrossRef]
- Savk, A.; Aydin, H.; Cellat, K.; Sen, F. A Novel High Performance Non-Enzymatic Electrochemical Glucose Biosensor Based on Activated Carbon-Supported Pt-Ni Nanocomposite. J. Mol. Liq. 2020, 300, 112355. [Google Scholar] [CrossRef]
- Azharudeen, A.M.; Karthiga, R.; Rajarajan, M.; Suganthi, A. Fabrication, Characterization of Polyaniline Intercalated NiO Nanocomposites and Application in the Development of Non-Enzymatic Glucose Biosensor. Arab. J. Chem. 2020, 13, 4053–4064. [Google Scholar] [CrossRef]
- Ahmad, R.; Khan, M.; Mishra, P.; Jahan, N.; Ahsan, M.A.; Ahmad, I.; Khan, M.R.; Watanabe, Y.; Syed, M.A.; Furukawa, H.; et al. Engineered Hierarchical CuO Nanoleaves Based Electrochemical Nonenzymatic Biosensor for Glucose Detection. J. Electrochem. Soc. 2021, 168, 17501. [Google Scholar] [CrossRef]
- Dong, M.; Hu, H.; Ding, S.; Wang, C.; Li, L. Flexible Non-Enzymatic Glucose Biosensor Based on CoNi2S4 Nanosheets Grown on Nitrogen-Doped Carbon Foam Substrate. J. Alloys Compd. 2021, 883, 160830. [Google Scholar] [CrossRef]
- Gamessa, T.W.; Suman, D.; Tadesse, Z.K. Blood Glucose Monitoring Techniques: Recent Advances, Challenges and Future Perspectives. Int. J. Adv. Technol. Eng. Explor. 2018, 5, 335–344. [Google Scholar] [CrossRef]
- Joung, J.; Kim, K. Monitoring Emerging Technologies for Technology Planning Using Technical Keyword Based Analysis from Patent Data. Technol. Forecast. Soc. Chang. 2017, 114, 281–292. [Google Scholar] [CrossRef]
- Gorle, D.B.; Ponnada, S.; Kiai, M.S.; Nair, K.K.; Nowduri, A.; Swart, H.C.; Ang, E.H.; Nanda, K.K. Review on Recent Progress in Metal-Organic Framework-Based Materials for Fabricating Electrochemical Glucose Sensors. J. Mater. Chem. B 2021, 9, 7927–7954. [Google Scholar] [CrossRef] [PubMed]
- Osuna, V.; Vega-Rios, A.; Zaragoza-Contreras, E.A.; Estrada-Moreno, I.A.; Dominguez, R.B. Progress of Polyaniline Glucose Sensors for Diabetes Mellitus Management Utilizing Enzymatic and Non-Enzymatic Detection. Biosensors 2022, 12, 137. [Google Scholar] [CrossRef]
- Dong, Q.; Ryu, H.; Lei, Y. Metal Oxide Based Non-Enzymatic Electrochemical Sensors for Glucose Detection. Electrochim. Acta 2021, 370, 137744. [Google Scholar] [CrossRef]
- Xie, F.; Liu, T.; Xie, L.; Sun, X.; Luo, Y. Metallic Nickel Nitride Nanosheet: An Efficient Catalyst Electrode for Sensitive and Selective Non-Enzymatic Glucose Sensing. Sens. Actuators B Chem. 2018, 255, 2794–2799. [Google Scholar] [CrossRef]
- Waqas, M.; Lan, J.; Zhang, X.; Fan, Y.; Zhang, P.; Liu, C.; Jiang, Z.; Wang, X.; Zeng, J.; Chen, W. Fabrication of Non-Enzymatic Electrochemical Glucose Sensor Based on Pd-Mn Alloy Nanoparticles Supported on Reduced Graphene Oxide. Electroanalysis 2020, 32, 1226–1236. [Google Scholar] [CrossRef]
- Dar, G.N.; Umar, A.; Zaidi, S.A.; Baskoutas, S.; Kim, S.H.; Abaker, M.; Al-Hajry, A.; Al-Sayari, S.A. Fabrication of Highly Sensitive Non-Enzymatic Glucose Biosensor Based on ZnO Nanorods. Sci. Adv. Mater. 2011, 3, 901–906. [Google Scholar] [CrossRef]
- Rafique, N.; Asif, A.H.; Hirani, R.A.K.; Wu, H.; Shi, L.; Zhang, S.; Sun, H. Binder Free 3D Core-Shell NiFe Layered Double Hydroxide (LDH) Nanosheets (NSs) Supported on Cu Foam as a Highly Efficient Non-Enzymatic Glucose Sensor. J. Colloid Interface Sci. 2022, 615, 865–875. [Google Scholar] [CrossRef]
- Zheng, B.; Liu, G.; Yao, A.; Xiao, Y.; Du, J.; Guo, Y.; Xiao, D.; Hu, Q.; Choi, M.M.F. A Sensitive AgNPs/CuO Nanofibers Non-Enzymatic Glucose Sensor Based on Electrospinning Technology. Sens. Actuators B Chem. 2014, 195, 431–438. [Google Scholar] [CrossRef]
- Khan, M.; Nagal, V.; Nakate, U.T.; Khan, M.R.; Khosla, A.; Ahmad, R. Engineered CuO Nanofibers with Boosted Non-Enzymatic Glucose Sensing Performance. J. Electrochem. Soc. 2021, 168, 67507. [Google Scholar] [CrossRef]
- Chiu, W.-T.; Chang, T.-F.M.; Sone, M.; Tixier-Mita, A.; Toshiyoshi, H. Electrocatalytic Activity Enhancement of Au NPs-TiO2 Electrode via a Facile Redistribution Process towards the Non-Enzymatic Glucose Sensors. Sens. Actuators B Chem. 2020, 319, 128279. [Google Scholar] [CrossRef]
- Vellayappan, M.V.; Venugopal, J.R.; Ramakrishna, S.; Ray, S.; Ismail, A.F.; Mandal, M.; Manikandan, A.; Seal, S.; Jaganathan, S.K. Electrospinning Applications from Diagnosis to Treatment of Diabetes. RSC Adv. 2016, 6, 83638–83655. [Google Scholar] [CrossRef]
- Al Mamun, K.A.; Tulip, F.S.; MacArthur, K.; McFarlane, N.; Islam, S.K.; Hensley, D. Vertically Aligned Carbon Nanofiber Based Biosensor Platform for Glucose Sensor. Int. J. High Speed Electron. Syst. 2014, 23, 1450006. [Google Scholar] [CrossRef]
- Pinyou, P.; Conzuelo, F.; Sliozberg, K.; Vivekananthan, J.; Contin, A.; Pöller, S.; Plumeré, N.; Schuhmann, W. Coupling of an Enzymatic Biofuel Cell to an Electrochemical Cell for Self-Powered Glucose Sensing with Optical Readout. Bioelectrochemistry 2015, 106, 22–27. [Google Scholar] [CrossRef]
- Abouali, S.; Akbari Garakani, M.; Zhang, B.; Xu, Z.-L.; Kamali Heidari, E.; Huang, J.; Huang, J.; Kim, J.-K. Electrospun Carbon Nanofibers with in Situ Encapsulated Co3O4 Nanoparticles as Electrodes for High-Performance Supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 13503–13511. [Google Scholar] [CrossRef]
- Zhang, B.; Xu, Z.-L.; He, Y.-B.; Abouali, S.; Garakani, M.A.; Heidari, E.K.; Kang, F.; Kim, J.-K. Exceptional Rate Performance of Functionalized Carbon Nanofiber Anodes Containing Nanopores Created by (Fe) Sacrificial Catalyst. Nano Energy 2014, 4, 88–96. [Google Scholar] [CrossRef]
- Xie, H.; Luo, G.; Niu, Y.; Weng, W.; Zhao, Y.; Ling, Z.; Ruan, C.; Li, G.; Sun, W. Synthesis and Utilization of Co3O4 Doped Carbon Nanofiber for Fabrication of Hemoglobin-Based Electrochemical Sensor. Mater. Sci. Eng. C 2020, 107, 110209. [Google Scholar] [CrossRef]
- Loaiza, O.A.; Lamas-Ardisana, P.J.; Añorga, L.; Jubete, E.; Ruiz, V.; Borghei, M.; Cabañero, G.; Grande, H.J. Graphitized Carbon Nanofiber-Pt Nanoparticle Hybrids as Sensitive Tool for Preparation of Screen Printing Biosensors. Detection of Lactate in Wines and Ciders. Bioelectrochemistry 2015, 101, 58–65. [Google Scholar] [CrossRef]
- Liu, D.; Guo, Q.; Zhang, X.; Hou, H.; You, T. PdCo Alloy Nanoparticle-Embedded Carbon Nanofiber for Ultrasensitive Nonenzymatic Detection of Hydrogen Peroxide and Nitrite. J. Colloid Interface Sci. 2015, 450, 168–173. [Google Scholar] [CrossRef]
- Li, D.; Luo, L.; Pang, Z.; Ding, L.; Wang, Q.; Ke, H.; Huang, F.; Wei, Q. Novel Phenolic Biosensor Based on a Magnetic Polydopamine-Laccase-Nickel Nanoparticle Loaded Carbon Nanofiber Composite. ACS Appl. Mater. Interfaces 2014, 6, 5144–5151. [Google Scholar] [CrossRef]
- Chen, L.; Liu, L.; Guo, Q.; Wang, Z.; Liu, G.; Chen, S.; Hou, H. Preparation of Ni(OH)2 Nanoplatelet/Electrospun Carbon Nanofiber Hybrids for Highly Sensitive Nonenzymatic Glucose Sensors. RSC Adv. 2017, 7, 19345–19352. [Google Scholar] [CrossRef]
- Ding, Y.; Ren, C.; Tian, X.; Zhang, M.; Zhang, J.; Sun, K.; Wu, Y.; Sun, H.; Pang, L.; Sha, F. Facile Synthesis of Aminophenylboronic Decorated Electrospun CoFe2O4 Spinel Nanofibers with Enhanced Electrocatalytic Performance for Glucose Electrochemical Sensor Application. Ceram. Int. 2021, 47, 19052–19062. [Google Scholar] [CrossRef]
- Ezhil Vilian, A.T.; Hwang, S.-K.; Ranjith, K.S.; Cho, Y.; Huh, Y.S.; Han, Y.-K. A Facile Method for the Fabrication of Hierarchically Structured Ni2CoS4 Nanopetals on Carbon Nanofibers to Enhance Non-Enzymatic Glucose Oxidation. Microchim. Acta 2021, 188, 106. [Google Scholar] [CrossRef] [PubMed]
- Fu, R.; Lu, Y.; Ding, Y.; Li, L.; Ren, Z.; Si, X.; Wu, Q. A Novel Non-Enzymatic Glucose Electrochemical Sensor Based on CNF@ Ni-Co Layered Double Hydroxide Modified Glassy Carbon Electrode. Microchem. J. 2019, 150, 104106. [Google Scholar] [CrossRef]
- Kim, S.G.; Jun, J.; Kim, Y.K.; Kim, J.; Lee, J.S.; Jang, J. Facile Synthesis of Co3O4-Incorporated Multichannel Carbon Nanofibers for Electrochemical Applications. ACS Appl. Mater. Interfaces 2020, 12, 20613–20622. [Google Scholar] [CrossRef]
- Li, L.; Zhou, T.; Sun, G.; Li, Z.; Yang, W.; Jia, J.; Yang, G. Ultrasensitive Electrospun Nickel-Doped Carbon Nanofibers Electrode for Sensing Paracetamol and Glucose. Electrochim. Acta 2015, 152, 31–37. [Google Scholar] [CrossRef]
- Li, M.; Liu, L.; Xiong, Y.; Liu, X.; Nsabimana, A.; Bo, X.; Guo, L. Bimetallic MCo (M = Cu, Fe, Ni, and Mn) Nanoparticles Doped-Carbon Nanofibers Synthetized by Electrospinning for Nonenzymatic Glucose Detection. Sens. Actuators B Chem. 2015, 207, 614–622. [Google Scholar] [CrossRef]
- Rani, S.D.; Ramachandran, R.; Sheet, S.; Aziz, M.A.; Lee, Y.S.; Al-Sehemi, A.G.; Pannipara, M.; Xia, Y.; Tsai, S.-Y.; Ng, F.-L.; et al. NiMoO4 Nanoparticles Decorated Carbon Nanofiber Membranes for the Flexible and High Performance Glucose Sensors. Sens. Actuators B Chem. 2020, 312, 127886. [Google Scholar] [CrossRef]
- Roushani, M.; Sarabaegi, M.; Hosseini, H. Flexible NiP2@ Hollow N-Doped Nanocapsules/Carbon Nanofiber as a Freestanding Electrode for Glucose Sensing. Compos. Commun. 2021, 25, 100686. [Google Scholar] [CrossRef]
- Ye, J.-S.; Liu, Z.-T.; Lai, C.-C.; Lo, C.-T.; Lee, C.-L. Diameter Effect of Electrospun Carbon Fiber Support for the Catalysis of Pt Nanoparticles in Glucose Oxidation. Chem. Eng. J. 2016, 283, 304–312. [Google Scholar] [CrossRef]
- Yin, Z.; Allado, K.; Sheardy, A.T.; Ji, Z.; Arvapalli, D.; Liu, M.; He, P.; Zeng, X.; Wei, J. Mingled MnO2 and Co3O4 Binary Nanostructures on Well-Aligned Electrospun Carbon Nanofibers for Nonenzymatic Glucose Oxidation and Sensing. Cryst. Growth Des. 2021, 21, 1527–1539. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, X.; Dong, H.; Zhang, X.; Wang, W.; Chen, Z. In Situ Growth Cupric Oxide Nanoparticles on Carbon Nanofibers for Sensitive Nonenzymatic Sensing of Glucose. Electrochim. Acta 2013, 105, 433–438. [Google Scholar] [CrossRef]
- Zhang, L.; Yuan, S.; Lu, X. Amperometric Nonenzymatic Glucose Sensor Based on a Glassy Carbon Electrode Modified with a Nanocomposite Made from Nickel (II) Hydroxide Nanoplates and Carbon Nanofibers. Microchim. Acta 2014, 181, 365–372. [Google Scholar] [CrossRef]
- Guo, Q.; Wu, T.; Liu, L.; He, Y.; Liu, D.; You, T. Hierarchically Porous NiCo2S4 Nanowires Anchored on Flexible Electrospun Graphitic Nanofiber for High-Performance Glucose Biosensing. J. Alloys Compd. 2020, 819, 153376. [Google Scholar] [CrossRef]
- Mei, Q.; Fu, R.; Ding, Y.; Wang, A.; Duan, D.; Ye, D. Electrospinning of Highly Dispersed Ni/CoO Carbon Nanofiber and Its Application in Glucose Electrochemical Sensor. J. Electroanal. Chem. 2019, 847, 113075. [Google Scholar] [CrossRef]
- Adabi, M.; Adabi, M. Electrodeposition of Nickel on Electrospun Carbon Nanofiber Mat Electrode for Electrochemical Sensing of Glucose. J. Dispers. Sci. Technol. 2021, 42, 262–269. [Google Scholar] [CrossRef]
- Liu, Y.; Teng, H.; Hou, H.; You, T. Nonenzymatic Glucose Sensor Based on Renewable Electrospun Ni Nanoparticle-Loaded Carbon Nanofiber Paste Electrode. Biosens. Bioelectron. 2009, 24, 3329–3334. [Google Scholar] [CrossRef]
- Guo, Q.; Liu, D.; Zhang, X.; Li, L.; Hou, H.; Niwa, O.; You, T. Pd-Ni Alloy Nanoparticle/Carbon Nanofiber Composites: Preparation, Structure, and Superior Electrocatalytic Properties for Sugar Analysis. Anal. Chem. 2014, 86, 5898–5905. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Z.; Yang, J.; Liu, G.; Li, J.; Guo, L.; Chen, S.; Guo, Q. NiCo2O4 Nanoneedle-Decorated Electrospun Carbon Nanofiber Nanohybrids for Sensitive Non-Enzymatic Glucose Sensors. Sens. Actuators B Chem. 2018, 258, 920–928. [Google Scholar] [CrossRef]
- Lu, N.; Shao, C.; Li, X.; Miao, F.; Wang, K.; Liu, Y. CuO Nanoparticles/Nitrogen-Doped Carbon Nanofibers Modified Glassy Carbon Electrodes for Non-Enzymatic Glucose Sensors with Improved Sensitivity. Ceram. Int. 2016, 42, 11285–11293. [Google Scholar] [CrossRef]
- Saravanan, J.; Pannipara, M.; Al-Sehemi, A.G.; Talebi, S.; Periasamy, V.; Shah, S.S.; Aziz, M. Flower-like CuO/NiO Nanostructures Decorated Activated Carbon Nanofiber Membranes for Flexible, Sensitive, and Selective Enzyme-Free Glucose Detection. J. Mater. Sci. Mater. Electron. 2021, 32, 24775–24789. [Google Scholar] [CrossRef]
- Huan, K.; Li, Y.; Deng, D.; Wang, H.; Wang, D.; Li, M.; Luo, L. Composite-Controlled Electrospinning of CuSn Bimetallic Nanoparticles/Carbon Nanofibers for Electrochemical Glucose Sensor. Appl. Surf. Sci. 2022, 573, 151528. [Google Scholar] [CrossRef]
- Chai, A.-W.; Wang, C.-C.; Chen, C.-Y. Magnetic-Field-Induced Acicular Nickel Immobilized on Carbon Nanofibers as Electrodes for Electrochemical Glucose Sensing. J. Taiwan Inst. Chem. Eng. 2021, 129, 237–245. [Google Scholar] [CrossRef]
- Dey, B.; Ahmad, M.W.; Sarkhel, G.; Yang, D.-J.; Choudhury, A. Fabrication of Porous Nickel (II)-Based MOF@ Carbon Nanofiber Hybrid Mat for High-Performance Non-Enzymatic Glucose Sensing. Mater. Sci. Semicond. Process. 2022, 142, 106500. [Google Scholar] [CrossRef]
- Rathod, D.; Dickinson, C.; Egan, D.; Dempsey, E. Platinum Nanoparticle Decoration of Carbon Materials with Applications in Non-Enzymatic Glucose Sensing. Sens. Actuators B Chem. 2010, 143, 547–554. [Google Scholar] [CrossRef]
- Ye, D.; Liang, G.; Li, H.; Luo, J.; Zhang, S.; Chen, H.; Kong, J. A Novel Nonenzymatic Sensor Based on CuO Nanoneedle/Graphene/Carbon Nanofiber Modified Electrode for Probing Glucose in Saliva. Talanta 2013, 116, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Sun, H.; Ren, C.; Zhang, M.; Sun, K. A Nonenzymatic Glucose Sensor Platform Based on Specific Recognition and Conductive Polymer-Decorated CuCo2O4 Carbon Nanofibers. Materials 2020, 13, 2874. [Google Scholar] [CrossRef]
- Kong, X.; Zhao, J.; Shi, W.; Wei, M. Facile Fabrication of Highly-Dispersed Nickel Nanoparticles with Largely Enhanced Electrocatalytic Activity. Electroanalysis 2013, 25, 1594–1598. [Google Scholar] [CrossRef]
- Lang, J.-W.; Kong, L.-B.; Wu, W.-J.; Liu, M.; Luo, Y.-C.; Kang, L. A Facile Approach to the Preparation of Loose-Packed Ni(OH)2 Nanoflake Materials for Electrochemical Capacitors. J. Solid State Electrochem. 2009, 13, 333–340. [Google Scholar] [CrossRef]
- Wang, H.; Casalongue, H.S.; Liang, Y.; Dai, H. Ni(OH)2 Nanoplates Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials. J. Am. Chem. Soc. 2010, 132, 7472–7477. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Shiu, K.-K. Electron-Transfer Properties of Different Carbon Nanotube Materials, and Their Use in Glucose Biosensors. Anal. Bioanal. Chem. 2007, 387, 303–309. [Google Scholar] [CrossRef]
- Weng, L.; Zhang, H.; Govorov, A.O.; Ouyang, M. Hierarchical Synthesis of Non-Centrosymmetric Hybrid Nanostructures and Enabled Plasmon-Driven Photocatalysis. Nat. Commun. 2014, 5, 4792. [Google Scholar] [CrossRef] [Green Version]
- Kiaeerad, P.; Naji, L. Synergistic Effect of Two Complexing Agents on the Hydrothermal Synthesis of Self-Supported ZnNiCo Oxide as Electrode Material in Supercapacitors. J. Electroanal. Chem. 2021, 901, 115779. [Google Scholar] [CrossRef]
- Hwa, K.-Y.; Santhan, A.; Tata, S.K.S. Fabrication of Sn-Doped ZnO Hexagonal Micro Discs Anchored on RGO for Electrochemical Detection of Anti-Androgen Drug Flutamide in Water and Biological Samples. Microchem. J. 2021, 160, 105689. [Google Scholar] [CrossRef]
Electrode | Sensitivity (μA·mM−1·cm−2) | LR | LOD | Applied Potential (V) | Ref. |
---|---|---|---|---|---|
(mM) | (mM) | ||||
Ni(OH)2/ECNF | 1342.2 | 5 × 10−3–13.05 | 10−4 | 0.55 | [106] |
APBA a @CoFe2O4/CNFs | 318 | 10−2–3.52 | 3.25 × 10−4 | 0.55 | [107] |
Ni2CoS4/CNF/GCE b | – | 5 × 10−6–70 × 10−6 | 25 × 10−8 | 0.54 | [108] |
Ni0.66Co0.33(OH)2/CNF/GCE | 1470 | 10−3–2 | 3 × 10−5 | 0.5 | [109] |
Co3O4/CNF | – | 10−6–10−2 | 10−6 | 0.55 | [110] |
Ni/CNF | 6393.4 | 1.25 × 10−4–1.273 × 10−2 | 5 × 10−5 | 0.359 | [111] |
Co/CNFs/GCE | 97 | 0.5–3.5 | 5 × 10−2 | 0.6 | [112] |
FeCo/CNFs/GCE | 196 | 0.2–10 | 10−2 | [112] | |
NiCo/CNFs/GCE | 141 | 0.1–10 | 2 × 10−2 | [112] | |
MnCo/CNFs/GCE | 36 | 0.5–7 | 5 × 10−2 | [112] | |
CuCo/CNFs/GCE | 507 | 0.02–11 | 10−3 | [112] | |
NiMoO4/CNF | 301.77 | 3 × 10−4–4.5 | 5 × 10−5 | 0.55 | [113] |
NiP2/CNF | – | 4 × 10−4–6.4 × 10−3 and 0.5–1.5 | 13 × 10−5 | 0.5 | [114] |
Pt/CNF39nm | 2.03 | 0.3–17 | 3.3 × 10−2 | [114] | |
Pt/CNF158nm | 1.63 | 0.3–15 | 5.28 × 10−2 | 0.05 | [115] |
Pt/CNF309nm | 1.01 | 0.3–13 | 7.03 × 10−2 | [115] | |
MnO2–Co3O4/ECNF | 1159 | 5 × 10−3–10.9 | 3 × 10−4 | 0.55 | [116] |
CuONPs–CNFs | 2739 | 5 × 10−4–11.1 | 2 × 10−4 | 0.5 | [117] |
Ni(OH)2/CNFs/GCE | 1038.64 | 10−3–1.2 | 76 × 10−5 | 0.45 | [118] |
NiCo2S4/ECNF | 7431.96 | 5 × 10−4–3.571 | 167 × 10−6 | 0.5 | [119] |
Ni–CoO/CNF/GCE | – | 25 × 10−5–0.6 | 3 × 10−5 | 0.5 | [120] |
Ni/CNFs | – | 2 × 10−3–5 | 57 × 10−5 | 0.55 | [121] |
Ni/CNF paste | 420.4 | 2 × 10−3–2.5 | 10−3 | 0.6 | [122] |
Pd−Ni/ECNF | – | 3 × 10−5–0.8 | 7 × 10−6 | 0.4 | [123] |
NiCo2O4/ECNF | 1947.2 | 5 × 10−3–19.175 | 1.5 × 10−3 | 0.55 | [124] |
CuO/N–CNFs c | 968 and 484 | 0.25–2 and 2–4 | – | 0.5 | [125] |
CuO/NiO/ACNF d | 247 | 2.5 × 10−4–5 | 1.46 × 10−4 | 0.55 | [126] |
0.5 Ni/ECNF–5 h | 610.6 | 2–10 | 0.73 | 0.5 | [61] |
NiO/ECNF | 557.68 | 2–10 | 0.85 | 0.5 | [61] |
0.5 Co/ECNF–5 h | 236.85 | 2–10 | 0.61 | 0.6 | [61] |
Co3O4/ECNF | 475.72 | 2–10 | 0.82 | 0.6 | [61] |
Ni70Co30/ECNF–5 h | 498.53 | 2–10 | 0.91 | 0.55 | [61] |
NiCo2O4/ECNF | 536.5 | 2–10 | 0.93 | 0.55 | [61] |
CuSn/CNFs | 291.4 | 10−4–9 | 8 × 10−5 | 0.7 | [127] |
Ni/CNFs1400 e | 7404 | 2.1 × 10−2–0.6 | 4.97 × 10−5 | 0.55 | [128] |
Ni–MOF f/CNF | 9457.5 | 10−2–3 | 5.3 × 10−5 | 0.7 | [129] |
Pt/CNF | 0.52 | 2–20 | – | 0.55 | [130] |
CuO/rGO g/CNF/GCE | 912.7 | 10−3–5.3 | 10−4 | 0.6 | [131] |
PTBA h/CuCo2O4/CNFs/GCE | 2932 and 708 | 10−2–0.5 and 0.5–1.5 | 15 × 10−5 | – | [132] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammadpour-Haratbar, A.; Mohammadpour-Haratbar, S.; Zare, Y.; Rhee, K.Y.; Park, S.-J. A Review on Non-Enzymatic Electrochemical Biosensors of Glucose Using Carbon Nanofiber Nanocomposites. Biosensors 2022, 12, 1004. https://doi.org/10.3390/bios12111004
Mohammadpour-Haratbar A, Mohammadpour-Haratbar S, Zare Y, Rhee KY, Park S-J. A Review on Non-Enzymatic Electrochemical Biosensors of Glucose Using Carbon Nanofiber Nanocomposites. Biosensors. 2022; 12(11):1004. https://doi.org/10.3390/bios12111004
Chicago/Turabian StyleMohammadpour-Haratbar, Ali, Saeid Mohammadpour-Haratbar, Yasser Zare, Kyong Yop Rhee, and Soo-Jin Park. 2022. "A Review on Non-Enzymatic Electrochemical Biosensors of Glucose Using Carbon Nanofiber Nanocomposites" Biosensors 12, no. 11: 1004. https://doi.org/10.3390/bios12111004
APA StyleMohammadpour-Haratbar, A., Mohammadpour-Haratbar, S., Zare, Y., Rhee, K. Y., & Park, S. -J. (2022). A Review on Non-Enzymatic Electrochemical Biosensors of Glucose Using Carbon Nanofiber Nanocomposites. Biosensors, 12(11), 1004. https://doi.org/10.3390/bios12111004