Semiconductor Multimaterial Optical Fibers for Biomedical Applications
Abstract
:1. Introduction
2. Fabrication of Semiconductor Optical Fibers
2.1. Material Fabrication
2.2. Semiconductor Optical Fiber Fabrication Process
2.2.1. Thermal Drawing
2.2.2. High-Pressure Chemical Vapor Deposition
2.3. Postprocessing
2.3.1. Thermal Annealing
2.3.2. Rapid Photothermal Processing
2.3.3. Laser Treatment
2.3.4. Interfacial Modifier
3. Main Structures for Semiconductor Optical Fibers
3.1. Semiconductor Core Fiber
3.2. Metal-Semiconductor-Insulator Fiber
3.3. Microstructured Optical Fiber
3.4. Photonic Bandgap Structured Fiber
4. Potential Biomedical Application
4.1. Thermoelectric Fiber for Human Body Temperature Regulation
Inorganic TE Materials | Type | ZT | Temperature(K) | Reference | |
---|---|---|---|---|---|
Half-Heusler compound | Hf0.6Zr0.4NiSn0.98Sb0.02 | n-type | ≈1.0 | 1000 | [156] |
Zr0.5Hf0.5CoSb0.8Sn0.2 | p-type | 0.8 | 973 | [157] | |
Hf0.8Ti0.2CoSn0.8Sn0.2 | p-type | 1.0 | 1073 | [130,158] | |
Bi-Te alloy | FeNb0.86Hf0.14Sb | p-type | ≈1.5 | 1200 | [159] |
BixSb2-xTe3 | p-type | 1.4 | 373 | [160] | |
Bi0.3Sb1.7Te3 | p-type | 1.33 | 373 | [161] | |
Bi0.5Sb1.5Te3 | p-type | 1.25 | 320 | [162] | |
Bi2Te2.79Se0.21 | n-type | 1.2 | 357 | [163] | |
Skutterudite compounds | Co3.2Fe0.8Sb12 | p-type | 0.53 | 823 | [164] |
Ca0.31Co4Sb12 | p-type | 1.15 | 840 | [165] | |
CeFe4Sb11.9Te0.1 | p-type | 0.76 | 773 | [166] | |
La0.75Pr0.25Fe4Sb12 | p-type | 0.83 | 823 | [167] |
4.2. Optoelectronic Fibers for Sensing the Human Body’s Interior
4.3. Gas Sensor for VOC Detection
4.4. Fiber Lasers for Medical Surgery
5. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Al-Naji, A.; Gibson, K.; Lee, S.-H.; Chahl, J. Monitoring of Cardiorespiratory Signal: Principles of Remote Measurements and Review of Methods. IEEE Access 2017, 5, 15776–15790. [Google Scholar] [CrossRef]
- Min, R.; Hu, X.; Pereira, L.; Simone Soares, M.; Silva, L.C.B.; Wang, G.; Martins, L.; Qu, H.; Antunes, P.; Marques, C.; et al. Polymer Optical Fiber for Monitoring Human Physiological and Body Function: A Comprehensive Review on Mechanisms, Materials, and Applications. Opt. Laser Technol. 2022, 147, 107626. [Google Scholar] [CrossRef]
- Lin, S.-T.; Chen, W.-H.; Lin, Y.-H. A Pulse Rate Detection Method for Mouse Application Based on Multi-PPG Sensors. Sensors 2017, 17, 1628. [Google Scholar] [CrossRef] [Green Version]
- Alzahrani, A.; Hu, S.; Azorin-Peris, V.; Barrett, L.; Esliger, D.; Hayes, M.; Akbare, S.; Achart, J.; Kuoch, S. A Multi-Channel Opto-Electronic Sensor to Accurately Monitor Heart Rate against Motion Artefact during Exercise. Sensors 2015, 15, 25681–25702. [Google Scholar] [CrossRef]
- Lin, X.; Gao, S.; Fei, T.; Liu, S.; Zhao, H.; Zhang, T. Study on a Paper-Based Piezoresistive Sensor Applied to Monitoring Human Physiological Signals. Sens. Actuators A Phys. 2019, 292, 66–70. [Google Scholar] [CrossRef]
- Jian, M.; Wang, C.; Wang, Q.; Wang, H.; Xia, K.; Yin, Z.; Zhang, M.; Liang, X.; Zhang, Y. Advanced Carbon Materials for Flexible and Wearable Sensors. Sci. China Mater. 2017, 60, 1026–1062. [Google Scholar] [CrossRef]
- Maurer, R.D.; Schultz, P.C. Fused Silica Optical Waveguide. Google Patents US3659915A, 2 May 1972. [Google Scholar]
- Keck, D.B.; Maurer, R.D.; Schultz, P.C. On the Ultimate Lower Limit of Attenuation in Glass Optical Waveguides. Appl. Phys. Lett. 1973, 22, 307–309. [Google Scholar] [CrossRef]
- Conway, E. Optical Fiber Communications Principles and Practice; Scientific e-Resources: Delhi, India, 2019. [Google Scholar]
- Agrawal, G.P. Fiber-Optic Communication Systems; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Marcuse, D. Theory of Dielectric Optical Waveguides; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Ramaswami, R.; Sivarajan, K.; Sasaki, G. Optical Networks: A Practical Perspective; Morgan Kaufmann: Burlington, MA, USA, 2009. [Google Scholar]
- Monro, T.M.; Ebendorff-Heidepriem, H. Progress in Microstructured Optical Fibers. Annu. Rev. Mater. Res. 2006, 36, 467–495. [Google Scholar] [CrossRef]
- Loke, G.; Yan, W.; Khudiyev, T.; Noel, G.; Fink, Y. Recent Progress and Perspectives of Thermally Drawn Multimaterial Fiber Electronics. Adv. Mater. 2020, 32, 1904911. [Google Scholar] [CrossRef]
- Faccini de Lima, C.; van der Elst, L.A.; Koraganji, V.N.; Zheng, M.; Gokce Kurtoglu, M.; Gumennik, A. Towards Digital Manufacturing of Smart Multimaterial Fibers. Nanoscale Res. Lett. 2019, 14, 209. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Dong, C.; Xiang, Y.; Jiang, S.; Leber, A.; Loke, G.; Xu, W.; Hou, C.; Zhou, S.; Chen, M.; et al. Thermally Drawn Advanced Functional Fibers: New Frontier of Flexible Electronics. Mater. Today 2020, 35, 168–194. [Google Scholar] [CrossRef]
- Ballato, J.; Peacock, A.C. Perspective: Molten Core Optical Fiber Fabrication—A Route to New Materials and Applications. APL Photonics 2018, 3, 120903. [Google Scholar] [CrossRef]
- Kang, S.; Dong, G.; Qiu, J.; Yang, Z. Hybrid Glass Optical Fibers-Novel Fiber Materials for Optoelectronic Application. Opt. Mater. X 2020, 6, 100051. [Google Scholar] [CrossRef]
- Kerbage, C.; Hale, A.; Yablon, A.; Windeler, R.S.; Eggleton, B.J. Integrated All-Fiber Variable Attenuator Based on Hybrid Microstructure Fiber. Appl. Phys. Lett. 2001, 79, 3191–3193. [Google Scholar] [CrossRef]
- Hart, S.D.; Maskaly, G.R.; Temelkuran, B.; Prideaux, P.H.; Joannopoulos, J.D.; Fink, Y. External Reflection from Omnidirectional Dielectric Mirror Fibers. Science 2002, 296, 510–513. [Google Scholar] [CrossRef] [Green Version]
- Benabid, F.; Knight, J.C.; Antonopoulos, G.; Russell, P.S.J. Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber. Science 2002, 298, 399–402. [Google Scholar] [CrossRef]
- Alkeskjold, T.T.; Lægsgaard, J.; Bjarklev, A.; Hermann, D.S.; Broeng, J.; Li, J.; Wu, S.-T. All-Optical Modulation in Dye-Doped Nematic Liquid Crystal Photonic Bandgap Fibers. Opt. Express 2004, 12, 5857–5871. [Google Scholar] [CrossRef]
- Schmidt, M.A.; Granzow, N.; Da, N.; Peng, M.; Wondraczek, L.; Russell, P.S.J. All-Solid Bandgap Guiding in Tellurite-Filled Silica Photonic Crystal Fibers. Opt. Lett. 2009, 34, 1946–1948. [Google Scholar] [CrossRef] [PubMed]
- Bayindir, M.; Sorin, F.; Abouraddy, A.F.; Viens, J.; Hart, S.D.; Joannopoulos, J.D.; Fink, Y. Metal–Insulator–Semiconductor Optoelectronic Fibres. Nature 2004, 431, 826–829. [Google Scholar] [CrossRef]
- Sazio, P.J.A.; Amezcua-Correa, A.; Finlayson, C.E.; Hayes, J.R.; Scheidemantel, T.J.; Baril, N.F.; Jackson, B.R.; Won, D.-J.; Zhang, F.; Margine, E.R.; et al. Microstructured Optical Fibers as High-Pressure Microfluidic Reactors. Science 2006, 311, 1583–1586. [Google Scholar] [CrossRef]
- Ballato, J.; Hawkins, T.; Foy, P.; Stolen, R.; Kokuoz, B.; Ellison, M.; McMillen, C.; Reppert, J.; Rao, A.M.; Daw, M.; et al. Silicon Optical Fiber. Opt. Express 2008, 16, 18675–18683. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, H.K.; Schmidt, M.A.; Sempere, L.P.; Russell, P.S.J. Optical Properties of Photonic Crystal Fiber with Integral Micron-Sized Ge Wire. Opt. Express 2008, 16, 17227–17236. [Google Scholar] [CrossRef]
- Scott, B.L.; Wang, K.; Caluori, V.; Pickrell, G. Fabrication of Silicon Optical Fiber. Opt. Eng. 2009, 48, 100501. [Google Scholar] [CrossRef]
- Peacock, A.C.; Sparks, J.R.; Healy, N. Semiconductor Optical Fibres: Progress and Opportunities: Semiconductor Optical Fibres. Laser Photonics Rev. 2014, 8, 53–72. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, L. Lab-on-Fiber: Plasmonic Nano-Arrays for Sensing. Nanoscale 2020, 12, 7485–7499. [Google Scholar] [CrossRef]
- Giaquinto, M. Stimuli-Responsive Materials for Smart Lab-on-Fiber Optrodes. Results Opt. 2021, 2, 100051. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, Y.; Xia, P.; Xun, L.; Liang, Z. Impact of Continuous Panax Notoginseng Plantation on Soil Microbial and Biochemical Properties. Sci. Rep. 2019, 9, 13205. [Google Scholar] [CrossRef] [Green Version]
- Kaye, S.; Zeng, Z.; Sanders, M.; Chittur, K.; Koelle, P.M.; Lindquist, R.; Manne, U.; Lin, Y.; Wei, J. Label-Free Detection of DNA Hybridization with a Compact LSPR-Based Fiber-Optic Sensor. Analyst 2017, 142, 1974–1981. [Google Scholar] [CrossRef]
- Scheerlinck, S.; Taillaert, D.; Van Thourhout, D.; Baets, R. Flexible Metal Grating Based Optical Fiber Probe for Photonic Integrated Circuits. Appl. Phys. Lett. 2008, 92, 031104. [Google Scholar] [CrossRef] [Green Version]
- Scaravilli, M.; Micco, A.; Castaldi, G.; Coppola, G.; Gioffrè, M.; Iodice, M.; La Ferrara, V.; Galdi, V.; Cusano, A. Excitation of Bloch Surface Waves on an Optical Fiber Tip. Adv. Opt. Mater. 2018, 6, 1800477. [Google Scholar] [CrossRef]
- Ricciardi, A.; Severino, R.; Quero, G.; Carotenuto, B.; Consales, M.; Crescitelli, A.; Esposito, E.; Ruvo, M.; Sandomenico, A.; Borriello, A. Lab-on-Fiber Biosensing for Cancer Biomarker Detection. In Proceedings of the 24th International Conference on Optical Fibre Sensors, SPIE, Curitiba, Brazil, 28 September–2 October 2015; Volume 9634, pp. 229–232. [Google Scholar]
- Vaiano, P.; Carotenuto, B.; Pisco, M.; Ricciardi, A.; Quero, G.; Consales, M.; Crescitelli, A.; Esposito, E.; Cusano, A. Lab on Fiber Technology for Biological Sensing Applications. Laser Photonics Rev. 2016, 10, 922–961. [Google Scholar] [CrossRef]
- Sanders, M.; Lin, Y.; Wei, J.; Bono, T.; Lindquist, R.G. An Enhanced LSPR Fiber-Optic Nanoprobe for Ultrasensitive Detection of Protein Biomarkers. Biosens. Bioelectron. 2014, 61, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Ozcariz, A.; Ruiz-Zamarreno, C.; Arregui, F.J. A Comprehensive Review: Materials for the Fabrication of Optical Fiber Refractometers Based on Lossy Mode Resonance. Sensors 2020, 20, 1972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Villar, I.; Hernaez, M.; Zamarreño, C.R.; Sánchez, P.; Fernández-Valdivielso, C.; Arregui, F.J.; Matias, I.R. Design Rules for Lossy Mode Resonance Based Sensors. Appl. Opt. 2012, 51, 4298–4307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, S.K.; Usha, S.P.; Gupta, B.D. A Lossy Mode Resonance-Based Fiber Optic Hydrogen Gas Sensor for Room Temperature Using Coatings of ITO Thin Film and Nanoparticles. Meas. Sci. Technol. 2016, 27, 045103. [Google Scholar] [CrossRef]
- Usha, S.P.; Gupta, B.D. Performance Analysis of Zinc Oxide-Implemented Lossy Mode Resonance-Based Optical Fiber Refractive Index Sensor Utilizing Thin Film/Nanostructure. Appl. Opt. 2017, 56, 5716–5725. [Google Scholar] [CrossRef]
- Sanchez, P.; Zamarreno, C.R.; Hernaez, M.; Del Villar, I.; Matias, I.R.; Arregui, F.J. Considerations for Lossy-Mode Resonance-Based Optical Fiber Sensor. IEEE Sens. J. 2012, 13, 1167–1171. [Google Scholar] [CrossRef]
- Kosiel, K.; Koba, M.; Masiewicz, M.; Śmietana, M. Tailoring Properties of Lossy-Mode Resonance Optical Fiber Sensors with Atomic Layer Deposition Technique. Opt. Laser Technol. 2018, 102, 213–221. [Google Scholar] [CrossRef]
- Usha, S.P.; Mishra, S.K.; Gupta, B.D. Zinc Oxide Thin Film/Nanorods Based Lossy Mode Resonance Hydrogen Sulphide Gas Sensor. Mater. Res. Express 2015, 2, 095003. [Google Scholar] [CrossRef]
- Zubiate, P.; Zamarreño, C.R.; Del Villar, I.; Matias, I.R.; Arregui, F.J. Tunable Optical Fiber PH Sensors Based on TE and TM Lossy Mode Resonances (LMRs). Sens. Actuators B Chem. 2016, 231, 484–490. [Google Scholar] [CrossRef]
- Hemmati, H.; Ko, Y.H.; Magnusson, R. Fiber-Facet-Integrated Guided-Mode Resonance Filters and Sensors: Experimental Realization. Opt. Lett. 2018, 43, 358–361. [Google Scholar] [CrossRef] [PubMed]
- Soref, R.A.; Lorenzo, J.P. Single-Crystal Silicon: A New Material for 1.3 and 1.6 Μm Integrated-Optical Components. Electron. Lett. 1985, 21, 953–954. [Google Scholar] [CrossRef]
- Foresi, J.S.; Black, M.R.; Agarwal, A.M.; Kimerling, L.C. Losses in Polycrystalline Silicon Waveguides. Appl. Phys. Lett. 1996, 68, 2052–2054. [Google Scholar] [CrossRef]
- Naftaly, M.; Molloy, J.F.; Magnusson, B.; Andreev, Y.M.; Lanskii, G.V. Silicon Carbide—A High-Transparency Nonlinear Material for THz Applications. Opt. Express 2016, 24, 2590. [Google Scholar] [CrossRef]
- Gibson, U.J.; Wei, L.; Ballato, J. Semiconductor Core Fibres: Materials Science in a Bottle. Nat. Commun. 2021, 12, 3990. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-C.; Wägli, P.; Paeder, V.; Homsy, A.; Hvozdara, L.; van der Wal, P.; Di Francesco, J.; de Rooij, N.F.; Herzig, H.P. Cocaine Detection by a Mid-Infrared Waveguide Integrated with a Microfluidic Chip. Lab A Chip 2012, 12, 3020–3023. [Google Scholar] [CrossRef] [PubMed]
- Evers, J.; Klüfers, P.; Staudigl, R.; Stallhofer, P. Czochralski’s Creative Mistake: A Milestone on the Way to the Gigabit Era. Angew. Chem. Int. Ed. 2003, 42, 5684–5698. [Google Scholar] [CrossRef] [PubMed]
- Usami, N.; Kitamura, M.; Obara, K.; Nose, Y.; Shishido, T.; Nakajima, K. Floating Zone Growth of Si-Rich SiGe Bulk Crystal Using Pre-Synthesized SiGe Feed Rod with Uniform Composition. J. Cryst. Growth 2005, 284, 57–64. [Google Scholar] [CrossRef]
- Fukuda, T.; Rudolph, P.; Uda, S. Fiber Crystal Growth from the Melt; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2004; Volume 6. [Google Scholar]
- Nelson, H. Epitaxial Growth from the Liquid State and Its Application to the Fabrication of Tunnel and Lasar Diodes. RCA Rev. 1963, 24, 603–615. [Google Scholar]
- Wolff, G.A.; Mlavsky, A.I. Travelling Solvent Techniques. In Crystal Growth; Springer: Berlin/Heidelberg, Germany, 1974; pp. 193–232. [Google Scholar]
- Ordu, M.; Guo, J.; Akosman, A.E.; Erramilli, S.; Ramachandran, S.; Basu, S.N. Effect of Thermal Annealing on Mid-Infrared Transmission in Semiconductor Alloy-Core Glass-Cladded Fibers. Adv. Fiber Mater. 2020, 2, 178–184. [Google Scholar] [CrossRef] [Green Version]
- Coucheron, D.A.; Fokine, M.; Patil, N.; Breiby, D.W.; Buset, O.T.; Healy, N.; Peacock, A.C.; Hawkins, T.; Jones, M.; Ballato, J.; et al. Laser Recrystallization and Inscription of Compositional Microstructures in Crystalline SiGe-Core Fibres. Nat. Commun. 2016, 7, 13265. [Google Scholar] [CrossRef] [Green Version]
- Nordstrand, E.F.; Dibbs, A.N.; Eraker, A.J.; Gibson, U.J. Alkaline Oxide Interface Modifiers for Silicon Fiber Production. Opt. Mater. Express 2013, 3, 651–657. [Google Scholar] [CrossRef]
- Healy, N.; Gibson, U.; Peacock, A.C. A Review of Materials Engineering in Silicon-Based Optical Fibres. Semicond. Sci. Technol. 2018, 33, 023001. [Google Scholar] [CrossRef] [Green Version]
- Peacock, A.C.; Gibson, U.J.; Ballato, J. Silicon Optical Fibres—Past, Present, and Future. Adv. Phys. X 2016, 1, 114–127. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhang, T.; Zhang, H.; Wang, Z.; Li, C.; Wang, Z.; Li, K.; Huang, X.; Chen, M.; Chen, Z.; et al. Single-Crystal SnSe Thermoelectric Fibers via Laser-Induced Directional Crystallization: From 1D Fibers to Multidimensional Fabrics. Adv. Mater. 2020, 32, 2002702. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huang, Y.; Bai, H.; Wang, G.; Hu, X.; Kumar, S.; Min, R. Biocompatible and Biodegradable Polymer Optical Fiber for Biomedical Application: A Review. Biosensors 2021, 11, 472. [Google Scholar] [CrossRef]
- Gierej, A.; Geernaert, T.; Van Vlierberghe, S.; Dubruel, P.; Thienpont, H.; Berghmans, F. Challenges in the Fabrication of Biodegradable and Implantable Optical Fibers for Biomedical Applications. Materials 2021, 14, 1972. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Page, A.; Nguyen-Dang, T.; Qu, Y.; Sordo, F.; Wei, L.; Sorin, F. Advanced Multimaterial Electronic and Optoelectronic Fibers and Textiles. Adv. Mater. 2019, 31, 1802348. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Canales, A.; Anikeeva, P. Neural Recording and Modulation Technologies. Nat. Rev. Mater. 2017, 2, 16093. [Google Scholar] [CrossRef]
- Polygerinos, P.; Wang, Z.; Overvelde, J.T.B.; Galloway, K.C.; Wood, R.J.; Bertoldi, K.; Walsh, C.J. Modeling of Soft Fiber-Reinforced Bending Actuators. IEEE Trans. Robot. 2015, 31, 778–789. [Google Scholar] [CrossRef] [Green Version]
- Stoppa, M.; Chiolerio, A. Wearable Electronics and Smart Textiles: A Critical Review. Sensors 2014, 14, 11957–11992. [Google Scholar] [CrossRef]
- Morris, S.; Hawkins, T.; Foy, P.; Ballato, J.; Martin, S.W.; Rice, R. Cladding Glass Development for Semiconductor Core Optical Fibers. Int. J. Appl. Glass Sci. 2012, 3, 144–153. [Google Scholar] [CrossRef]
- Xie, D.-G.; Nie, Z.-Y.; Shinzato, S.; Yang, Y.-Q.; Liu, F.-X.; Ogata, S.; Li, J.; Ma, E.; Shan, Z.-W. Controlled Growth of Single-Crystalline Metal Nanowires via Thermomigration across a Nanoscale Junction. Nat. Commun. 2019, 10, 4478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zulehner, W. Czochralski Growth of Silicon. J. Cryst. Growth 1983, 65, 189–213. [Google Scholar] [CrossRef]
- Fisher, G.; Seacrist, M.R.; Standley, R.W. Silicon Crystal Growth and Wafer Technologies. Proc. IEEE 2012, 100, 1454–1474. [Google Scholar] [CrossRef]
- Brown, R.A. Theory of Transport Processes in Single Crystal Growth from the Melt. AIChE J. 1988, 34, 881–911. [Google Scholar] [CrossRef]
- Rost, H.-J.; Buchovska, I.; Dadzis, K.; Juda, U.; Renner, M.; Menzel, R. Thermally Stimulated Dislocation Generation in Silicon Crystals Grown by the Float-Zone Method. J. Cryst. Growth 2020, 552, 125842. [Google Scholar] [CrossRef]
- Koohpayeh, S.M.; Fort, D.; Bradshaw, A.; Abell, J.S. Thermal Characterization of an Optical Floating Zone Furnace: A Direct Link with Controllable Growth Parameters. J. Cryst. Growth 2009, 311, 2513–2518. [Google Scholar] [CrossRef]
- Healy, N.; Fokine, M.; Franz, Y.; Hawkins, T.; Jones, M.; Ballato, J.; Peacock, A.C.; Gibson, U.J. CO2 Laser-Induced Directional Recrystallization to Produce Single Crystal Silicon-Core Optical Fibers with Low Loss. Adv. Opt. Mater. 2016, 4, 1004–1008. [Google Scholar] [CrossRef] [Green Version]
- Gumennik, A.; Levy, E.C.; Grena, B.; Hou, C.; Rein, M.; Abouraddy, A.F.; Joannopoulos, J.D.; Fink, Y. Confined In-Fiber Solidification and Structural Control of Silicon and Silicon−germanium Microparticles. Proc. Natl. Acad. Sci. USA 2017, 114, 7240–7245. [Google Scholar] [CrossRef] [Green Version]
- Cumming, A.V.; Cunningham, L.; Hammond, G.D.; Haughian, K.; Hough, J.; Kroker, S.; Martin, I.W.; Nawrodt, R.; Rowan, S.; Schwarz, C. Silicon Mirror Suspensions for Gravitational Wave Detectors. Class. Quantum Gravity 2013, 31, 025017. [Google Scholar] [CrossRef]
- Lee, K.-H.; Hammond, G.; Hough, J.; Jones, R.; Rowan, S.; Cumming, A. Improved Fused Silica Fibres for the Advanced LIGO Monolithic Suspensions. Class. Quantum Gravity 2019, 36, 185018. [Google Scholar] [CrossRef]
- Franz, Y.; Runge, A.F.J.; Ren, H.; Healy, N.; Ignatyev, K.; Jones, M.; Hawkins, T.; Ballato, J.; Gibson, U.J.; Peacock, A.C. Material Properties of Tapered Crystalline Silicon Core Fibers. Opt. Mater. Express 2017, 7, 2055–2061. [Google Scholar] [CrossRef]
- Sørgård, T.; Mølster, K.M.; Laurell, F.; Pasiskevicius, V.; Gibson, U.J.; Österberg, U.L. Terahertz Waveguiding in Glass-Clad Silicon Wafers. Opt. Mater. Express 2020, 10, 742–751. [Google Scholar] [CrossRef]
- Panish, M.B.; Hayashi, I.; Sumski, S. Double-Heterostructure Injection Lasers with Room-Temperature Thresholds as Low as 2300 A/cm2. Appl. Phys. Lett. 1970, 16, 326–327. [Google Scholar] [CrossRef]
- Alferov, Z.I.; Andreev, V.M.; Garbuzov, D.Z.; Zhilyaev, Y.V.; Morozov, E.P.; Portnoi, E.L.; Trofim, V.G. Investigation of the Influence of the AlAs-GaAs Heterostructure Parameters on the Laser Threshold Current and the Realization of Continuous Emission at Room Temperature. Soviet. Physics. Semicond. 1971, 4, 1573–1575. [Google Scholar]
- Hsieh, J.J.; Rossi, J.A.; Donnelly, J.P. Room-temperature Cw Operation of GaInAsP/InP Double-heterostructure Diode Lasers Emitting at 1.1 μm. Appl. Phys. Lett. 1976, 28, 709–711. [Google Scholar] [CrossRef]
- Nahory, R.E.; Pollack, M.A.; Beebe, E.D.; DeWinter, J.C.; Dixon, R.W. Continuous Operation of 1.0-μm-wavelength GaAs1−xSb x/AlyGa1−yAs1−xSbx Double-heterostructure Injection Lasers at Room Temperature. Appl. Phys. Lett. 1976, 28, 19–21. [Google Scholar] [CrossRef]
- Dolginov, L.M.; Druzhinina, L.V.; Eliseev, P.G.; Mil’vidskiĭ, M.G.; Sverdlov, B.N. New Uncooled Injection Heterolaser Emitting in the 1.5–1.8 μ Range. Quantum Electron. 1976, 6, 257. [Google Scholar] [CrossRef]
- Svendsen, S.K. Compositional Characterisation of Optical InGaSb-Core Microfibres. Master’s Thesis, Norwegian University of Science and Technology (NTNU), Trondheim, Norway, 2017. [Google Scholar]
- Song, S.; Lønsethagen, K.; Laurell, F.; Hawkins, T.W.; Ballato, J.; Fokine, M.; Gibson, U.J. Laser Restructuring and Photoluminescence of Glass-Clad GaSb/Si-Core Optical Fibres. Nat. Commun. 2019, 10, 1790. [Google Scholar] [CrossRef] [Green Version]
- Groves, S.H. Temperature-Gradient Lpe Growth of Pbl-x Snx Te. J. Electron. Mater. 1977, 6, 195–206. [Google Scholar] [CrossRef]
- Petrescu-Prahova, I.B.; Mihailovici, P. The Influence of a Temperature Gradient on the LPE Growth Process of GaAs. J. Cryst. Growth 1974, 21, 214–218. [Google Scholar] [CrossRef]
- Hou, C.; Jia, X.; Wei, L.; Tan, S.-C.; Zhao, X.; Joannopoulos, J.D.; Fink, Y. Crystalline Silicon Core Fibres from Aluminium Core Preforms. Nat. Commun. 2015, 6, 6248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsui, H.C.L.; Healy, N. Recent Progress of Semiconductor Optoelectronic Fibers. Front. Optoelectron. 2021, 14, 383–398. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, M.; Zheng, Y.; Zhang, J.; Wang, Z.; Yang, J.; Zhang, Q.; He, B.; Qi, M.; Zhang, H. Advanced Thermally Drawn Multimaterial Fibers: Structure-Enabled Functionalities. Adv. Devices Instrum. 2021, 2021, 9676470. [Google Scholar] [CrossRef]
- Sparks, J.R.; Sazio, P.J.A.; Gopalan, V.; Badding, J.V. Templated Chemically Deposited Semiconductor Optical Fiber Materials. Annu. Rev. Mater. Res. 2013, 43, 527–557. [Google Scholar] [CrossRef]
- van der Elst, L.; Faccini de Lima, C.; Gokce Kurtoglu, M.; Koraganji, V.N.; Zheng, M.; Gumennik, A. 3D Printing in Fiber-Device Technology. Adv. Fiber Mater. 2021, 3, 59–75. [Google Scholar] [CrossRef]
- Aktas, O.; Peacock, A.C. Laser Thermal Processing of Group IV Semiconductors for Integrated Photonic Systems. Adv. Photonics Res. 2021, 2, 2000159. [Google Scholar] [CrossRef]
- Chazot, M.; Arias, C.; Kang, M.; Blanco, C.; Kostogiannes, A.; Cook, J.; Yadav, A.; Rodriguez, V.; Adamietz, F.; Verreault, D. Investigation of ZnSe Stability and Dissolution Behavior in As-S-Se Chalcogenide Glasses. J. Non-Cryst. Solids 2021, 555, 120619. [Google Scholar] [CrossRef]
- Coco, M.G.; Aro, S.C.; Hendrickson, A.; Krug, J.P.; Lai, B.; Cai, Z.; Sazio, P.J.; McDaniel, S.A.; Cook, G.; Gopalan, V. Synchrotron X-Ray Metrology of Dopant Distribution and Oxidation State in High Pressure CVD Grown TM2+: ZnSe Optical Fibers. Opt. Mater. Express 2021, 11, 289–298. [Google Scholar] [CrossRef]
- Wang, D.; Yi, Z.; Ma, G.; Dai, B.; Yang, J.; Zhang, J.; Yu, Y.; Liu, C.; Bian, Q. Two Channels Photonic Crystal Fiber Based on Surface Plasmon Resonance for Magnetic Field and Temperature Dual-Parameter Sensing. Phys. Chem. Chem. Phys. 2022, 24, 21233–21241. [Google Scholar] [CrossRef]
- Yan, W.; Qu, Y.; Gupta, T.D.; Darga, A.; Nguyên, D.T.; Page, A.G.; Rossi, M.; Ceriotti, M.; Sorin, F. Semiconducting Nanowire-based Optoelectronic Fibers. Adv. Mater. 2017, 29, 1700681. [Google Scholar] [CrossRef]
- He, R.; Day, T.D.; Krishnamurthi, M.; Sparks, J.R.; Sazio, P.J.A.; Gopalan, V.; Badding, J.V. Silicon p-i-n Junction Fibers. Adv. Mater. 2013, 25, 1461–1467. [Google Scholar] [CrossRef]
- Wiehe, M.; García, M.F.; Hidalgo, S.; Moll, M.; Ugobono, S.O.; Parzefall, U.; Pellegrini, G.; Barroso, A.V.; Alvarez, I.V. Study of the Radiation-Induced Damage Mechanism in Proton Irradiated Low Gain Avalanche Detectors and Its Thermal Annealing Dependence. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2021, 986, 164814. [Google Scholar] [CrossRef]
- He, Y.; Liao, S.; Wang, Y. Photothermal Polymers in Near Infrared Window. Chin. J. Chem. 2021, 39, 1435–1442. [Google Scholar] [CrossRef]
- Chaudhuri, S.; Sparks, J.R.; Ji, X.; Krishnamurthi, M.; Shen, L.; Healy, N.; Peacock, A.C.; Gopalan, V.; Badding, J.V. Crystalline Silicon Optical Fibers with Low Optical Loss. ACS Photonics 2016, 3, 378–384. [Google Scholar] [CrossRef]
- Sahoo, D.; Priyadarshini, P.; Aparimita, A.; Alagarasan, D.; Ganesan, R.; Varadharajaperumal, S.; Naik, R. Optimization of Linear and Nonlinear Optical Parameters of As40Se50Te10 Thin Films by Thermal Annealing. Opt. Laser Technol. 2021, 140, 107036. [Google Scholar] [CrossRef]
- Tang, R.; Chen, S.; Zheng, Z.-H.; Su, Z.-H.; Luo, J.-T.; Fan, P.; Zhang, X.-H.; Tang, J.; Liang, G.-X. Heterojunction Annealing Enabling Record Open-Circuit Voltage in Antimony Triselenide Solar Cells. Adv. Mater. 2022, 34, 2109078. [Google Scholar] [CrossRef]
- Prekodravac, J.R.; Kepić, D.P.; Colmenares, J.C.; Giannakoudakis, D.A.; Jovanović, S.P. A Comprehensive Review on Selected Graphene Synthesis Methods: From Electrochemical Exfoliation through Rapid Thermal Annealing towards Biomass Pyrolysis. J. Mater. Chem. C 2021, 9, 6722–6748. [Google Scholar] [CrossRef]
- Lin, T.; Li, Y.; Xie, J.; Sun, W.; Mu, Y.; Xie, H.; Duan, Y. Composition and Interface Research on Quantum Well Intermixing Between a Tensile GaInP Quantum Well and Compressed AlGaInP Barriers. J. Electron. Mater. 2022, 51, 4368–4377. [Google Scholar] [CrossRef]
- Ji, X.; Page, R.L.; Chaudhuri, S.; Liu, W.; Yu, S.; Mohney, S.E.; Badding, J.V.; Gopalan, V. Single-Crystal Germanium Core Optoelectronic Fibers. Adv. Opt. Mater. 2017, 5, 1600592. [Google Scholar] [CrossRef]
- Zhao, Z.; Mao, Y.; Ren, L.; Zhang, J.; Chen, N.; Wang, T. CO2 Laser Annealing of Ge Core Optical Fibers with Different Laser Power. Opt. Mater. Express 2019, 9, 1333–1347. [Google Scholar] [CrossRef]
- Gibson, U.; Dibbs, A.; Eraker, A.; Hawkins, T.; Ballato, J. Alkaline Oxide Modifiers for the Production of Semiconductor Fibers. In Proceedings of the Workshop on Specialty Optical Fibers and their Applications, OSA, Sigtuna, Sweden, 28–30 August 2013; p. W1.3. [Google Scholar]
- He, F.; Zheng, S.; Chen, C. The Effect of Calcium Oxide Addition on the Removal of Metal Impurities from Metallurgical-Grade Silicon by Acid Leaching. Metall. Mater. Trans. B 2012, 43, 1011–1018. [Google Scholar] [CrossRef] [Green Version]
- Ballato, J.; Hawkins, T.; Foy, P.; Yazgan-Kokuoz, B.; McMillen, C.; Burka, L.; Morris, S.; Stolen, R.; Rice, R. Advancements in Semiconductor Core Optical Fiber. Opt. Fiber Technol. 2010, 16, 399–408. [Google Scholar] [CrossRef]
- Mühe, A.; Müller, G. Optical In-Situ Measurement of the Dissolution Rate of a Silica-Czochralski-Crucible with Silicon Melt and Comparison to Ex-Situ Measurements. Microelectron. Eng. 2001, 56, 147–152. [Google Scholar] [CrossRef]
- McAfee, K.; Laudise, R.; Hozack, R. Equilibria Concentrations in the Oxidation of SiCl4 and GeCl4 for Optical Fibers. J. Light. Technol. 1983, 1, 555–561. [Google Scholar] [CrossRef]
- Tandon, P.; Murtagh, M. Particle–Vapor Interaction in Deposition Systems: Influence on Deposit Morphology. Chem. Eng. Sci. 2005, 60, 1685–1699. [Google Scholar] [CrossRef]
- Nakamura, S.; Hibiya, T. Thermophysical Properties Data on Molten Semiconductors. Int. J. Thermophys. 1992, 13, 1061–1084. [Google Scholar] [CrossRef]
- Ballato, J.; Hawkins, T.; Foy, P.; McMillen, C.; Burka, L.; Reppert, J.; Podila, R.; Rao, A.M.; Rice, R.R. Binary III-V Semiconductor Core Optical Fiber. Opt. Express 2010, 18, 4972–4979. [Google Scholar] [CrossRef]
- Feng, X.; Monro, T.; Petropoulos, P.; Finazzi, V.; Hewak, D. Solid Microstructured Optical Fiber. Opt. Express 2003, 11, 2225–2230. [Google Scholar] [CrossRef] [Green Version]
- Shapira, O.; Kuriki, K.; Orf, N.D.; Abouraddy, A.F.; Benoit, G.; Viens, J.F.; Rodriguez, A.; Ibanescu, M.; Joannopoulos, J.D.; Fink, Y. Surface-Emitting Fiber Lasers. Opt. Express 2006, 14, 3929–3935. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Z.; Wang, Z.; Wei, L. Advanced Multi-Material Optoelectronic Fibers: A Review. J. Light. Technol. 2021, 39, 3836–3845. [Google Scholar] [CrossRef]
- He, R.; Sazio, P.J.A.; Peacock, A.C.; Healy, N.; Sparks, J.R.; Krishnamurthi, M.; Gopalan, V.; Badding, J.V. Integration of Gigahertz-Bandwidth Semiconductor Devices inside Microstructured Optical Fibres. Nat. Photonics 2012, 6, 174–179. [Google Scholar] [CrossRef]
- Knight, J.C. Photonic Crystal Fibres. Nature 2003, 424, 847–851. [Google Scholar] [CrossRef]
- Bayindir, M.; Shapira, O.; Saygin-Hinczewski, D.; Viens, J.; Abouraddy, A.F.; Joannopoulos, J.D.; Fink, Y. Integrated Fibres for Self-Monitored Optical Transport. Nat. Mater. 2005, 4, 820–825. [Google Scholar] [CrossRef]
- Temelkuran, B.; Hart, S.D.; Benoit, G.; Joannopoulos, J.D.; Fink, Y. Wavelength-Scalable Hollow Optical Fibres with Large Photonic Bandgaps for CO2 Laser Transmission. Nature 2002, 420, 650–653. [Google Scholar] [CrossRef]
- Fink, Y.; Winn, J.N.; Fan, S.; Chen, C.; Michel, J.; Joannopoulos, J.D.; Thomas, E.L. A Dielectric Omnidirectional Reflector. Science 1998, 282, 1679–1682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeh, P.; Yariv, A.; Marom, E. Theory of Bragg Fiber. J. Opt. Soc. Am. 1978, 68, 1196–1201. [Google Scholar] [CrossRef]
- Jackson, B.R.; Sazio, P.J.; Badding, J.V. Single-crystal Semiconductor Wires Integrated into Microstructured Optical Fibers. Adv. Mater. 2008, 20, 1135–1140. [Google Scholar] [CrossRef]
- Baril, N.F.; Keshavarzi, B.; Sparks, J.R.; Krishnamurthi, M.; Temnykh, I.; Sazio, P.J.A.; Peacock, A.C.; Borhan, A.; Gopalan, V.; Badding, J.V. High-Pressure Chemical Deposition for Void-Free Filling of Extreme Aspect Ratio Templates. Adv. Mater. 2010, 22, 4605–4611. [Google Scholar] [CrossRef] [PubMed]
- Orf, N.D.; Shapira, O.; Sorin, F.; Danto, S.; Baldo, M.A.; Joannopoulos, J.D.; Fink, Y. Fiber Draw Synthesis. Proc. Natl. Acad. Sci. USA 2011, 108, 4743–4747. [Google Scholar] [CrossRef] [Green Version]
- Kuriki, K.; Shapira, O.; Hart, S.D.; Benoit, G.; Kuriki, Y.; Viens, J.F.; Bayindir, M.; Joannopoulos, J.D.; Fink, Y. Hollow Multilayer Photonic Bandgap Fibers for NIR Applications. Opt. Express 2004, 12, 1510–1517. [Google Scholar] [CrossRef]
- Egusa, S.; Wang, Z.; Chocat, N.; Ruff, Z.M.; Stolyarov, A.M.; Shemuly, D.; Sorin, F.; Rakich, P.T.; Joannopoulos, J.D.; Fink, Y. Multimaterial Piezoelectric Fibres. Nat. Mater. 2010, 9, 643–648. [Google Scholar] [CrossRef] [Green Version]
- Stolyarov, A.M.; Wei, L.; Shapira, O.; Sorin, F.; Chua, S.L.; Joannopoulos, J.D.; Fink, Y. Microfluidic Directional Emission Control of an Azimuthally Polarized Radial Fibre Laser. Nat. Photonics 2012, 6, 229–233. [Google Scholar] [CrossRef] [Green Version]
- Baril, N.F.; He, R.; Day, T.D.; Sparks, J.R.; Keshavarzi, B.; Krishnamurthi, M.; Borhan, A.; Gopalan, V.; Peacock, A.C.; Healy, N.; et al. Confined High-Pressure Chemical Deposition of Hydrogenated Amorphous Silicon. J. Am. Chem. Soc. 2012, 134, 19–22. [Google Scholar] [CrossRef] [PubMed]
- Badding, J.V.; Gopalan, V.; Sazio, P.J. Building Semiconductor Structures in Optical Fiber. Photonics Spectra 2006, 40, 80–88. [Google Scholar]
- Berger, V. Photonic Crystals and Photonic Structures. Curr. Opin. Solid State Mater. Sci. 1999, 4, 209–216. [Google Scholar] [CrossRef]
- Knight, J.C.; Broeng, J.; Birks, T.A.; Russell, P.S.J. Photonic Band Gap Guidance in Optical Fibers. Science 1998, 282, 1476–1478. [Google Scholar] [CrossRef]
- Tao, G.; Stolyarov, A.M.; Abouraddy, A.F. Multimaterial Fibers. Int. J. Appl. Glass Sci. 2012, 3, 349–368. [Google Scholar] [CrossRef]
- Zhang, L.; Lin, S.; Hua, T.; Huang, B.; Liu, S.; Tao, X. Fiber-Based Thermoelectric Generators: Materials, Device Structures, Fabrication, Characterization, and Applications. Adv. Energy Mater. 2018, 8, 1700524. [Google Scholar] [CrossRef]
- Chen, W.-Y.; Shi, X.-L.; Zou, J.; Chen, Z.-G. Wearable Fiber-Based Thermoelectrics from Materials to Applications. Nano Energy 2021, 81, 105684. [Google Scholar] [CrossRef]
- Komatsu, N.; Ichinose, Y.; Dewey, O.S.; Taylor, L.W.; Trafford, M.A.; Yomogida, Y.; Wehmeyer, G.; Pasquali, M.; Yanagi, K.; Kono, J. Macroscopic Weavable Fibers of Carbon Nanotubes with Giant Thermoelectric Power Factor. Nat. Commun. 2021, 12, 4931. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.P.; Kumar, M.; Srivastava, R.S.; Vaish, R. Thermoelectric Energy Harvesting Using Cement-Based Composites: A Review. Mater. Today Energy 2021, 21, 100714. [Google Scholar] [CrossRef]
- Zhang, X.; Shiu, B.-C.; Li, T.-T.; Liu, X.; Ren, H.-T.; Wang, Y.; Lou, C.-W.; Lin, J.-H. Synergistic Work of Photo-Thermoelectric and Hydroelectric Effects of Hierarchical Structure Photo-Thermoelectric Textile for Solar Energy Harvesting and Solar Steam Generation Simultaneously. Chem. Eng. J. 2021, 426, 131923. [Google Scholar] [CrossRef]
- Hsu, P.-C.; Song, A.Y.; Catrysse, P.B.; Liu, C.; Peng, Y.; Xie, J.; Fan, S.; Cui, Y. Radiative Human Body Cooling by Nanoporous Polyethylene Textile. Science 2016, 353, 1019–1023. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Wang, C.; Yang, X.; Li, J.; Lu, R.; Li, R.; Zhang, L.; Chen, H.; Zheng, X.; Zhang, T. New Progress on Fiber-Based Thermoelectric Materials: Performance, Device Structures and Applications. Materials 2021, 14, 6306. [Google Scholar] [CrossRef] [PubMed]
- Thomas, K.S.; McMann, H.J. Launch/Entry Spacesuits: Past, Present, and Possibly Future. In US Spacesuits; Springer: Berlin/Heidelberg, Germany, 2012; pp. 25–60. [Google Scholar]
- Tanaka, K.; Nakamura, K.; Katafuchi, T. Self-Perspiration Garment for Extravehicular Activity Improves Skin Cooling Effects without Raising Humidity. Acta Astronaut. 2014, 104, 260–265. [Google Scholar] [CrossRef]
- Liu, W.; Jie, Q.; Kim, H.S.; Ren, Z. Current Progress and Future Challenges in Thermoelectric Power Generation: From Materials to Devices. Acta Mater. 2015, 87, 357–376. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.; Li, G.; Wang, B.; Wang, J. A Theoretical Model for Wearable Thermoelectric Generators Considering the Effect of Human Skin. J. Electron. Mater. 2021, 50, 1514–1526. [Google Scholar] [CrossRef]
- Hu, B.; Shi, X.-L.; Zou, J.; Chen, Z.-G. Thermoelectrics for Medical Applications: Progress, Challenges, and Perspectives. Chem. Eng. J. 2022, 437, 135268. [Google Scholar] [CrossRef]
- Bagherzadeh, R.; Bafqi, M.S.S.; Saveh-Shemshaki, N.; Khomarloo, N. Advanced Fibrous Materials for Wearable Energy Harvesting Applications. In Engineered Polymeric Fibrous Materials; Elsevier: Amsterdam, The Netherlands, 2021; pp. 93–109. [Google Scholar]
- Roy, S.; Azad, A.W.; Baidya, S.; Alam, M.K.; Khan, F.H. Powering Solutions for Biomedical Sensors and Implants inside Human BodyA Comprehensive Review on Energy Harvesting Units, Energy Storage, and Wireless Power Transfer Techniques. IEEE Trans. Power Electron. 2022, 37, 12237–12263. [Google Scholar] [CrossRef]
- Ben Amar, A.; Kouki, A.B.; Cao, H. Power Approaches for Implantable Medical Devices. Sensors 2015, 15, 28889–28914. [Google Scholar] [CrossRef]
- Wei, X.; Liu, J. Power Sources and Electrical Recharging Strategies for Implantable Medical Devices. Front. Energy Power Eng. China 2008, 2, 1–13. [Google Scholar] [CrossRef]
- Zhu, T.; Fu, C.; Xie, H.; Liu, Y.; Zhao, X. High Efficiency Half-Heusler Thermoelectric Materials for Energy Harvesting. Adv. Energy Mater. 2015, 5, 1500588. [Google Scholar] [CrossRef]
- Yan, X.; Joshi, G.; Liu, W.; Lan, Y.; Wang, H.; Lee, S.; Simonson, J.W.; Poon, S.J.; Tritt, T.M.; Chen, G. Enhanced Thermoelectric Figure of Merit of p-Type Half-Heuslers. Nano Lett. 2011, 11, 556–560. [Google Scholar] [CrossRef]
- Yan, X.; Liu, W.; Wang, H.; Chen, S.; Shiomi, J.; Esfarjani, K.; Wang, H.; Wang, D.; Chen, G.; Ren, Z. Stronger phonon scattering by larger differences in atomic mass and size in p-type half-Heuslers Hf1−xTixCoSb0.8Sn0.2. Energy Environ. Sci. 2012, 5, 7543–7548. [Google Scholar] [CrossRef]
- Fu, C.; Bai, S.; Liu, Y.; Tang, Y.; Chen, L.; Zhao, X.; Zhu, T. Realizing High Figure of Merit in Heavy-Band p-Type Half-Heusler Thermoelectric Materials. Nat. Commun. 2015, 6, 8144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y.; Minnich, A.; Yu, B.; Yan, X.; Wang, D.; Muto, A.; Vashaee, D. High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys. Science 2008, 320, 634–638. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Tan, Q.; Li, J.-F.; Liu, D.-W.; Li, F.; Li, Z.-Y.; Zou, M.; Wang, K. BiSbTe-based Nanocomposites with High ZT: The Effect of SiC Nanodispersion on Thermoelectric Properties. Adv. Funct. Mater. 2013, 23, 4317–4323. [Google Scholar] [CrossRef]
- Kim, S.I.; Lee, K.H.; Mun, H.A.; Kim, H.S.; Hwang, S.W.; Roh, J.W.; Yang, D.J.; Shin, W.H.; Li, X.S.; Lee, Y.H. Dense Dislocation Arrays Embedded in Grain Boundaries for High-Performance Bulk Thermoelectrics. Science 2015, 348, 109–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, L.; Wu, H.; Zhu, T.; Fu, C.; He, J.; Ying, P.; Zhao, X. Tuning Multiscale Microstructures to Enhance Thermoelectric Performance of N-type Bismuth-Telluride-based Solid Solutions. Adv. Energy Mater. 2015, 5, 1500411. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Zhang, Q.; Chen, C.; Li, J.; Zhang, L.; Yu, D.; Tian, Y.; Xu, B. High Pressure Synthesis of p-Type Fe-Substituted CoSb3 Skutterudites. J. Mater. Sci. Mater. Electron. 2016, 27, 6433–6437. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Q.; Kang, Y.; Chen, C.; Zhang, L.; Yu, D.; Tian, Y.; Xu, B. High Pressure Synthesized Ca-Filled CoSb3 Skutterudites with Enhanced Thermoelectric Properties. J. Alloys Compd. 2016, 677, 61–65. [Google Scholar] [CrossRef]
- Fu, L.; Yang, J.; Jiang, Q.; Xiao, Y.; Luo, Y.; Zhang, D.; Zhou, Z. Thermoelectric Performance Enhancement of CeFe4Sb12 p-Type Skutterudite by Disorder on the Sb4 Rings Induced by Te Doping and Nanopores. J. Electron. Mater. 2016, 45, 1240–1244. [Google Scholar] [CrossRef]
- Song, K.-M.; Shin, D.-K.; Kim, I.-H. Thermoelectric Properties of p-Type La1−zPrzFe4−xCoxSb12 Skutterudites. J. Electron. Mater. 2016, 45, 1227–1233. [Google Scholar] [CrossRef]
- Kumar, P.M.; Jagadeesh Babu, V.; Subramanian, A.; Bandla, A.; Thakor, N.; Ramakrishna, S.; Wei, H. The Design of a Thermoelectric Generator and Its Medical Applications. Designs 2019, 3, 22. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Loke, G.; Fink, Y.; Anikeeva, P. Flexible Fiber-Based Optoelectronics for Neural Interfaces. Chem. Soc. Rev. 2019, 48, 1826–1852. [Google Scholar] [CrossRef] [Green Version]
- Balilonda, A.; Li, Z.; Fu, Y.; Zabihi, F.; Yang, S.; Huang, X.; Tao, X.; Chen, W. Perovskite Fiber-Shaped Optoelectronic Devices for Wearable Applications. J. Mater. Chem. C 2022, 10, 6957–6991. [Google Scholar] [CrossRef]
- Zaengle, T.; Gibson, U.J.; Hawkins, T.W.; McMillen, C.; Ghimire, B.; Rao, A.M.; Ballato, J. A Novel Route to Fibers with Incongruent and Volatile Crystalline Semiconductor Cores: GaAs. ACS Photonics 2022, 9, 1058–1064. [Google Scholar] [CrossRef]
- Fiber Sensors & Probes—Weidmann Optocon. Available online: https://weidmann-optocon.com/products/fiber-sensors-probes/ (accessed on 2 September 2022).
- OTG-M170, Opsens Medical. Available online: https://opsensmedical.com/oem-solutions/products/fiber-optic-temperature-sensors/otg-m170/ (accessed on 2 September 2022).
- Adam, J.-L.; Zhang, X. Chalcogenide Glasses: Preparation, Properties and Applications; Woodhead Publishing: Sawston, UK, 2014. [Google Scholar]
- Gumennik, A.; Stolyarov, A.M.; Schell, B.R.; Hou, C.; Lestoquoy, G.; Sorin, F.; McDaniel, W.; Rose, A.; Joannopoulos, J.D.; Fink, Y. All-in-Fiber Chemical Sensing. Adv. Mater. 2012, 24, 6005–6009. [Google Scholar] [CrossRef]
- Sparks, J.R.; He, R.; Healy, N.; Krishnamurthi, M.; Peacock, A.C.; Sazio, P.J.A.; Gopalan, V.; Badding, J.V. Zinc Selenide Optical Fibers. Adv. Mater. 2011, 23, 1647–1651. [Google Scholar] [CrossRef]
- Abouraddy, A.F.; Shapira, O.; Bayindir, M.; Arnold, J.; Sorin, F.; Hinczewski, D.S.; Joannopoulos, J.D.; Fink, Y. Large-Scale Optical-Field Measurements with Geometric Fibre Constructs. Nat. Mater. 2006, 5, 532–536. [Google Scholar] [CrossRef]
- Sorin, F.; Shapira, O.; Abouraddy, A.F.; Spencer, M.; Orf, N.D.; Joannopoulos, J.D.; Fink, Y. Exploiting Collective Effects of Multiple Optoelectronic Devices Integrated in a Single Fiber. Nano Lett. 2009, 9, 2630–2635. [Google Scholar] [CrossRef]
- Birtalan, D.; Nunley, W. Optoelectronics: Infrared-Visible-Ultraviolet Devices and Applications; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Ding, H.; Lv, G.; Cai, X.; Chen, J.; Cheng, Z.; Peng, Y.; Tang, G.; Shi, Z.; Xie, Y.; Fu, X.; et al. An Optoelectronic Thermometer Based on Microscale Infrared-to-Visible Conversion Devices. Light. Sci. Appl. 2022, 11, 130. [Google Scholar] [CrossRef]
- Shanmugasundaram, A.; Manorama, S.V.; Kim, D.-S.; Jeong, Y.-J.; Lee, D.W. Toward Point-of-Care Chronic Disease Management: Biomarker Detection in Exhaled Breath Using an E-Nose Sensor Based on RGO/SnO2 Superstructures. Chem. Eng. J. 2022, 448, 137736. [Google Scholar] [CrossRef]
- Ghazi, M.; Janfaza, S.; Tahmooressi, H.; Tasnim, N.; Hoorfar, M. Selective Detection of VOCs Using Microfluidic Gas Sensor with Embedded Cylindrical Microfeatures Coated with Graphene Oxide. J. Hazard. Mater. 2022, 424, 127566. [Google Scholar] [CrossRef]
- Aroutiounian, V.M. Hydrogen Peroxide Semiconductor Sensors. J. Contemp. Phys. (Armen. Acad. Sci.) 2021, 56, 332–351. [Google Scholar] [CrossRef]
- Ahmadipour, M.; Pang, A.L.; Ardani, M.R.; Pung, S.-Y.; Ooi, P.C.; Hamzah, A.A.; Wee, M.M.R.; Haniff, M.A.S.M.; Dee, C.F.; Mahmoudi, E. Detection of Breath Acetone by Semiconductor Metal Oxide Nanostructures-Based Gas Sensors: A Review. Mater. Sci. Semicond. Process. 2022, 149, 106897. [Google Scholar] [CrossRef]
- Yuan, Z.; Liu, Y.; Zhang, J.; Meng, F.; Zhang, H. Rose-like MoO3/MoS2/RGO Low-Temperature Ammonia Sensors Based on Multigas Detection Methods. IEEE Trans. Instrum. Meas. 2021, 70, 20399197. [Google Scholar] [CrossRef]
- Jeong, D.-W.; Kim, K.H.; Kim, B.S.; Byun, Y.T. Characteristics of Highly Sensitive and Selective Nitric Oxide Gas Sensors Using Defect-Functionalized Single-Walled Carbon Nanotubes at Room Temperature. Appl. Surf. Sci. 2021, 550, 149250. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, S.; Jiang, C.; Guo, H.; Qu, F.; Shimakawa, Y.; Yang, M. Integrated Sensing Array of the Perovskite-Type LnFeO3 (Ln= La, Pr, Nd, Sm) to Discriminate Detection of Volatile Sulfur Compounds. J. Hazard. Mater. 2021, 413, 125380. [Google Scholar] [CrossRef]
- Voss, A.; Schroeder, R.; Schulz, S.; Haueisen, J.; Vogler, S.; Horn, P.; Stallmach, A.; Reuken, P. Detection of Liver Dysfunction Using a Wearable Electronic Nose System Based on Semiconductor Metal Oxide Sensors. Biosensors 2022, 12, 70. [Google Scholar] [CrossRef]
- Di Giuseppe, D.; Catini, A.; Comini, E.; Zappa, D.; Di Natale, C.; Martinelli, E. Optimizing MOX Sensor Array Performances with a Reconfigurable Self-Adaptive Temperature Modulation Interface. Sens. Actuators B Chem. 2021, 333, 129509. [Google Scholar] [CrossRef]
- Priya, M.J.; Subha, P.P.; Aswathy, P.M.; Merin, K.W.; Jayaraj, M.K.; Kumar, K.R. Selective Detection of Hydrogen Sulphide from the Background of Low Concentration Reducing Gases. Mater. Chem. Phys. 2021, 260, 124038. [Google Scholar] [CrossRef]
- Khan, S.; Ali, S.; Bermak, A. Recent Developments in Printing Flexible and Wearable Sensing Electronics for Healthcare Applications. Sensors 2019, 19, 1230. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.-A.; Ji, S.; Kim, S.; Park, C.-Y.; Myung, S.; Song, W.; Lee, S.S.; Lim, J.; An, K.-S. Highly Sensitive and Wearable Gas Sensors Consisting of Chemically Functionalized Graphene Oxide Assembled on Cotton Yarn. RSC Adv. 2018, 8, 11991–11996. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Yi, N.; Zhu, J.; Cheng, Z.; Yin, X.; Zhang, X.; Zhu, H.; Cheng, H. Novel Gas Sensing Platform Based on a Stretchable Laser-Induced Graphene Pattern with Self-Heating Capabilities. J. Mater. Chem. C 2020, 8, 6487–6500. [Google Scholar] [CrossRef]
- Nikolic, M.V.; Milovanovic, V.; Vasiljevic, Z.Z.; Stamenkovic, Z. Semiconductor Gas Sensors: Materials, Technology, Design, and Application. Sensors 2020, 20, 6694. [Google Scholar] [CrossRef]
- Abouraddy, A.F.; Bayindir, M.; Benoit, G.; Hart, S.D.; Kuriki, K.; Orf, N.; Shapira, O.; Sorin, F.; Temelkuran, B.; Fink, Y. Towards Multimaterial Multifunctional Fibres That See, Hear, Sense and Communicate. Nat. Mater. 2007, 6, 336–347. [Google Scholar] [CrossRef]
- Qureshi, K.K. Multiwavelength Fiber Laser Covering Far L and U Bands in a Dual Cavity Configuration. IEEE Photonics Technol. Lett. 2021, 33, 321–324. [Google Scholar] [CrossRef]
- Soboh, R.S.; Al-Masoodi, A.H.; Erman, F.N.; Al-Masoodi, A.H.; Nizamani, B.; Arof, H.; Yasin, M.; Harun, S.W. Lawsone Dye Material as Potential Saturable Absorber for Q-Switched Erbium Doped Fiber Laser. Opt. Fiber Technol. 2021, 64, 102537. [Google Scholar] [CrossRef]
- Chang, R.; Xu, C.; Liu, Y.; Liu, J.; Liu, W.; Jiang, F.; Zhang, S. 5-Aminolevulinic Acid Photodynamic Therapy and Holmium Laser Treatment for Intraurethral Condylomata Acuminata in a Renal Transplant Patient. Photodiagnosis Photodyn. Ther. 2021, 36, 102496. [Google Scholar] [CrossRef]
- Yao, J.; Lifante, J.; Rodríguez-Sevilla, P.; de la Fuente-Fernández, M.; Sanz-Rodríguez, F.; Ortgies, D.H.; Calderon, O.G.; Melle, S.; Ximendes, E.; Jaque, D. In Vivo Near-Infrared Imaging Using Ternary Selenide Semiconductor Nanoparticles with an Uncommon Crystal Structure. Small 2021, 17, 2103505. [Google Scholar] [CrossRef]
- Hu, T.; Jackson, S.D.; Hudson, D.D. Ultrafast Pulses from a Mid-Infrared Fiber Laser. Opt. Lett. 2015, 40, 4226–4228. [Google Scholar] [CrossRef]
- Hunter, J.G.; Dixon, J.A. Lasers in Cardiovascular Surgery—Current Status. West. J. Med. 1985, 142, 506–510. [Google Scholar] [PubMed]
- Sha, W.; Chanteloup, J.-C.; Mourou, G. Ultrafast Fiber Technologies for Compact Laser Wake Field in Medical Application. Photonics 2022, 9, 423. [Google Scholar] [CrossRef]
- Ryan, R.W.; Wolf, T.; Spetzler, R.F.; Coons, S.W.; Fink, Y.; Preul, M.C. Application of a Flexible CO2 Laser Fiber for Neurosurgery: Laser-Tissue Interactions: Laboratory Investigation. J. Neurosurg. 2010, 112, 434–443. [Google Scholar] [CrossRef]
- Giesen, C.; Bochvarov, L.; Erben, B.; Reichelt, S.; Hoefer, M.; Müller, L.; Reinacher, P.; Lenenbach, A. Laser Ablation of Bone Tissue with Q-Switched Infrared Laser Sources for Neurosurgical Applications. In Proceedings of the Photonic Therapeutics and Diagnostics in Dentistry, Head and Neck Surgery, and Otolaryngology, SPIE, Online, 6–11 March 2021; Volume 11627, p. 116270B. [Google Scholar]
- Kirsch, D.C.; Chen, S.; Sidharthan, R.; Chen, Y.; Yoo, S.; Chernysheva, M. Short-Wave IR Ultrafast Fiber Laser Systems: Current Challenges and Prospective Applications. J. Appl. Phys. 2020, 128, 180906. [Google Scholar] [CrossRef]
- Wu, W.; Balci, M.; Song, S.; Liu, C.; Fokine, M.; Laurell, F.; Hawkins, T.; Ballato, J.; Gibson, U.J. CO2 Laser Annealed SiGe Core Optical Fibers with Radial Ge Concentration Gradients. Opt. Mater. Express 2020, 10, 926–936. [Google Scholar] [CrossRef]
- Wu, W.; Balci, M.H.; Mühlberger, K.; Fokine, M.; Laurell, F.; Hawkins, T.; Ballato, J.; Gibson, U.J. Ge-Capped SiGe Core Optical Fibers. Opt. Mater. Express 2019, 9, 4301–4306. [Google Scholar] [CrossRef] [Green Version]
- Ahn, D.-H.; Kang, D.-H.; Cheong, B.; Kwon, H.-S.; Kwon, M.-H.; Lee, T.-Y.; Jeong, J.; Lee, T.S.; Kim, I.H.; Kim, K.-B. A Nonvolatile Memory Based on Reversible Phase Changes between Fcc and Hcp. IEEE Electron Device Lett. 2005, 26, 286–288. [Google Scholar] [CrossRef]
- Liu, B.; Song, Z.; Feng, S.; Chen, B. Characteristics of Chalcogenide Nonvolatile Memory Nano-Cell-Element Based on Sb2Te3 Material. Microelectron. Eng. 2005, 82, 168–174. [Google Scholar] [CrossRef]
- Sun, Z.; Zhou, J.; Ahuja, R. Structure of Phase Change Materials for Data Storage. Phys. Rev. Lett. 2006, 96, 055507. [Google Scholar] [CrossRef]
- Lenz, G.; Zimmermann, J.; Katsufuji, T.; Lines, M.E.; Hwang, H.Y.; Spälter, S.; Slusher, R.E.; Cheong, S.-W.; Sanghera, J.S.; Aggarwal, I. Large Kerr Effect in Bulk Se-Based Chalcogenide Glasses. Opt. Lett. 2000, 25, 254–256. [Google Scholar] [CrossRef] [PubMed]
- Asobe, M.; Kanamori, T.; Naganuma, K.; Itoh, H.; Kaino, T. Third-order Nonlinear Spectroscopy in As2S3 Chalcogenide Glass Fibers. J. Appl. Phys. 1995, 77, 5518–5523. [Google Scholar] [CrossRef]
- Spälter, S.; Hwang, H.Y.; Zimmermann, J.; Lenz, G.; Katsufuji, T.; Cheong, S.-W.; Slusher, R.E. Strong Self-Phase Modulation in Planar Chalcogenide Glass Waveguides. Opt. Lett. 2002, 27, 363–365. [Google Scholar] [CrossRef]
- Asobe, M.; Kobayashi, H.; Itoh, H.; Kanamori, T. Laser-Diode-Driven Ultrafast All-Optical Switching by Using Highly Nonlinear Chalcogenide Glass Fiber. Opt. Lett. 1993, 18, 1056–1058. [Google Scholar] [CrossRef] [PubMed]
- Gopinath, J.T.; Soljačić, M.; Ippen, E.P.; Fuflyigin, V.N.; King, W.A.; Shurgalin, M. Third Order Nonlinearities in Ge-As-Se-Based Glasses for Telecommunications Applications; American Institute of Physics: College Park, MD, USA, 2004. [Google Scholar]
- Ranka, J.K.; Windeler, R.S.; Stentz, A.J. Visible Continuum Generation in Air–Silica Microstructure Optical Fibers with Anomalous Dispersion at 800 Nm. Opt. Lett. 2000, 25, 25–27. [Google Scholar] [CrossRef] [PubMed]
- Birks, T.A.; Wadsworth, W.J.; Russell, P.S.J. Supercontinuum Generation in Tapered Fibers. Opt. Lett. 2000, 25, 1415–1417. [Google Scholar] [CrossRef]
- Slusher, R.E.; Lenz, G.; Hodelin, J.; Sanghera, J.; Shaw, L.B.; Aggarwal, I.D. Large Raman Gain and Nonlinear Phase Shifts in High-Purity As2Se3 Chalcogenide Fibers. J. Opt. Soc. Am. B 2004, 21, 1146–1155. [Google Scholar] [CrossRef]
- Ruan, Y.; Jarvis, R.A.; Rode, A.V.; Madden, S.; Luther-Davies, B. Wavelength Dispersion of Verdet Constants in Chalcogenide Glasses for Magneto-Optical Waveguide Devices. Opt. Commun. 2005, 252, 39–45. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, L.; Teng, C.; Wang, Z.; Bai, H.; Kumar, S.; Min, R. Semiconductor Multimaterial Optical Fibers for Biomedical Applications. Biosensors 2022, 12, 882. https://doi.org/10.3390/bios12100882
Shen L, Teng C, Wang Z, Bai H, Kumar S, Min R. Semiconductor Multimaterial Optical Fibers for Biomedical Applications. Biosensors. 2022; 12(10):882. https://doi.org/10.3390/bios12100882
Chicago/Turabian StyleShen, Lingyu, Chuanxin Teng, Zhuo Wang, Hongyi Bai, Santosh Kumar, and Rui Min. 2022. "Semiconductor Multimaterial Optical Fibers for Biomedical Applications" Biosensors 12, no. 10: 882. https://doi.org/10.3390/bios12100882
APA StyleShen, L., Teng, C., Wang, Z., Bai, H., Kumar, S., & Min, R. (2022). Semiconductor Multimaterial Optical Fibers for Biomedical Applications. Biosensors, 12(10), 882. https://doi.org/10.3390/bios12100882