Progress in the Development of Detection Strategies Based on Olfactory and Gustatory Biomimetic Biosensors
Abstract
:1. Introduction
2. Sensing Mechanisms of Olfaction and Gustation
2.1. The Olfactory System
2.2. The Gustatory System
3. Immobilization Strategies of Sensitive Materials
4. Various Biomimetic Olfactory and Gustatory Biosensors
4.1. Biomimetic Olfactory and Gustatory Biosensors Based on Field-Effect Devices
4.1.1. Field-Effect Transistor
4.1.2. Other Types of Biosensors Based on Field Effect Properties
4.2. Biomimetic Olfactory and Gustatory Biosensor Based on Electrode Array
4.2.1. Micro-Electrode Array
4.2.2. Electric Cell-Substrate Impedance Sensing
Detection Methods | Sensitive Material Types | Target Compound(s) | Detection Limit or Minimum Detection/Detection Range | Selectivity | Data Analysis Auxiliary Algorithm | Potential Applications Fields | Ref. |
---|---|---|---|---|---|---|---|
MEAs in vivo for electrophysiological detection | The mitral/tufted cells | The natural stimuli (banana, orange, pineapple, strawberry) and the monomolecular odors (isoamyl acetate, citral) | - | - | PCA (isoamyl acetate and banana; orange and citral) (PC1: 64.3%, PC2: 20.6%, PC3: 6.6%) (strawberry, pineapple, orange, banana) (PC1: 67.7%, PC2: 14.4%, PC3: 10.7%) for different ligands classification | Security Application | [99] |
Labeled murine M72 olfactory sensory neurons with the green fluorescent protein | Trinitrotoluene | 10−5 M/10−6 M to 10−3 M | Acetophenone and methyl salicylate | - | Security Application | [100] | |
The mitral/tufted cells | Nonanoic acid, octanoic acid, amyl hexanoate, and lyral | 10−5 M/10−6 M to 10−3 M | Heptanoic acid, amyl hexanoate and ethyl acetate | PCA (PC1: 60.6%, PC2: 26.6%, PC3: 6.9%) | Food application | [101] | |
The gustatory cortex | Denatonium benzoate | 0.076 μM/10 μM to 100 mM | Sucrose, NaCl, HCl | PCA (PC1: 31.7%; PC2: 27.6%) for different ligands classification | Drug screening | [102] | |
Quinine HCl denatonium benzoate salicin | The typical bitter-responsive neuron (BRN): (8.95 μM, 52.0 μM, and 14.1 μM, respectively.) and bitter-specific LFP envelopes (56.3 μM, 0.130 μM and 21.4 μM, respectively) / 1 mM to 100 mM | Sucrose, NaCl, HCl | PCA (PC1: 45.8%; PC2: 37.4%). SVM: 94.05% for different ligands classification | [103] | |||
MEAs in vitro for electrophysiological detection | The taste epithelium | Isoamyl acetate and acetic acid | - | - | K-means algorithm | Food additives | [68] |
Primary cardiomyocytes | Denatonium Benzoate, diphenidol, monosodium glutamate | 3.46 × 10−6 M, 2.92 × 10−6 M, and 1.61 × 10−6 M, respectively/10 μM, to 640 μM, 5 μM–320 μM, and 1 μM to 4000 μM, respectively | Sucrose, NaCl, HCl | PCA (the cumulative contribution rate is 94.9%) | Drug screening | [82] | |
Primary taste cells obtained from fungiform papillae | Glucose, sucrose, saccharin, cyclamate | Glucose (50 mM–150 mM) and saccharin (5 mM to 15 mM) | - | K-means algorithm | Food application | [104] | |
Olfactory cells prepared from the olfactory epithelium | The hydrochloric acid solutions | - | - | Whole-cell Hodgkin–Huxley type mathematical model | [105] | ||
ECIS for impedance | Male mouse germ cells expressing T2Rs | Octanal and hexanal | 0.1 mM | - | - | Flavoring agent | [106] |
The Caco-2 cell line endogenously expressing T2R38 | Denatonium, nphenylthiourea, 6-propyl-2 thiouracil, quinine | 78 nM, 4 nM, 0.4 nM and 62.5 nM, respectively/83 μM to 5000 μM, 4 μM to 200 μM, 0.5 μM to 50 μM and 62.5 μM to 4000 μM, respectively | Glucose, monosodium glutamate, NaCl, HCl | - | Drug screening | [108] | |
Phenylthiocarbamide and propylthiouracil | 0.09352 μM and 0.8404 μM, respectively/1 μM to 1 mM | Glucose, monosodium glutamate, NaCl, HCl | The ligand-based virtual screening protocol (Screening agonists: thiosinamine, α-Naphthylthiourea, and phenyl isothiocyanate) | Drug screening | [107] |
4.3. Biomimetic Olfactory and Gustatory Biosensor Based on Electrochemical Detection Method
Detection Methods | Sensitive Material Types | Target Compound(s) | Detection Limit or Minimum Detection/Detection Range | Stability/Repeatability (RSD)/Reproducibility (RSD) | Ligand and Receptor Binding Index | Potential Applications Fields | Ref. |
---|---|---|---|---|---|---|---|
GCE as the working electrode | hT1R1 | Sodium glutamate, disodium inosinate, disodium guanylate, and disodium succinate | 1.5 pM, 0.88 pM, 2.3 pM and 0.86 pM. respectively/10−14 to 10−12 M | - | Ka: 7.420 × 10−16 M, 1.899 × 10−15 M, 5.449 × 10−16 M and, 2.251 × 10−15 M, respectively | Food application | [66] |
hT1R1 | Five umami peptides: DVILPVPAF, TVAGGAWTYNTTSAVTVK, AMLEQVAMTDK, IGAEVYHNLK and GGKLVVDGHAIT | 0.258 mM, 0.799 mM, 0.273 mM, 0.858 mM, 0.437 mM, respectively./DF9, TK18 and AK11: 10−13 g/L~10−11 g/L; IK10 and GT12: 10−12 g/L to 10−10 g/L. | - | Ka: 6.85 × 10−13 M−1, 7.40 × 10−13 M−1, 7.06 × 10−13 M−1, 6.68 × 10−12 M−1, 1.12 × 10−11 M−1, respectively. | Food application | [118] | |
The venus flytrap (VFT) domain of T1R1 | Inosine-5′-monophosphate, monosodium L-glutamate, beefy meaty peptide, and sodium succinate | 0.1 pM, 0.1 pM, 0.1 pM, and 0.01 pM, respectively. And 10−13 M to 10−6 M, 10−13 M to 10−8 M, 10−13 M to 10−7 M, and 10−14 M to 10−8 M, respectively. | 4 days (90%)/-/2.3–3.2% | - | Food application | [112] | |
The cell membrane contained TRPV1 | Capsaicin, allicin and sanshool | 1 × 10−15 M, 1 × 10−14 M and 1 × 10−15 M, respectively./1 × 10−15 to 1 × 10−13 M, 1 × 10−14 to 1 × 10−12 and 1 × 10−15 to 1 × 10−12 M, respectively. | 6 days (76.39%)/2.72%/0.75% | Ka: 3.5206 × 10−16 M, 5.0227 × 10−15 M and 1.7832 × 10−15 M, respectively. | Food additives | [67] | |
The rabbit tongue bud tissue | L-monosodium glutamate and disodium 5′-inosinate | 10−13 to 10−8 M, 10−13 to 10−6 M, respectively. | More than 5 days (81.75%) | Ka: 2.811 × 10−14 M−1 to 3.620 × 10−12 M−1, 1.716 × 10−14 M−1 to 2.526 × 10−14 M−1, respectively. | Food application | [65] | |
The SD rat taste bud tissue expressing TRPV1 | Capsaicin and mixed with analgesic compounds (capsazepine, AMG 517, loureirin B, aconitine, anandamide and tetrahydropalmatine) | 1 × 10−18 M, -/1 × 10−18 M to 1 × 10−15 M | - | Ka: 2.0212 × 10−18 M, 7.159 M, 11.7241 M, 14.5442 M, 2.4218 M, and 2.4689 M, respectively. | Food additives | [111] | |
The SD rats taste-bud tissues | Capsaicin, gingerol | 1 × 10−13 M and 1 × 10−12 M, respectively/10−13 M to 9 × 10−13 M and 1 × 10−12 M to 3 × 10−11 M, respectively | More than 3 days (94.3%)/7.34%/9.03% | Ka: 1.249 × 10−12 M and 1.564 × 10−11 M, respectively. | Food additives | [109] | |
The porcine taste bud tissues | Sucrose octaacetate, denatonium benzoate, quercetin | 1 × 10−14 M, 1 × 10−13 M, 1 × 10−14 M, respectively/10−14 to 10−12 M, 10−13 to 10−8 M and 10−14 to 10−9 M, respectively | More than 7 days (90.09%)/RSD: 5.34%/RSD (Δ I): 1.72% | Ka: 8.748 × 10−15 M, 1.429 × 10−12 M, 6.613 × 10−14 M, respectively. | Food application | [110] | |
The porcine taste bud tissues | L-glutamate | 10−16 M/10−16 M to 10−13 M | -/RSD: 7.00%/RSD: 7.71% | Ka: 1.84 × 10−16–3.63 × 10−15 | Food application | [119] | |
Gold disk electrodes for EIS detection | Liposomes containing Or10a, Or22a and Or71a | Methyl salicylate, methyl hexanoate and 4-ethylguaiacol, respectively. | 1 pM, 1 fM and 0.1 fM, respectively./10–13 M–10−7 M, 10–15 M to 10−7 M and 10–17 to 10−9 M, respectively. | - | - | Cosmetics and medicine | [34] |
SPCE as the working electrode | OBP II | Docosahexaenoic acid, linoleic acid, lauric acid | 6 × 10−11 mg/mL, 10−10 mg/mL and 10−9 mg/mL, respectively./10−8 mg/mL to 10−4 mg/mL, 10−9 mg/mL to 10−4 mg/mL and 10−9 mg/mL to 10−4 mg/mL, respectively. | - | The dissociation constant: 10−6 M, 10−9 M and 10−6 M, respectively | Drug screening | [115] |
The taste receptor cells (NCI-H716 and STC-1 cells) | The sweetener mixtures and tastant mixtures. | - | - | - | Food application | [113] | |
IDE for the impedance variation detection | OBPs from oriental fruit fly | Isoamyl acetate, β-ionone, and benzaldehyde | 3.3 × 10−8 M, 6.2 × 10−8 M, and 8.4 × 10−8 M, respectively/10−7 M to 10−4 M | 2 weeks/- | - | Flavoring agent | [116] |
The olfactory receptor-derived peptides (NQLSNLSFSDLC) | Trimethylamine | 0.01 ppt/0.1 ppb to 10 ppb | - | - | The spoiled food | [117] |
4.4. Olfactory and Gustatory Detection Strategies Based on Optical Measurement
4.4.1. Ca2+ Imaging
4.4.2. SPR Measurement
4.4.3. Other Types of Optical Measurement Methods
4.5. Biomimetic Olfactory and Gustatory Biosensor Based on Mass Sensitive Device
5. Future Prospects
5.1. Enhanced Elements
5.2. Sensitive Materials
5.3. Detection Strategies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boone, M.H.; Liang-Guallpa, J.; Krashes, M.J. Examining the role of olfaction in dietary choice. Cell Rep. 2021, 34, 108755. [Google Scholar] [CrossRef]
- Pirc, M.; Maas, P.; De Graaf, K.; Lee, H.-S.; Boesveldt, S. Humans possess the ability to discriminate food fat content solely based on retronasal olfaction. Food Qual. Prefer. 2022, 96, 104449. [Google Scholar] [CrossRef]
- Bushdid, C.; Magnasco, M.O.; Vosshall, L.B.; Keller, A. Humans Can Discriminate More than 1 Trillion Olfactory Stimuli. Science 2014, 343, 1370–1372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grabe, V.; Sachse, S. Fundamental principles of the olfactory code. Biosystems 2018, 164, 94–101. [Google Scholar] [CrossRef]
- Wasilewski, T.; Migoń, D.; Gębicki, J.; Kamysz, W. Critical review of electronic nose and tongue instruments prospects in pharmaceutical analysis. Anal. Chim. Acta 2019, 1077, 14–29. [Google Scholar] [CrossRef]
- Glatz, R.; Bailey-Hill, K. Mimicking nature’s noses: From receptor deorphaning to olfactory biosensing. Prog. Neurosci. 2011, 93, 270–296. [Google Scholar] [CrossRef] [PubMed]
- D’Hulst, C.; Mina, R.B.; Gershon, Z.; Jamet, S.; Cerullo, A.; Tomoiaga, D.; Bai, L.; Belluscio, L.; Rogers, M.E.; Sirotin, Y.; et al. MouSensor: A Versatile Genetic Platform to Create Super Sniffer Mice for Studying Human Odor Coding. Cell Rep. 2016, 16, 1115–1125. [Google Scholar] [CrossRef] [Green Version]
- Behrens, M.; Briand, L.; de March, C.A.; Matsunami, H.; Yamashita, A.; Meyerhof, W.; Weyand, S. Structure-function relationships of olfactory and taste receptors. Chem. Sens. 2018, 43, 81–87. [Google Scholar] [CrossRef]
- Couic-Marinier, F.; Lemain, M. Olfaction, anosmie et rééducation olfactive. Actual. Pharm. 2021, 60, 49–52. [Google Scholar] [CrossRef]
- Buck, L.; Axel, R. A novel multigene family may encode odorant receptors: A molecular basis for odor recognition. Cell 1991, 65, 175–187. [Google Scholar] [CrossRef]
- Shin, N.; Lee, S.H.; Pham Ba, V.A.; Park, T.H.; Hong, S. Micelle-stabilized Olfactory Receptors for a Bioelectronic Nose Detecting Butter Flavors in Real Fermented Alcoholic Beverages. Sci. Rep. 2020, 10, 9064. [Google Scholar] [CrossRef]
- Matindoust, S.; Farzi, G.; Nejad, M.B.; Shahrokhabadi, M.H. Polymer-based gas sensors to detect meat spoilage: A review. React. Funct. Polym. 2021, 165, 104962. [Google Scholar] [CrossRef]
- Jiang, H.; Liu, T.; He, P.; Chen, Q. Quantitative analysis of fatty acid value during rice storage based on olfactory visualization sensor technology. Sens. Actuators B Chem. 2020, 309, 127816. [Google Scholar] [CrossRef]
- Cao, L.; Ma, Q.; Liang, T.; Sun, G.; Chi, W.; Zhang, C.; Li, J.; Wang, L. A semen cassia gum-based film with visual–olfactory function for indicating the freshness change of animal protein-rich food. Int. J. Biol. Macromol. 2019, 133, 243–252. [Google Scholar] [CrossRef]
- Kim, K.H.; Moon, D.; An, J.E.; Park, S.J.; Seo, S.E.; Ha, S.; Kim, J.; Kim, K.; Phyo, S.; Lee, J.; et al. Wireless portable bioelectronic nose device for multiplex monitoring toward food freshness/spoilage. Biosens. Bioelectron. 2022, 215, 114551. [Google Scholar] [CrossRef]
- Xu, S.; Liang, M.; Liu, B.; Zhang, Z.; Liu, Y.; Liu, Z.; Wang, Y. Investigation on key odorants in braised chicken thigh meat and their changes during storage. J. Food Compos. Anal. 2022, 114, 104765. [Google Scholar] [CrossRef]
- Cetó, X.; Pérez, S. Voltammetric electronic tongue for vinegar fingerprinting. Talanta 2020, 219, 121253. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Du, S.; Onodera, T.; Yatabe, R.; Tanaka, M.; Okochi, M.; Toko, K. An SPR Sensor Chip Based on Peptide-Modified Single-Walled Carbon Nanotubes with Enhanced Sensitivity and Selectivity in the Detection of 2,4,6-Trinitrotoluene Explosives. Sensors 2018, 18, 4461. [Google Scholar] [CrossRef] [Green Version]
- Wasilewski, T.; Gębicki, J.; Kamysz, W. Bio-inspired approaches for explosives detection. TrAC Trends Anal. Chem. 2021, 142, 116330. [Google Scholar] [CrossRef]
- Ke, Y.; Liu, Y.; Zu, B.; Lei, D.; Wang, G.; Li, J.; Ren, W.; Dou, X. Electronic Tuning in Reaction-Based Fluorescent Sensing for Instantaneous and Ultrasensitive Visualization of Ethylenediamine. Angew. Chem. Int. Ed. 2022, 61, e202203358. [Google Scholar] [CrossRef]
- González-Calabuig, A.; Cetó, X.; Del Valle, M. A Voltammetric Electronic Tongue for the Resolution of Ternary Nitrophenol Mixtures. Sensors 2018, 18, 216. [Google Scholar] [CrossRef] [Green Version]
- Wasilewski, T.; Neubauer, D.; Kamysz, W.; Gębicki, J. Recent progress in the development of peptide-based gas biosensors for environmental monitoring. Case Stud. Chem. Environ. Eng. 2022, 5, 100197. [Google Scholar] [CrossRef]
- Justino, C.I.L.; Duarte, A.C.; Rocha-Santos, T.A.P. Recent Progress in Biosensors for Environmental Monitoring: A Review. Sensors 2017, 17, 2918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, C.; Kim, S.-J.; Lee, Y.; Nguyen, T.M.; Lee, J.-M.; Moon, J.-S.; Han, D.-W.; Oh, J.-W. A phage- and colorimetric sensor-based artificial nose model for banana ripening analysis. Sens. Actuators B Chem. 2022, 362, 131763. [Google Scholar] [CrossRef]
- Khatib, M.; Haick, H. Sensors for Volatile Organic Compounds. ACS Nano 2022, 16, 7080–7115. [Google Scholar] [CrossRef] [PubMed]
- Ceto, X.; del Valle, M. Electronic tongue applications for wastewater and soil analysis. iScience 2022, 25, 104304. [Google Scholar] [CrossRef]
- Xing, Y.; Vincent, T.A.; Cole, M.; Gardner, J.W. Real-Time Thermal Modulation of High Bandwidth MOX Gas Sensors for Mobile Robot Applications. Sensors 2019, 19, 1180. [Google Scholar] [CrossRef] [Green Version]
- Yamada, T.; Sugiura, H.; Mimura, H.; Kamiya, K.; Osaki, T.; Takeuchi, S. Highly sensitive VOC detectors using insect olfactory receptors reconstituted into lipid bilayers. Sci. Adv. 2021, 7, eabd2013. [Google Scholar] [CrossRef] [PubMed]
- Gao, A.; Wang, Y.; Zhang, D.; He, Y.; Zhang, L.; Liu, Y.; Wang, Y.; Song, H.; Li, T. Highly sensitive and selective detection of human-derived volatile organic compounds based on odorant binding proteins functionalized silicon nanowire array. Sens. Actuators B Chem. 2020, 309, 127762. [Google Scholar] [CrossRef]
- Doty, R.L. Olfactory dysfunction in COVID-19: Pathology and long-term implications for brain health. Trends Mol. Med. 2022, 28, 781–794. [Google Scholar] [CrossRef]
- Wasilewski, T.; Brito, N.F.; Szulczyński, B.; Wojciechowski, M.; Buda, N.; Melo, A.C.A.; Kamysz, W.; Gębicki, J. Olfactory receptor-based biosensors as potential future tools in medical diagnosis. TrAC Trends Anal. Chem. 2022, 150, 116599. [Google Scholar] [CrossRef]
- Ceto, X.; Bonet-san-emeterio, M.; Ortiz-aguayo, D.; Rodriguez-franch, E.; del Valle, M. The experiences in the detection of drugs of abuse in smuggling seizures and forensic samples using electronic tongue principles. In Proceedings of the IEEE International Symposium on Olfaction and Electronic Nose (ISOEN), Aveiro, Portugal, 29 May 2022–1 June 2022; p. 4. [Google Scholar]
- Wang, M.; Ceto, X.; del Valle, M. A novel electronic tongue using electropolymerized molecularly imprinted polymers for the simultaneous determination of active pharmaceutical ingredients. Biosens. Bioelectron. 2022, 198, 113807. [Google Scholar] [CrossRef]
- Khadka, R.; Aydemir, N.; Carraher, C.; Hamiaux, C.; Colbert, D.; Cheema, J.; Malmström, J.; Kralicek, A.; Travas-Sejdic, J. An ultrasensitive electrochemical impedance-based biosensor using insect odorant receptors to detect odorants. Biosens. Bioelectron. 2019, 126, 207–213. [Google Scholar] [CrossRef]
- Majchrzak, T.; Wojnowski, W.; Dymerski, T.; Gębicki, J.; Namieśnik, J. Electronic noses in classification and quality control of edible oils: A review. Food Chem. 2018, 246, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Hagerty, S.; Daniels, Y.; Singletary, M.; Pustovyy, O.; Globa, L.; MacCrehan, W.A.; Muramoto, S.; Stan, G.; Lau, J.W.; Morrison, E.E.; et al. After oxidation, zinc nanoparticles lose their ability to enhance responses to odorants. BioMetals 2016, 29, 1005–1018. [Google Scholar] [CrossRef]
- Manz, K.M.; Siemann, J.K.; McMahon, D.G.; Grueter, B.A. Patch-clamp and multi-electrode array electrophysiological analysis in acute mouse brain slices. STAR Protoc. 2021, 2, 100442. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, K.; Ruszkiewicz, D.M.; Allen, H.; Lindley, M.R.; Turner, M.A.; Hunsicker, E. Breath selection methods for compact mass spectrometry breath analysis. J. Breath Res. 2019, 13, 046013. [Google Scholar] [CrossRef]
- Alkhalifah, Y.; Phillips, I.; Soltoggio, A.; Darnley, K.; Nailon, W.H.; McLaren, D.; Eddleston, M.; Thomas, C.L.P.; Salman, D. VOCCluster: Untargeted Metabolomics Feature Clustering Approach for Clinical Breath Gas Chromatography/Mass Spectrometry Data. Anal. Chem. 2020, 92, 2937–2945. [Google Scholar] [CrossRef]
- Beck, J.J.; Willett, D.S.; Gee, W.S.; Mahoney, N.E.; Higbee, B.S. Differentiation of Volatile Profiles from Stockpiled Almonds at Varying Relative Humidity Levels Using Benchtop and Portable GC-MS. J. Agric. Food Chem. 2016, 64, 9286–9292. [Google Scholar] [CrossRef]
- Beck, J.J.; Porter, N.; Cook, D.; Gee, W.S.; Griffith, C.M.; Rands, A.D.; Truong, T.V.; Smith, L.; San Román, I. In-field volatile analysis employing a hand-held portable GC-MS: Emission profiles differentiate damaged and undamaged yellow starthistle flower heads. Phytochem. Anal. 2015, 26, 395–403. [Google Scholar] [CrossRef]
- Nazemi, H.; Joseph, A.; Park, J.; Emadi, A. Advanced Micro- and Nano-Gas Sensor Technology: A Review. Sensors 2019, 19, 1285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popa, D.; Hopper, R.; Ali, S.Z.; Cole, M.T.; Fan, Y.; Veigang-Radulescu, V.P.; Chikkaraddy, R.; Nallala, J.; Xing, Y.; Alexander-Webber, J.; et al. A highly stable, nanotube-enhanced, CMOS-MEMS thermal emitter for mid-IR gas sensing. Sci. Rep. 2021, 11, 22915. [Google Scholar] [CrossRef] [PubMed]
- Vahdatiyekta, P.; Zniber, M.; Bobacka, J.; Huynh, T.-P. A review on conjugated polymer-based electronic tongues. Anal. Chim. Acta 2022, 1221, 340114. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Xu, J. Applications of electronic nose (e-nose) and electronic tongue (e-tongue) in food quality-related properties determination: A review. Artif. Intell. Agric. 2020, 4, 104–115. [Google Scholar] [CrossRef]
- Sakr, R.; Ghsoub, C.; Rbeiz, C.; Lattouf, V.; Riachy, R.; Haddad, C.; Zoghbi, M. COVID-19 detection by dogs: From physiology to field application-a review article. Postgrad. Med. J. 2022, 98, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Juge, A.E.; Foster, M.F.; Daigle, C.L. Canine olfaction as a disease detection technology: A systematic review. Appl. Anim. Behav. Sci. 2022, 253, 105664. [Google Scholar] [CrossRef]
- Overall, K.L. Canine olfaction: From detection to biomarkers. J. Vet. Behav. 2022, 52, A3–A4. [Google Scholar] [CrossRef]
- Singletary, M.; Lazarowski, L. Canine Special Senses: Considerations in Olfaction, Vision, and Audition. Vet. Clin. N. Am. Small Anim. Pract. 2021, 51, 839–858. [Google Scholar] [CrossRef]
- Jeong, S.; Kim, D.; Kim, W.-J.; Kim, G. Detection of volatile organic compounds from human prostate cancer cell using canine olfaction. J. Vet. Behav. 2022, 49, 80–84. [Google Scholar] [CrossRef]
- Oh, Y.; Lee, Y.; Heath, J.; Kim, M. Applications of Animal Biosensors: A Review. IEEE Sens. J. 2015, 15, 637–645. [Google Scholar]
- Persaud, K.C. Towards bionic noses. Sens. Rev. 2017, 37, 165–171. [Google Scholar] [CrossRef]
- Cave, J.W.; Wickiser, J.K.; Mitropoulos, A.N. Progress in the development of olfactory-based bioelectronic chemosensors. Biosens. Bioelectron. 2019, 123, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Wasilewski, T.; Kamysz, W.; Gębicki, J. Bioelectronic tongue: Current status and perspectives. Biosens. Bioelectron. 2020, 150, 111923. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.M.; Son, M.; Kang, J.H.; Kim, D.; Hong, S.; Park, T.H.; Chun, H.S.; Choi, S.S. A triangle study of human, instrument and bioelectronic nose for non-destructive sensing of seafood freshness. Sci. Rep. 2018, 8, 547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Muto, M.; Yatabe, R.; Tahara, Y.; Onodera, T.; Tanaka, M.; Okochi, M.; Toko, K. Highly Selective Rational Design of Peptide-Based Surface Plasmon Resonance Sensor for Direct Determination of 2,4,6-trinitrotoluene (TNT) Explosive. Sens. Actuators B Chem. 2018, 264, 279–284. [Google Scholar] [CrossRef]
- Guo, L.; Yang, Z.; Dou, X. Artificial Olfactory System for Trace Identification of Explosive Vapors Realized by Optoelectronic Schottky Sensing. Adv. Mater. 2017, 29, 1604528. [Google Scholar] [CrossRef]
- Zhu, J.; Arena, S.; Spinelli, S.; Liu, D.; Zhang, G.; Wei, R.; Cambillau, C.; Scaloni, A.; Wang, G.; Pelosi, P. Reverse chemical ecology: Olfactory proteins from the giant panda and their interactions with putative pheromones and bamboo volatiles. Proc. Natl. Acad. Sci. USA 2017, 114, E9802–E9810. [Google Scholar] [CrossRef] [Green Version]
- Tegoni, M.; Pelosi, P.; Vincent, F.; Spinelli, S.; Campanacci, V.; Grolli, S.; Ramoni, R.; Cambillau, C. Mammalian odorant binding proteins. Biochim. Biophys. Acta 2000, 1482, 229–240. [Google Scholar] [CrossRef]
- Pelosi, P. Odorant-binding proteins. Crit. Rev. Biochem. Mol. Biol. 1994, 29, 199–228. [Google Scholar] [CrossRef]
- Pelosi, P.; Mastrogiacomo, R.; Iovinella, I.; Tuccori, E.; Persaud, K.C. Structure and biotechnological applications of odorant-binding proteins. Appl. Microbiol. Biotechnol. 2014, 98, 61–70. [Google Scholar] [CrossRef]
- Barbosa, A.J.M.; Oliveira, A.R.; Roque, A.C.A. Protein- and Peptide-Based Biosensors in Artificial Olfaction. Trends Biotechnol. 2018, 36, 1244–1258. [Google Scholar] [CrossRef] [PubMed]
- Hurot, C.; Brenet, S.; Buhot, A.; Barou, E.; Belloir, C.; Briand, L.; Hou, Y. Highly sensitive olfactory biosensors for the detection of volatile organic compounds by surface plasmon resonance imaging. Biosens. Bioelectron. 2019, 123, 230–236. [Google Scholar] [CrossRef]
- Pelosi, P.; Zhu, J.; Knoll, W. Odorant-Binding Proteins as Sensing Elements for Odour Monitoring. Sensors 2018, 18, 3248. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Huang, Y.; Zhang, N.; Chen, G.; Jiang, S.; Zhang, Y.; Pang, G.; Wang, W.; Liu, Y. Study on the distribution of umami receptors on the tongue and its signal coding logic based on taste bud biosensor. Biosens. Bioelectron. 2022, 197, 113780. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Lu, D.; Liu, H.; Liu, S.; Jiang, S.; Pang, G.C.; Liu, Y. Preliminary research on the receptor-ligand recognition mechanism of umami by an hT1R1 biosensor. Food Funct. 2019, 10, 1280–1287. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Song, P.; Bu, F.; Pang, G.; Zhou, A.; Zhang, Y.; Xie, J. The investigation of detection and sensing mechanism of spicy substance based on human TRPV1 channel protein-cell membrane biosensor. Biosens. Bioelectron. 2021, 172, 112779. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhang, D.; Li, N.; Lu, Y.; Yao, Y.; Li, S.; Liu, Q. Zinc Nanoparticles-equipped Bioelectronic Nose Using a Microelectrode Array for Odorant Detection. Anal. Sci. 2016, 32, 387–393. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.-Z. A piezoelectric biosensor as an olfactory receptor for odour detection: Electronic nose. Biosens. Bioelectron. 1999, 14, 9–18. [Google Scholar] [CrossRef]
- Lee, S.H.; Lim, J.H.; Park, J.; Hong, S.; Park, T.H. Bioelectronic nose combined with a microfluidic system for the detection of gaseous trimethylamine. Biosens. Bioelectron. 2015, 71, 179–185. [Google Scholar] [CrossRef]
- Son, M.; Kim, D.; Kang, J.; Lim, J.H.; Lee, S.H.; Ko, H.J.; Hong, S.; Park, T.H. Bioelectronic Nose Using Odorant Binding Protein-Derived Peptide and Carbon Nanotube Field-Effect Transistor for the Assessment of Salmonella Contamination in Food. Anal. Chem. 2016, 88, 11283–11287. [Google Scholar] [CrossRef] [Green Version]
- Wasilewski, T.; Szulczyński, B.; Wojciechowski, M.; Kamysz, W.; Gębicki, J. Determination of long-chain aldehydes using a novel quartz crystal microbalance sensor based on a biomimetic peptide. Microchem. J. 2020, 154, 104509. [Google Scholar] [CrossRef]
- Yun, J.; Cho, A.N.; Cho, S.W.; Nam, Y.S. DNA-mediated self-assembly of taste cells and neurons for taste signal transmission. Biomater. Sci. 2018, 6, 3388–3396. [Google Scholar] [CrossRef]
- Le-Kim, T.H.; Koo, B.I.; Yun, J.S.; Cho, S.-W.; Nam, Y.S. Hydrogel Skin-Covered Neurons Self-Assembled with Gustatory Cells for Selective Taste Stimulation. ACS Omega 2019, 4, 12393–12401. [Google Scholar] [CrossRef] [Green Version]
- Song, H.S.; Jin, H.J.; Ahn, S.R.; Kim, D.; Lee, S.H.; Kim, U.K.; Simons, C.T.; Hong, S.; Park, T.H. Bioelectronic Tongue Using Heterodimeric Human Taste Receptor for the Discrimination of Sweeteners with Human-like Performance. ACS Nano 2014, 8, 9781–9789. [Google Scholar] [CrossRef] [PubMed]
- Larisika, M.; Kotlowski, C.; Steininger, C.; Mastrogiacomo, R.; Pelosi, P.; Schütz, S.; Peteu, S.F.; Kleber, C.; Reiner-Rozman, C.; Nowak, C.; et al. Electronic Olfactory Sensor Based on A. mellifera Odorant-Binding Protein 14 on a Reduced Graphene Oxide Field-Effect Transistor. Angew Chem. Int. Ed. Engl. 2015, 54, 13245–13248. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.R.; An, J.H.; Jang, I.H.; Na, W.; Yang, H.; Cho, K.H.; Lee, S.H.; Song, H.S.; Jang, J.; Park, T.H. High-performance bioelectronic tongue using ligand binding domain T1R1 VFT for umami taste detection. Biosens. Bioelectron. 2018, 117, 628–636. [Google Scholar] [CrossRef] [PubMed]
- Mascini, M.; Pizzoni, D.; Perez, G.; Chiarappa, E.; Di Natale, C.; Pittia, P.; Compagnone, D. Tailoring gas sensor arrays via the design of short peptides sequences as binding elements. Biosens. Bioelectron. 2017, 93, 161–169. [Google Scholar] [CrossRef]
- Pizzoni, D.; Mascini, M.; Lanzone, V.; Del Carlo, M.; Di Natale, C.; Compagnone, D. Selection of peptide ligands for piezoelectric peptide based gas sensors arrays using a virtual screening approach. Biosens. Bioelectron. 2014, 52, 247–254. [Google Scholar] [CrossRef]
- Lee, J.S.; Cho, A.N.; Jin, Y.; Kim, J.; Kim, S.; Cho, S.W. Bio-artificial tongue with tongue extracellular matrix and primary taste cells. Biomaterials 2018, 151, 24–37. [Google Scholar] [CrossRef]
- Lee, S.H.; Oh, E.H.; Park, T.H. Cell-based microfluidic platform for mimicking human olfactory system. Biosens. Bioelectron. 2015, 74, 554–561. [Google Scholar] [CrossRef]
- Wei, X.; Qin, C.; Gu, C.; He, C.; Yuan, Q.; Liu, M.; Zhuang, L.; Wan, H.; Wang, P. A novel bionic in vitro bioelectronic tongue based on cardiomyocytes and microelectrode array for bitter and umami detection. Biosens. Bioelectron. 2019, 145, 111673. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Jin, H.J.; Song, H.S.; Hong, S.; Park, T.H. Bioelectronic nose with high sensitivity and selectivity using chemically functionalized carbon nanotube combined with human olfactory receptor. J. Biotechnol. 2012, 157, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.-Y.; Cha, Y.K.; Ahn, S.R.; Shin, J.; Choi, Y.; Park, T.H.; Hong, S. Ultrasensitive Bioelectronic Tongue Based on the Venus Flytrap Domain of a Human Sweet Taste Receptor. ACS Appl. Mater. Interfaces 2022, 14, 2478–2487. [Google Scholar] [CrossRef]
- Son, M.; Kim, D.; Ko, H.J.; Hong, S.; Park, T.H. A portable and multiplexed bioelectronic sensor using human olfactory and taste receptors. Biosens. Bioelectron. 2017, 87, 901–907. [Google Scholar] [CrossRef] [PubMed]
- Kwon, O.S.; Song, H.S.; Park, S.J.; Lee, S.H.; An, J.H.; Park, J.W.; Yang, H.; Yoon, H.; Bae, J.; Park, T.H.; et al. An Ultrasensitive, Selective, Multiplexed Superbioelectronic Nose That Mimics the Human Sense of Smell. Nano Lett. 2015, 15, 6559–6567. [Google Scholar] [CrossRef]
- Mulla, M.Y.; Tuccori, E.; Magliulo, M.; Lattanzi, G.; Palazzo, G.; Persaud, K.; Torsi, L. Capacitance-modulated transistor detects odorant binding protein chiral interactions. Nat. Commun. 2015, 6, 6010. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Kim, D.; Kim, J.; Moon, D.; Song, H.S.; Lee, M.; Hong, S.; Park, T.H. Nanodisc-Based Bioelectronic Nose Using Olfactory Receptor Produced in Escherichia coli for the Assessment of the Death-Associated Odor Cadaverine. ACS Nano 2017, 11, 11847–11855. [Google Scholar] [CrossRef]
- Lee, M.; Yang, H.; Kim, D.; Yang, M.; Park, T.H.; Hong, S. Human-like smelling of a rose scent using an olfactory receptor nanodisc-based bioelectronic nose. Sci. Rep. 2018, 8, 13945. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.; Jung, J.W.; Kim, D.; Ahn, Y.-J.; Hong, S.; Kwon, H.W. Discrimination of Umami Tastants Using Floating Electrode-Based Bioelectronic Tongue Mimicking Insect Taste Systems. ACS Nano 2015, 9, 11728–11736. [Google Scholar] [CrossRef]
- Ahn, J.H.; Lim, J.H.; Park, J.; Oh, E.H.; Son, M.; Hong, S.; Park, T.H. Screening of target-specific olfactory receptor and development of olfactory biosensor for the assessment of fungal contamination in grain. Sens. Actuators B Chem. 2015, 210, 9–16. [Google Scholar] [CrossRef]
- Lim, J.H.; Oh, E.H.; Park, J.; Hong, S.; Park, T.H. Ion-channel-coupled receptor-based platform for a real-time measurement of G-protein-coupled receptor activities. ACS Nano 2015, 9, 1699–1706. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Wang, J.; Du, L.; Zhang, X.; Zhang, F.; Chen, W.; Cai, W.; Wu, C.; Wang, P. Functional expression of olfactory receptors using cell-free expression system for biomimetic sensors towards odorant detection. Biosens. Bioelectron. 2019, 130, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Wang, J.; Chen, W.; Zhao, L.; Wu, C.; Wang, P. Dual functional extracellular recording using a light-addressable potentiometric sensor for bitter signal transduction. Anal. Chim. Acta 2018, 1022, 106–112. [Google Scholar] [CrossRef]
- Wang, J.; Kong, S.; Chen, F.; Chen, W.; Du, L.; Cai, W.; Huang, L.; Wu, C.; Zhang, D.-W. A bioelectronic taste sensor based on bioengineered Escherichia coli cells combined with ITO-constructed electrochemical sensors. Anal. Chim. Acta 2019, 1079, 73–78. [Google Scholar] [CrossRef]
- Biasini, M.; Bienert, S.; Waterhouse, A.; Arnold, K.; Studer, G.; Schmidt, T.; Kiefer, F.; Cassarino, T.G.; Bertoni, M.; Bordoli, L.; et al. SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 2014, 42, W252–W258. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Ye, W.; Hu, N.; Cai, H.; Yu, H.; Wang, P. Olfactory receptor cells respond to odors in a tissue and semiconductor hybrid neuron chip. Biosens. Bioelectron. 2010, 26, 1672–1678. [Google Scholar] [CrossRef]
- Gao, K.; Gao, F.; Li, J.; He, C.; Liu, M.; Zhu, Q.; Qian, Z.; Ma, T.; Wang, P. Biomimetic integrated olfactory sensory and olfactory bulb systems in vitro based on a chip. Biosens. Bioelectron. 2021, 171, 112739. [Google Scholar] [CrossRef]
- Zhuang, L.; Guo, T.; Cao, D.; Ling, L.; Su, K.; Hu, N.; Wang, P. Detection and classification of natural odors with an in vivo bioelectronic nose. Biosens. Bioelectron. 2015, 67, 694–699. [Google Scholar] [CrossRef]
- Gao, K.; Li, S.; Zhuang, L.; Qin, Z.; Zhang, B.; Huang, L.; Wang, P. In vivo bioelectronic nose using transgenic mice for specific odor detection. Biosens. Bioelectron. 2018, 102, 150–156. [Google Scholar] [CrossRef]
- Zhu, P.; Liu, S.; Tian, Y.; Chen, Y.; Chen, W.; Wang, P.; Du, L.; Wu, C. In Vivo Bioelectronic Nose Based on a Bioengineered Rat Realizes the Detection and Classification of Multiodorants. ACS Chem. Neurosci. 2022, 13, 1727–1737. [Google Scholar] [CrossRef]
- Qin, Z.; Zhang, B.; Hu, L.; Zhuang, L.; Hu, N.; Wang, P. A novel bioelectronic tongue in vivo for highly sensitive bitterness detection with brain–machine interface. Biosens. Bioelectron. 2016, 78, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Zhang, B.; Gao, K.; Zhuang, L.; Hu, N.; Wang, P. A whole animal-based biosensor for fast detection of bitter compounds using extracellular potentials in rat gustatory cortex. Sens. Actuators B Chem. 2017, 239, 746–753. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, Q.; Zhang, D.; Lu, Y.; Liu, Q.; Wang, P. Biosensor analysis of natural and artificial sweeteners in intact taste epithelium. Biosens. Bioelectron. 2014, 54, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Chen, P.; Zhou, L.; Qin, Z.; Gao, K.; Yao, J.; Li, C.; Wang, P. A biomimetic bioelectronic tongue: A switch for On- and Off- response of acid sensations. Biosens. Bioelectron. 2017, 92, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Zou, L.; Wang, Q.; Zhao, L.; Huang, L.; Wang, P.; Wu, C. A novel biomimetic olfactory cell-based biosensor with DNA-directed site-specific immobilization of cells on a microelectrode array. Sens. Actuators B Chem. 2015, 217, 186–192. [Google Scholar] [CrossRef]
- Qin, C.; Qin, Z.; Zhao, D.; Pan, Y.; Zhuang, L.; Wan, H.; Di Pizio, A.; Malach, E.; Niv, M.Y.; Huang, L.; et al. A bioinspired in vitro bioelectronic tongue with human T2R38 receptor for high-specificity detection of N-C=S-containing compounds. Talanta 2019, 199, 131–139. [Google Scholar] [CrossRef]
- Hu, L.; Xu, J.; Qin, Z.; Hu, N.; Zhou, M.; Huang, L.; Wang, P. Detection of bitterness in vitro by a novel male mouse germ cell-based biosensor. Sens. Actuators B Chem. 2016, 223, 461–469. [Google Scholar] [CrossRef]
- Qiao, L.; Jiao, L.; Pang, G.; Xie, J. A novel pungency biosensor prepared with fixing taste-bud tissue of rats. Biosens. Bioelectron. 2015, 68, 454–461. [Google Scholar] [CrossRef]
- Wei, L.; Qiao, L.; Pang, G.; Xie, J. A kinetic study of bitter taste receptor sensing using immobilized porcine taste bud tissues. Biosens. Bioelectron. 2017, 92, 74–80. [Google Scholar] [CrossRef]
- Xiao, S.; Zhang, Y.; Song, P.; Xie, J.; Pang, G. The investigation of allosteric regulation mechanism of analgesic effect using SD rat taste bud tissue biosensor. Biosens. Bioelectron. 2019, 126, 815–823. [Google Scholar] [CrossRef]
- Li, J.; Wang, W.; Liu, J.; Li, H.; Zhang, N.; Yang, F.; Dong, H.; Sun, X.; Chen, G.; Fan, Y.; et al. Human-like performance umami electrochemical biosensor by utilizing co-electrodeposition of ligand binding domain T1R1-VFT and Prussian blue. Biosens. Bioelectron. 2021, 193, 113627. [Google Scholar] [CrossRef] [PubMed]
- Hui, G.; Mi, S.; Chen, Q.; Chen, X. Sweet and bitter tastant discrimination from complex chemical mixtures using taste cell-based sensor. Sens. Actuators B Chem. 2014, 192, 361–368. [Google Scholar] [CrossRef]
- Mavrikou, S.; Flampouri, E.; Iconomou, D.; Kintzios, S. Development of a cellular biosensor for the detection of aflatoxin B1, based on the interaction of membrane engineered Vero cells with anti-AFB1 antibodies on the surface of gold nanoparticle screen printed electrodes. Food Control 2017, 73, 64–70. [Google Scholar] [CrossRef]
- Lu, Y.; Huang, Y.; Li, S.; Zhang, Q.; Wu, J.; Xiong, Z.; Xiong, L.; Wan, Q.; Liu, Q. Fat taste detection with odorant-binding proteins (OBPs) on screen-printed electrodes modified by reduced graphene oxide. Sens. Actuators B Chem. 2017, 252, 973–982. [Google Scholar] [CrossRef]
- Lu, Y.; Yao, Y.; Zhang, Q.; Zhang, D.; Zhuang, S.; Li, H.; Liu, Q. Olfactory biosensor for insect semiochemicals analysis by impedance sensing of odorant-binding proteins on interdigitated electrodes. Biosens. Bioelectron. 2015, 67, 662–669. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, W.; Wei, J.; Lan, K.; Yan, S.; Chen, R.; Qin, G. High-performance olfactory receptor-derived peptide sensor for trimethylamine detection based on Steglich esterification reaction and native chemical ligation connection. Biosens. Bioelectron. 2022, 195, 113673. [Google Scholar] [CrossRef]
- Wang, W.; Yang, L.; Ning, M.; Liu, Z.; Liu, Y. A rational tool for the umami evaluation of peptides based on multi-techniques. Food Chem. 2022, 371, 131105. [Google Scholar] [CrossRef]
- Kong, L.; Wang, Y.; Shu, G.; Wang, R.; Feng, Y.; Zhu, M. Kinetics of a new porcine taste-bud tissue biosensor for the detection of umami substances and their synergistic effect. Biosens. Bioelectron. 2022, 210, 114304. [Google Scholar] [CrossRef]
- Strauch, M.; Lüdke, A.; Münch, D.; Laudes, T.; Galizia, C.G.; Martinelli, E.; Lavra, L.; Paolesse, R.; Ulivieri, A.; Catini, A.; et al. More than apples and oranges--detecting cancer with a fruit fly’s antenna. Sci. Rep. 2014, 4, 3576. [Google Scholar] [CrossRef] [Green Version]
- Mitsuno, H.; Sakurai, T.; Namiki, S.; Mitsuhashi, H.; Kanzaki, R. Novel cell-based odorant sensor elements based on insect odorant receptors. Biosens. Bioelectron. 2015, 65, 287–294. [Google Scholar] [CrossRef]
- Tian, Y.; Zhu, P.; Chen, Y.; Chen, W.; Du, L.; Wu, C.; Wang, P. A sperm-cell-based biosensor using a fluorescence probe for responsive signal readout toward bitter flavor detection. Talanta 2020, 211, 120731. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Wu, C.; Peng, H.; Zou, L.; Zhao, L.; Huang, L.; Wang, P. Piezoelectric olfactory receptor biosensor prepared by aptamer-assisted immobilization. Sens. Actuators B Chem. 2013, 187, 481–487. [Google Scholar] [CrossRef]
- Du, L.; Chen, W.; Tian, Y.; Zhu, P.; Wu, C.; Wang, P. A biomimetic taste biosensor based on bitter receptors synthesized and purified on chip from a cell-free expression system. Sens. Actuators B Chem. 2020, 312, 127949. [Google Scholar] [CrossRef]
- Oh, E.H.; Lee, S.H.; Ko, H.J.; Park, T.H. Odorant detection using liposome containing olfactory receptor in the SPR system. Sens. Actuators B Chem. 2014, 198, 188–193. [Google Scholar] [CrossRef]
- Khodarev, N.N.; Yu, J.; Labay, E.; Darga, T.; Brown, C.K.; Mauceri, H.J.; Yassari, R.; Gupta, N.; Weichselbaum, R.R. Tumour-endothelium interactions in co-culture: Coordinated changes of gene expression profiles and phenotypic properties of endothelial cells. J. Cell Sci. 2003, 116, 1013–1022. [Google Scholar] [CrossRef] [Green Version]
- Mainland, J.D.; Li, Y.R.; Zhou, T.; Liu, W.L.L.; Matsunami, H. Human olfactory receptor responses to odorants. Sci. Data 2015, 2, 150002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laplatine, L.; Fournier, M.; Gaignebet, N.; Hou, Y.; Mathey, R.; Herrier, C.; Liu, J.; Descloux, D.; Gautheron, B.; Livache, T. Silicon photonic olfactory sensor based on an array of 64 biofunctionalized Mach-Zehnder interferometers. Opt. Express 2022, 30, 33955–33968. [Google Scholar] [CrossRef]
- Wasilewski, T.; Szulczyński, B.; Wojciechowski, M.; Kamysz, W.; Gębicki, J. A Highly Selective Biosensor Based on Peptide Directly Derived from the HarmOBP7 Aldehyde Binding Site. Sensors 2019, 19, 4284. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Anderson, J.D.; Natt, J.; Guimbellot, J.S. Culture and Imaging of Human Nasal Epithelial Organoids. J. Vis. Exp. 2021, 11, 603. [Google Scholar] [CrossRef]
- Liu, S.; Zhu, P.; Tian, Y.; Chen, Y.; Liu, Y.; Chen, W.; Du, L.; Wu, C. Preparation and application of taste bud organoids in biomedicine towards chemical sensation mechanisms. Biotechnol. Bioeng. 2022, 119, 2015–2030. [Google Scholar] [CrossRef]
- Unagolla, J.M.; Jayasuriya, A.C. Recent advances in organoid engineering: A comprehensive review. Appl. Mater. Today 2022, 29, 101582. [Google Scholar] [CrossRef]
- Sachs, N.; de Ligt, J.; Kopper, O.; Gogola, E.; Bounova, G.; Weeber, F.; Balgobind, A.V.; Wind, K.; Gracanin, A.; Begthel, H.; et al. A Living Biobank of Breast Cancer Organoids Captures Disease Heterogeneity. Cell 2018, 172, 373–386.e10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broutier, L.; Mastrogiovanni, G.; Verstegen, M.M.; Francies, H.E.; Gavarró, L.M.; Bradshaw, C.R.; Allen, G.E.; Arnes-Benito, R.; Sidorova, O.; Gaspersz, M.P.; et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat. Med. 2017, 23, 1424–1435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuster, B.; Junkin, M.; Kashaf, S.S.; Romero-Calvo, I.; Kirby, K.; Matthews, J.; Weber, C.R.; Rzhetsky, A.; White, K.P.; Tay, S. Automated microfluidic platform for dynamic and combinatorial drug screening of tumor organoids. Nat. Commun. 2020, 11, 5271. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.E.; Hindley, J.W.; Baxani, D.K.; Ces, O.; Elani, Y. Hydrogels as functional components in artificial cell systems. Nat. Rev. Chem. 2022, 6, 562–578. [Google Scholar] [CrossRef]
- Kim, S.K.; Kim, Y.H.; Park, S.; Cho, S.-W. Organoid engineering with microfluidics and biomaterials for liver, lung disease, and cancer modeling. Acta Biomater. 2021, 132, 37–51. [Google Scholar] [CrossRef]
- Amirifar, L.; Shamloo, A.; Nasiri, R.; de Barros, N.R.; Wang, Z.Z.; Unluturk, B.D.; Libanori, A.; Ievglevskyi, O.; Diltemiz, S.E.; Sances, S.; et al. Brain-on-a-chip: Recent advances in design and techniques for microfluidic models of the brain in health and disease. Biomaterials 2022, 285, 121531. [Google Scholar] [CrossRef]
- Ramezankhani, R.; Solhi, R.; Chai, Y.C.; Vosough, M.; Verfaillie, C. Organoid and microfluidics-based platforms for drug screening in COVID-19. Drug Discov. Today 2022, 27, 1062–1076. [Google Scholar] [CrossRef]
- Elvira, K.S. Microfluidic technologies for drug discovery and development: Friend or foe? Trends Pharmacol. Sci. 2021, 42, 518–526. [Google Scholar] [CrossRef]
- Burinaru, T.A.; Adiaconiţă, B.; Avram, M.; Preda, P.; Enciu, A.-M.; Chiriac, E.; Mărculescu, C.; Constantin, T.; Militaru, M. Electrochemical impedance spectroscopy based microfluidic biosensor for the detection of circulating tumor cells. Mater. Today Commun. 2022, 32, 104016. [Google Scholar] [CrossRef]
- Weeks, J.C.; Robinson, K.J.; Lockery, S.R.; Roberts, W.M. Anthelmintic drug actions in resistant and susceptible C. elegans revealed by electrophysiological recordings in a multichannel microfluidic device. Int. J. Parasitol. Drugs Drug Resist. 2018, 8, 607–628. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.S.; Lee, H.J.; Rajaraman, S.; Kim, D.-H. Recent advances in three-dimensional microelectrode array technologies for in vitro and in vivo cardiac and neuronal interfaces. Biosens. Bioelectron. 2021, 171, 112687. [Google Scholar] [CrossRef] [PubMed]
- Imam, N.; Cleland, T.A. Rapid online learning and robust recall in a neuromorphic olfactory circuit. Nat. Mach. Intell. 2020, 2, 181–191. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-M.; Lee, Y.; Devaraj, V.; Nguyen, T.M.; Kim, Y.-J.; Kim, Y.H.; Kim, C.; Choi, E.J.; Han, D.-W.; Oh, J.-W. Investigation of colorimetric biosensor array based on programable surface chemistry of M13 bacteriophage towards artificial nose for volatile organic compound detection: From basic properties of the biosensor to practical application. Biosens. Bioelectron. 2021, 188, 113339. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-M.; Choi, E.J.; Chung, J.H.; Lee, K.-w.; Lee, Y.; Kim, Y.-J.; Kim, W.-G.; Yoon, S.H.; Seol, H.Y.; Devaraj, V.; et al. A DNA-derived phage nose using machine learning and artificial neural processing for diagnosing lung cancer. Biosens. Bioelectron. 2021, 194, 113567. [Google Scholar] [CrossRef]
Transducer | Sensitive Materials | Detection Targets | Detection Limit/Detection Range | Selectivity | Ligand and Receptor Binding Index | Applications | Ref. |
---|---|---|---|---|---|---|---|
swCNT-FET | hOR2AG1 | Amyl butyrate | 1 fM/1 fM to 10 pM | Pentyl valerate, butyl butyrate, and propyl butyrate | - | Food industry | [83] |
CNT-FET | The venus flytrap domain originating from T1R2 | Sucrose and saccharin | 0.1 fM/0.1 fM to 1 μM | Cyclamate, tasteless disaccharide, l-monosodium glutamate and denatonium | Kd: 2.05 × 10–11 M and 6.88 × 10–12 M | Food safety | [84] |
Graphene- FET | The venus flytrap domain originating from T1R1 | l-monosodium glutamate | 1 nM/1 nM to 10 µM | L-glutamine, sucrose denatonium benzoate and cyclamate | - | Food safety | [77] |
Multi-channel swCNT-FET | OR2J2, OR2W1 TAAR5 and TAS2R38 | Octanol, hexanol, trimethylamine, goitrin and trimethylamine, respectively | pM/100 fM to 100 nM | Kd: 7.53 × 1012 M−1, 3.05 × 1010 M−1, 2.31 × 1011 M−1, 1.97 × 1011 M−1, 1.782 × 1012 M−1, respectively | Food safety | [85] | |
GMs-FET | hOR2AG1 and hOR3A1 | Amyl butyrate and helional, respectively | 0.1 fM/0.1 fM to 10 pM | hOR2AG1 (butyl butyrate, pentyl butyrate and hOR3A1 (Piperonal, safrole) | Kd: 2.93 × 1015 M−1, 9.6 × 1014 M−1, respectively. | Spice in food industry | [86] |
WGOFET | The monomeric porcine OBPs | (S)-(+)-carvone, (R)-(−)-carvone | 1.1 ± 0.5 kJ mol−1/1 to 1 µM | 2-phenylethanol | The dissociation constants K: 0.50 ± 0.01 μM, 1.22 ± 0.05 μM and 40 μM, respectively | Food flavor | [87] |
rGO-FET | OBP14 | Homovanillic acid, eugenol, and methyl vanillate. | Approximately 100 nM to 200 μM, 100 nM to 100 mM and 1 µM to 100 mM, respectively. | Methyl eugenol | Kd: 4 × 10−6 M, 4 × 10−5 M and 2 × 10−5 M, respectively | Fragrance for cosmetics | [76] |
GMs-FET | Nanodiscs embedded with TAAR13c and TAAR13d | Cadaverine and putrescine | 1 fM | NH3, trimethylamine and putrescine (TAAR13c); NH3, trimethylamine and cadaverine (TAAR13d) | The binding energy: −3.5 kcal/mol, −3.6 kcal/mol, respectively. | Food application | [15] |
CNT-FET | Nanodiscs embedded with TAAR13c | Cadaverine | 10 pM/10 pM to 10 µM | Diaminodecane, trimethylamine, ethanolamine, glutamine | Kd: 3.63 × 1011 M−1 | The spoiled foods | [88] |
Nanodiscs embedded with hOR1A2 | Geraniol and citronellol | 1 fM and 10 fM, respectively./1 fM to 1 µM and 10 fM to 10 µM, respectively. | Trimethylamine and amyl butyrate | Kd: 8.37 × 1011 M−1 and 2.60 × 106 M−1 | Cosmetics industry | [89] | |
Nanovesicles containing AmGr10 | l-monosodium glutamate | 100 pM/100 pM to 10 μM | Sucrose and phenylthiocarbamide | Kd: 1.77 × 108 M−1 | The liquid food | [90] | |
Nanovesicles containing OR8H2 | 1-octen-3-ol | 1 fM/1 fM to 1 nM | 1-octanol, 1-octanal, 3-octanol, and 1-octene | - | Food application | [91] | |
Nanovesicles containing hTAS1R2 | Sucrose | -/500 µM to 5 mM | Cellobiose and D-glucuronic acid | Kd: 2.0 × 10−3 M | Food application | [75] | |
Nanovesicles containinghOR2AG1 fused with a Kir6.2 channel | Amyl butyrate | 1 fM/1 fM to 100 fM | Butyl butyrate, pentyl valerate, propyl butyrate, hexanal and decanal | - | Spice in food industry | [92] | |
The micelle-stabilized olfactory receptor from C. elegans | Diacetyl | 10 fM/1 fM to 10 nM | 2-butanone, 3-methyl-2-butanone | The equilibrium constant K: 1.7 × 10−12 M | Alcoholic beverages | [11] | |
OBP-derived peptide | 3-Methyl-1-butanol | 1 fM/1 fM to 10 nM | 2-methylbutane, methyl isopropyl ketone, 3-methyl-1-butanethiol, isobutyl acetate, 3-methylbutanal and 3-methylbutanoic acid. | Kd: 5.25 × 1013 M−1 | The Salmonella-contaminated food | [71] | |
CNT-FET | horp61m | Trimethylamine | 10 fM/10 fM to 1 µM | Dimethyl sulfide | Kd: 3.33 × 1012 M−1 | The spoiled foods | [55] |
CNT-FETs combined with μBN | The olfactory receptor-derived peptides | Gaseous Trimethylamine | 10 ppt/1 ppt to 10 ppb | Triethylamine, dimethylamine, 2-methyl-1-propanol, acetic acid, and acetone solutions | - | The spoiled foods | [70] |
Electrolyte-insulator-semiconductor | olfactory receptor ODR-10 | Diacetyl | 0.01 nM/0.01 nM to 1 nM | Butanone, 2, 3-pentanedione, and isopentyl acetate | - | Alcoholic fermentation | [93] |
LAPS | taste bud cells from SD rats | Carbenoxolone | - | - | - | Drug screening | [94] |
ITO-based electrolyte-semiconductor | hT2R4 expressed in E. coli | Denatonium | -/50 nM to 500 nM | Quinine and alpha-naphthylthiourea | - | Drug screening | [95] |
Detection Methods | Sensitive Material Types | Target Compound(s) | Detection Limit or Minimum Detection/Detection Range | Selectivity | Potential Applications Fields | Ref. |
---|---|---|---|---|---|---|
The Ca2+ imaging in vivo based on GCaMP3 | The fruit fly’s antenna | The volatile compound generated from cancer cells | - | 1-butanol | Auxiliary diagnosis | [120] |
The Ca2+ imaging based on Fluo 4-AM | The co-culture of taste and neuronal cells | Denatonium benzoate | 1 mM; 5 mM | - | Drug screening | [73,74] |
The Ca2+ imaging based on Fluo 4-AM and flow cytometry. | The functional taste cells | NaCl, sweet glycine, saccharin, and denatonium benzoate | 100 mM, 200 mM, 50 mM 100 μm and 5 μM, respectively. | - | Drug screening and food application | [80] |
The Ca2+ imaging based on Fluo 4-AM and microfluidic platform | Human embryonic kidney-293 cells expressing hOR1D2, hOR1A1 and hOR1G1 | Bourgeonal, β-citronellol, and geraniol | 0 to 2 ppm | β-citronellol (hOR1D2), bourgeonal and geraniol (hOR1A1), geraniol (hOR1G1) | Spices in cosmetics | [81] |
The Ca2+ imaging based on GCaMP3 | Sf21 cells expressing odorant receptors, Orco, and GCaMP3 | Bombykol and bombykal | 1 µM (238 ppb) and 300 nM (70.9 ppb), respectively/∼300 nM to 30 µM | Bobbykol (BmOR1), bobbykal (BmOR3) | Environmental conservation | [121] |
The Ca2+ imaging based on Fluo 4-AM and flow cytometry. | The Mouse germ cell | Denatonium benzoate, N-phenylthiourea and quinine. | 15.6 μM, 25.1 μM and 25.1 μM, respectively/50 to 4000 μM, 25 to 1000 μM and 50 to 2000 μM, respectively. | Citric acid, sucrose, monosodium glutamate and NaCl | Drug screening | [122] |
QCM based on the gold electrode for frequency measurement | C. elegances, ODR-10 | Diacetyl | 1.5 ppm (v/v)/10 ppm to 100 ppm | Isoamyl acetate, anisole, lavender, butanone, and 2,3-pentanedione | Alcoholic beverages | [123] |
T2R4 | Denatonium | 5 nM/10 nM to 0.1 mM | MgSO4, D- (-)-salicin, and quinine | Drug screening | [124] | |
The peptide mimicking HarmOBP7 region (KLLFDSLTDLKKKMSEC) | Nonanal and so on (more than 5 carbon atoms in the structure) | 14 ppm/42 ppm to 1303 ppm | Formaldehyde, acetaldehyde, glyoxal, benzaldehyde, propanal, hexanal and so on | Flavoring agent | [72] | |
Five different peptides (cysteinylglycine, glutathione, CIHNP, CIQPV and CRQVF) | 14 volatile compounds | - | - | Environmental conservation | [79] | |
Five different peptides (IHRIC, KSDSC, LGFDC, TGKFC and WHVSC) | 13 volatile compounds tested based on their hydrophobicity and hydrophilicity | - | - | Environmental conservation | [78] | |
SPR for a variation of refractive index detection | Liposomes containing hOR3A1 | Helional | 10−7 M/10−3 M to 10−7 M | Safrole, piperonal, hydrocinnam aldehyde, 3-(3,4-methylene diozyphenyl) propionic acid | Spices in cosmetics | [125] |
SPRi | Three derivatives of OBP3 | β-ionone and hexanal | 200 pM and 100 g/mol, respectively./100 pM to 1 nM and -. | Hexanoic acid | Flavoring agent | [63] |
SWCNTs-SPR | TNT-binding peptide (ARGYSSFIYWFFDFC) | 2,4,6-trinitrotoluene | 772 ppb/0.8 to 12.5 ppm | DNP-glycine, 2,6-DNT, research development eXplosive, and 4-nitrobenzoyl-glycyl-glycine | Security application | [18] |
SPR | Three TNT binding peptide sequences (ARGYSSFIYWFFDF) | 2,4,6-trinitrotoluene | 3.4 ppm/4.0 ppm-250.8 ppm | TNP-glycine, DNP-glycine, 2,4-DNT, 2.6-DNT, 4-Nitrobenzoyl-glycyl-glycine, research development explosive | Security application | [56] |
Detection Strategies | Sensitive Materials Types | Advantages | Disadvantages | Portable Development Possibilities | Most Applications | |
---|---|---|---|---|---|---|
Surface functional FET for conductivity changes | Receptors, binding protein, artificial peptide, functional nanovesicles and nanodiscs | Ultra-high sensitivity | Immobilization distance | High | Food security | |
MEAs for electrophysiological detection | In vivo | Related functional parts of the brain | Most genuine response | Invasive, requirement of trained specialists | Moderate | Detection of explosives |
In vitro | Functional cell, tissues, organoids | Non-invasive | Time-consuming process | Low | High throughput screening | |
Electrochemical method | Receptors, binding protein, artificial peptide | Portable, Robustness | Sensitive to sample matrix | High | Affinity assessment | |
QCM for frequency change detection | Receptors, binding protein, artificial peptide | Stable output | Interference induced by nonspecific binding | High | Screening peptide function verification | |
Optical measurement | Ca2+ imaging | Functional cell, tissues, organoids | Real-time detection | Low reproducibility | Low | Live recording |
SPR imaging | Binding protein, artificial peptide, functional liposomes | Simultaneously monitoring large sensor arrays in real time | Interference induced by nonspecific binding | High | High throughput peptide screening |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Du, L.; Tian, Y.; Zhu, P.; Liu, S.; Liang, D.; Liu, Y.; Wang, M.; Chen, W.; Wu, C. Progress in the Development of Detection Strategies Based on Olfactory and Gustatory Biomimetic Biosensors. Biosensors 2022, 12, 858. https://doi.org/10.3390/bios12100858
Chen Y, Du L, Tian Y, Zhu P, Liu S, Liang D, Liu Y, Wang M, Chen W, Wu C. Progress in the Development of Detection Strategies Based on Olfactory and Gustatory Biomimetic Biosensors. Biosensors. 2022; 12(10):858. https://doi.org/10.3390/bios12100858
Chicago/Turabian StyleChen, Yating, Liping Du, Yulan Tian, Ping Zhu, Shuge Liu, Dongxin Liang, Yage Liu, Miaomiao Wang, Wei Chen, and Chunsheng Wu. 2022. "Progress in the Development of Detection Strategies Based on Olfactory and Gustatory Biomimetic Biosensors" Biosensors 12, no. 10: 858. https://doi.org/10.3390/bios12100858
APA StyleChen, Y., Du, L., Tian, Y., Zhu, P., Liu, S., Liang, D., Liu, Y., Wang, M., Chen, W., & Wu, C. (2022). Progress in the Development of Detection Strategies Based on Olfactory and Gustatory Biomimetic Biosensors. Biosensors, 12(10), 858. https://doi.org/10.3390/bios12100858