FLIM-Based Intracellular and Extracellular pH Measurements Using Genetically Encoded pH Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plasmid Construction
2.2. Determination of the SypHerExtra Sensor Localization
2.3. Protein Preparation and UV/VIS Spectrophotometry
2.4. In Vitro Fluorescence Lifetime Measurements
2.5. Cell Lines and Transfection
2.6. FLIM Measurements
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hamm, L.L.; Nakhoul, N.; Hering-Smith, K.S. Acid-base homeostasis. Clin. J. Am. Soc. Nephrol. 2015, 10, 2232–2242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, H.; Rao, R. Amyloid clearance defect in ApoE4 astrocytes is reversed by epigenetic correction of endosomal pH. Proc. Natl. Acad. Sci. USA 2018, 115, E6640–E6649. [Google Scholar] [CrossRef] [Green Version]
- Webb, B.A.; Chimenti, M.; Jacobson, M.P.; Barber, D.L. Dysregulated pH: A perfect storm for cancer progression. Nat. Rev. Cancer 2011, 11, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Alfarouk, K.O.; Ahmed, S.B.M.; Ahmed, A.; Elliott, R.L.; Ibrahim, M.E.; Ali, H.S.; Wales, C.C.; Nourwali, I.; Aljarbou, A.N.; Bashir, A.H.H.; et al. The interplay of dysregulated pH and electrolyte imbalance in cancer. Cancers 2020, 12, 898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, K.A.; Grillo-Hill, B.K.; Barber, D.L. Cancer cell behaviors mediated by dysregulated pH dynamics at a glance. J. Cell Sci. 2017, 130, 663–669. [Google Scholar] [CrossRef] [Green Version]
- Bilodeau, J.; Désilets, A.; McDuff, F.-O.; St-Pierre, C.; Barbar, É.; Leduc, R.; Lavigne, P. Influence of Ca2+ and pH on the folding of the prourotensin II precursor. FEBS Lett. 2011, 585, 1910–1914. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, W.K.; Moore, H.P. Ionic milieu controls the compartment-specific activation of pro-opiomelanocortin processing in AtT-20 cells. Mol. Biol. Cell 1995, 6, 1271–1285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Depaoli, M.R.; Bischof, H.; Eroglu, E.; Burgstaller, S.; Ramadani-Muja, J.; Rauter, T.; Schinagl, M.; Waldeck-Weiermair, M.; Hay, J.C.; Graier, W.F.; et al. Live cell imaging of signaling and metabolic activities. Pharmacol. Ther. 2019, 202, 98–119. [Google Scholar] [CrossRef]
- Germond, A.; Fujita, H.; Ichimura, T.; Watanabe, T.M. Design and development of genetically encoded fluorescent sensors to monitor intracellular chemical and physical parameters. Biophys. Rev. 2016, 8, 121–138. [Google Scholar] [CrossRef] [Green Version]
- Sanford, L.; Palmer, A. Chapter one—Recent advances in development of genetically encoded fluorescent sensors. Methods Enzymol. 2017, 589, 1–49. [Google Scholar] [PubMed]
- Benčina, M. Illumination of the spatial order of intracellular pH by genetically encoded pH-sensitive sensors. Sensors 2013, 13, 16736–16758. [Google Scholar] [CrossRef] [Green Version]
- Martynov, V.I.; Pakhomov, A.A.; Deyev, I.E.; Petrenko, A.G. Genetically encoded fluorescent indicators for live cell pH imaging. Biochim. Biophys. Acta Gen. Subj. 2018, 1862, 2924–2939. [Google Scholar] [CrossRef] [PubMed]
- Hanson, G.T.; McAnaney, T.B.; Park, E.S.; Rendell, M.E.P.; Yarbrough, D.K.; Chu, S.; Xi, L.; Boxer, S.G.; Montrose, M.H.; Remington, S.J. Green fluorescent protein variants as ratiometric dual emission pH sensors. 1. Structural characterization and preliminary application. Biochemistry 2002, 41, 15477–15488. [Google Scholar] [CrossRef]
- Matlashov, M.E.; Bogdanova, Y.A.; Ermakova, G.V.; Mishina, N.M.; Ermakova, Y.G.; Nikitin, E.S.; Balaban, P.M.; Okabe, S.; Lukyanov, S.; Enikolopov, G.; et al. Fluorescent ratiometric pH indicator SypHer2: Applications in neuroscience and regenerative biology. Biochim. Biophys. Acta Gen. Subj. 2015, 1850, 2318–2328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ermakova, Y.G.; Pak, V.V.; Bogdanova, Y.A.; Kotlobay, A.A.; Yampolsky, I.V.; Shokhina, A.G.; Panova, A.S.; Marygin, R.A.; Staroverov, D.B.; Bilan, D.S.; et al. SypHer3s: A genetically encoded fluorescent ratiometric probe with enhanced brightness and an improved dynamic range. Chem. Commun. 2018, 54, 2898–2901. [Google Scholar] [CrossRef] [PubMed]
- Poburko, D.; Santo-Domingo, J.; Demaurex, N. Dynamic regulation of the mitochondrial proton gradient during cytosolic calcium elevations. J. Biol. Chem. 2011, 286, 11672–11684. [Google Scholar] [CrossRef] [Green Version]
- Datta, R.; Heaster, T.M.; Sharick, J.T.; Gillette, A.A.; Skala, M.C. Fluorescence lifetime imaging microscopy: Fundamentals and advances in instrumentation, analysis, and applications. J. Biomed. Opt. 2020, 25, 1–43. [Google Scholar] [CrossRef]
- Periasamy, A.; Mazumder, N.; Sun, Y.; Christopher, K.G.; Day, R.N. FRET microscopy: Basics, issues and advantages of FLIM-FRET imaging. In Advanced Time—Correlated Single Photon Counting Applications; Becker, W., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 249–276. ISBN 978-3-319-14929-5. [Google Scholar]
- Serova, O.V.; Radionov, N.V.; Shayahmetova, D.M.; Deyev, I.E.; Petrenko, A.G. Structural and functional analyses of the sixth site of neurexin alternative splicing. Dokl. Biochem. Biophys. 2015, 463, 239–242. [Google Scholar] [CrossRef]
- Grillo-Hill, B.K.; Webb, B.A.; Barber, D.L. Ratiometric imaging of pH probes. Methods Cell Biol. 2014, 123, 429–448. [Google Scholar]
- Adamson, P.; Paterson, H.F.; Hall, A. Intracellular localization of the P21rho proteins. J. Cell Biol. 1992, 119, 617–627. [Google Scholar] [CrossRef] [Green Version]
- Diering, G.H.; Numata, M. Endosomal pH in neuronal signaling and synaptic transmission: Role of Na(+)/H(+) exchanger NHE5. Front. Physiol. 2014, 4, 412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, J.A.; Buchsbaum, R.N.; Zimniak, A.; Racker, E. Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry 1979, 18, 2210–2218. [Google Scholar] [CrossRef]
- Lin, H.-J.; Herman, P.; Lakowicz, J.R. Fluorescence lifetime-resolved pH imaging of living cells. Cytom. A 2003, 52, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Schwalfenberg, G.K. The alkaline diet: Is there evidence that an alkaline pH diet benefits health? J. Environ. Public Health 2012, 2012, 727630. [Google Scholar] [CrossRef] [PubMed]
- Serova, O.V.; Gantsova, E.A.; Deyev, I.E.; Petrenko, A.G. The value of pH sensors in maintaining homeostasis of the nervous system. Russ. J. Bioorg. Chem. 2020, 46, 506–519. [Google Scholar] [CrossRef]
- Deyev, I.E.; Sohet, F.; Vassilenko, K.P.; Serova, O.V.; Popova, N.V.; Zozulya, S.A.; Burova, E.B.; Houillier, P.; Rzhevsky, D.I.; Berchatova, A.A.; et al. Insulin receptor-related receptor as an extracellular alkali sensor. Cell Metab. 2011, 13, 679–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serova, O.V.; Orsa, A.N.; Chachina, N.A.; Petrenko, A.G.; Deyev, I.E. c-Met receptor can be activated by extracellular alkaline medium. J. Recept. Signal Transduct. Res. 2019, 39, 67–72. [Google Scholar] [CrossRef]
- Serova, O.V.; Chachina, N.A.; Gantsova, E.A.; Popova, N.V.; Petrenko, A.G.; Deyev, I.E. Autophosphorylation of orphan receptor ERBB2 can be induced by extracellular treatment with mildly alkaline media. Int. J. Mol. Sci. 2019, 20, 1515. [Google Scholar] [CrossRef] [Green Version]
- Goryashchenko, A.S.; Mozhaev, A.A.; Serova, O.V.; Erokhina, T.N.; Orsa, A.N.; Deyev, I.E.; Petrenko, A.G. Probing structure and function of alkali sensor IRR with monoclonal antibodies. Biomolecules 2020, 10, 1060. [Google Scholar] [CrossRef] [PubMed]
- Südhof, T.C. Neuroligins and neurexins link synaptic function to cognitive disease. Nature 2008, 455, 903–911. [Google Scholar] [CrossRef] [Green Version]
- Carter, M.; Shieh, J. Microscopy. In Guide to Research Techniques in Neuroscience; Academic Press: Cambridge, MA, USA, 2015; pp. 117–144. ISBN 9780128005118. [Google Scholar]
- Kobat, D.; Horton, N.G.; Xu, C. In vivo two-photon microscopy to 1.6-mm depth in mouse cortex. J. Biomed. Opt. 2011, 16, 106014. [Google Scholar] [CrossRef] [PubMed]
- Takasaki, K.; Abbasi-Asl, R.; Waters, J. Superficial bound of the depth limit of two-photon imaging in mouse brain. Eneuro 2020, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alim, I.; Haskew-Layton, R.E.; Aleyasin, H.; Guo, H.; Ratan, R.R. Spatial, temporal, and quantitative manipulation of intracellular hydrogen peroxide in cultured cells. Methods Enzymol. 2014, 547, 251–273. [Google Scholar] [PubMed] [Green Version]
- Capellini, V.K.; Restini, C.B.A.; Bendhack, L.M.; Evora, P.R.B.; Celotto, A.C. The effect of extracellular pH changes on intracellular pH and nitric oxide concentration in endothelial and smooth muscle cells from rat aorta. PLoS ONE 2013, 8, e62887. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goryashchenko, A.S.; Pakhomov, A.A.; Ryabova, A.V.; Romanishkin, I.D.; Maksimov, E.G.; Orsa, A.N.; Serova, O.V.; Mozhaev, A.A.; Maksimova, M.A.; Martynov, V.I.; et al. FLIM-Based Intracellular and Extracellular pH Measurements Using Genetically Encoded pH Sensor. Biosensors 2021, 11, 340. https://doi.org/10.3390/bios11090340
Goryashchenko AS, Pakhomov AA, Ryabova AV, Romanishkin ID, Maksimov EG, Orsa AN, Serova OV, Mozhaev AA, Maksimova MA, Martynov VI, et al. FLIM-Based Intracellular and Extracellular pH Measurements Using Genetically Encoded pH Sensor. Biosensors. 2021; 11(9):340. https://doi.org/10.3390/bios11090340
Chicago/Turabian StyleGoryashchenko, Alexander S., Alexey A. Pakhomov, Anastasia V. Ryabova, Igor D. Romanishkin, Eugene G. Maksimov, Alexander N. Orsa, Oxana V. Serova, Andrey A. Mozhaev, Margarita A. Maksimova, Vladimir I. Martynov, and et al. 2021. "FLIM-Based Intracellular and Extracellular pH Measurements Using Genetically Encoded pH Sensor" Biosensors 11, no. 9: 340. https://doi.org/10.3390/bios11090340
APA StyleGoryashchenko, A. S., Pakhomov, A. A., Ryabova, A. V., Romanishkin, I. D., Maksimov, E. G., Orsa, A. N., Serova, O. V., Mozhaev, A. A., Maksimova, M. A., Martynov, V. I., Petrenko, A. G., & Deyev, I. E. (2021). FLIM-Based Intracellular and Extracellular pH Measurements Using Genetically Encoded pH Sensor. Biosensors, 11(9), 340. https://doi.org/10.3390/bios11090340