An Analytical Method Based on Electrochemical Sensor for the Assessment of Insect Infestation in Flour
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Graphene/PEDOT Composite
2.3. Electrochemical Sensor Fabrication and Measurement
2.4. Phosphotungstic Acid Reduction for Uric Acid Measurement
2.5. Real Sample Preparation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Campbell, J.F.; Arbogast, R.T. Stored-product insects in a flour mill: Population dynamics and response to fumigation treatments. Èntomol. Exp. Appl. 2004, 112, 217–225. [Google Scholar] [CrossRef]
- Perez-Mendoza, J.; Throne, J.; Dowell, F.; Baker, J. Detection of insect fragments in wheat flour by near-infrared spectroscopy. J. Stored Prod. Res. 2002, 39, 305–312. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.N.; Wu, S.H.; Zhu, K.X. Effect of superheated steam treatment on quality characteristics of whole wheat flour and storage stability of semi-dried whole wheat noodle. Food Chem. 2020, 322, 126738. [Google Scholar] [CrossRef] [PubMed]
- Attia, M.A.; Wahba, T.F.; Shaarawy, N.; Moustafa, F.I.; Guedes, R.N.C.; Dewer, Y. Stored Grain Pest Prevalence and Insec-ticide Resistance in Egyptian Populations of the Red Flour Beetle Tribolium Castaneum (Herbst) and the Rice Weevil Sitophilus Oryzae (L.). J. Stored Prod. Res. 2020, 87, 101611. [Google Scholar] [CrossRef]
- Lü, J.; Kang, Y.; Huo, M. Influence of Packaging Materials on Infestation by Tribolium castaneum (Herbst) in Wheat Flour. J. Kans. Èntomol. Soc. 2018, 91, 223–228. [Google Scholar] [CrossRef]
- Xu, S.; Zhou, Z.; Li, K.; Jamir, S.M.; Luo, X. Recognition of the Duration and Prediction of Insect Prevalence of Stored Rough Rice Infested by the Red Flour Beetle (Tribolium castaneum Herbst) Using an Electronic Nose. Sensors 2017, 17, 688. [Google Scholar] [CrossRef] [Green Version]
- Gerken, A.R.; Campbell, J.F. Oviposition and Development of Tribolium Castaneum Herbst (Coleoptera: Tenebrionidae) on Different Types of Flour. Agronomy 2020, 10, 1593. [Google Scholar] [CrossRef]
- Rumbos, C.I.; Rigopoulou, M.; Athanassiou, C.G. Are insect meals prone to insect infestation during storage? Development of major storage insects on substrates based on Tenebrio molitor larvae meal. J. Pest. Sci. 2020, 93, 1359–1367. [Google Scholar] [CrossRef]
- El-Desouky, T.A.; Elbadawy, S.S.; Hussain, H.B.; Hassan, N.A. Impact of Insect Densities Tribolium Castaneum on the Benzoquinone Secretions and Aflatoxins Levels in Wheat Flour During Storage Periods. Open Biotechnol. J. 2018, 12, 104–111. [Google Scholar] [CrossRef]
- Yang, J.W.; Yi, H.-S.; Kim, H.; Lee, B.; Lee, S.; Ghim, S.-Y.; Ryu, C.-M. Whitefly infestation of pepper plants elicits defence responses against bacterial pathogens in leaves and roots and changes the below-ground microflora. J. Ecol. 2010, 99, 46–56. [Google Scholar] [CrossRef]
- Chigoverah, A.A.; Mvumi, B.M. Efficacy of metal silos and hermetic bags against stored-maize insect pests under simulated smallholder farmer conditions. J. Stored Prod. Res. 2016, 69, 179–189. [Google Scholar] [CrossRef]
- Paudyal, S.; Opit, G.P.; Osekre, E.A.; Arthur, F.H.; Bingham, G.V.; Payton, M.E.; Danso, J.K.; Manu, N.; Nsiah, E.P. Field evaluation of the long-lasting treated storage bag, deltamethrin incorporated, (ZeroFly® Storage Bag) as a barrier to insect pest infestation. J. Stored Prod. Res. 2017, 70, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Walker, S.; Jaime, R.; Kagot, V.; Probst, C. Comparative effects of hermetic and traditional storage devices on maize grain: Mycotoxin development, insect infestation and grain quality. J. Stored Prod. Res. 2018, 77, 34–44. [Google Scholar] [CrossRef]
- Matumba, L.; Singano, L.; Pungulani, L.; Mvula, N.; Matumba, A.; Singano, C.; Matita, G. Aflatoxins, discolouration and insect damage in dried cowpea and pigeon pea in Malawi and the effectiveness of flotation/washing operation in eliminating the aflatoxins. Mycotoxin Res. 2017, 33, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Sutar, S.A.; Thirumdas, R.; Chaudhari, B.B.; Deshmukh, R.R.; Annapure, U.S. Effect of cold plasma on insect infestation and keeping quality of stored wheat flour. J. Stored Prod. Res. 2021, 92, 101774. [Google Scholar] [CrossRef]
- Biancolillo, A.; Firmani, P.; Bucci, R.; Magrì, A.; Marini, F. Determination of insect infestation on stored rice by near infrared (NIR) spectroscopy. Microchem. J. 2018, 145, 252–258. [Google Scholar] [CrossRef]
- Mishra, G.; Srivastava, S.; Panda, B.K.; Mishra, H.N. Rapid Assessment of Quality Change and Insect Infestation in Stored Wheat Grain Using FT-NIR Spectroscopy and Chemometrics. Food Anal. Methods 2017, 11, 1189–1198. [Google Scholar] [CrossRef]
- Carneiro-Leão, M.P.; Tiago, P.V.; Medeiros, L.V.; Da Costa, A.F.; De Oliveira, N.T. Dactylopius opuntiae: Control by the Fusarium incarnatum–equiseti species complex and confirmation of mortality by DNA fingerprinting. J. Pest. Sci. 2017, 90, 925–933. [Google Scholar] [CrossRef]
- Michereff-Filho, M.; Fonseca, M.E.N.; Boiteux, L.S.; Torres, J.B.; Silva, K.F.A.D.S.; Specht, A. Helicoverpa armigera Harm 1 Haplotype Predominates in the Heliothinae (Lepidoptera: Noctuidae) Complex Infesting Tomato Crops in Brazil. Neotrop. Èntomol. 2021, 50, 258–268. [Google Scholar] [CrossRef]
- Mezei, P.; Potterf, M.; Škvarenina, J.; Rasmussen, J.G.; .Jakuš, R. Potential solar radiation as a driver for bark beetle infestation on a landscape scale. Forests 2019, 10, 604. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, S.; Mishra, G.; Mishra, H.N. Fuzzy controller based E-nose classification of Sitophilus oryzae infestation in stored rice grain. Food Chem. 2019, 283, 604–610. [Google Scholar] [CrossRef]
- Banga, K.S.; Kotwaliwale, N.; Mohapatra, D.; Giri, S.K. Techniques for insect detection in stored food grains: An overview. Food Control 2018, 94, 167–176. [Google Scholar] [CrossRef]
- Mishra, G.; Srivastava, S.; Panda, B.K.; Mishra, H.N. Sensor array optimization and determination of Rhyzopertha dominica infestation in wheat using hybrid neuro-fuzzy-assisted electronic nose analysis. Anal. Methods 2018, 10, 5687–5695. [Google Scholar] [CrossRef]
- Carroll, J.J.; Coburn, H.; Douglass, R.; Babson, A.L. A Simplified Alkaline Phosphotungstate Assay for Uric Acid in Serum. Clin. Chem. 1971, 17, 158–160. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Yue, Y.; Chen, Z.; Chen, Y.; Wu, S.; Liao, J.; Liu, S.; Wen, H.-R. Electrochemical sensor based on a nanocomposite prepared from TmPO4 and graphene oxide for simultaneous voltammetric detection of ascorbic acid, dopamine and uric acid. Microchim. Acta 2019, 186, 189. [Google Scholar] [CrossRef]
- Sha, R.; Vishnu, N.; Badhulika, S. MoS2 based ultra-low-cost, flexible, non-enzymatic and non-invasive electrochemical sensor for highly selective detection of Uric acid in human urine samples. Sens. Actuators B Chem. 2018, 279, 53–60. [Google Scholar] [CrossRef]
- Yang, Y.; Li, M.; Zhu, Z. A novel electrochemical sensor based on carbon nanotubes array for selective detection of dopamine or uric acid. Talanta 2019, 201, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Jin, L.; Chen, Y.; Zhang, J.-R.; Zhu, J.-J. Microwave-Assisted In Situ Synthesis of Graphene/PEDOT Hybrid and Its Application in Supercapacitors. ChemPlusChem 2012, 78, 227–234. [Google Scholar] [CrossRef]
- Fu, L.; Wang, Q.; Zhang, M.; Zheng, Y.; Wu, M.; Lan, Z.; Pu, J.; Zhang, H.; Chen, F.; Su, W.; et al. Electrochemical Sex Determination of Dioecious Plants Using Polydopamine-Functionalized Graphene Sheets. Front. Chem. 2020, 8, 92. [Google Scholar] [CrossRef]
- Fu, L.; Wang, A.; Lai, G.; Su, W.; Malherbe, F.; Yu, J.; Lin, C.-T.; Yu, A. Defects regulating of graphene ink for electrochemical determination of ascorbic acid, dopamine and uric acid. Talanta 2018, 180, 248–253. [Google Scholar] [CrossRef]
- Motshakeri, M.; Travas-Sejdic, J.; Phillips, A.R.; Kilmartin, P. Rapid electroanalysis of uric acid and ascorbic acid using a poly(3,4-ethylenedioxythiophene)-modified sensor with application to milk. Electrochim. Acta 2018, 265, 184–193. [Google Scholar] [CrossRef]
- Fu, L.; Xie, K.; Zheng, Y.; Zhang, L.; Su, W. Graphene Ink Film Based Electrochemical Detector for Paracetamol Analysis. Electronics 2018, 7, 15. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, R.G.; Rejithamol, R.; Saraswathyamma, B. Non-Enzymatic Electrochemical Sensor for the Simultaneous Deter-mination of Adenosine, Adenine and Uric Acid in Whole Blood and Urine. Microchem. J. 2020, 155, 104745. [Google Scholar] [CrossRef]
- Brainina, K.Z.; Bukharinova, M.A.; Stozhko, N.Y.; Sokolkov, S.V.; Tarasov, A.V.; Vidrevich, M.B. Electrochemical Sensor Based on a Carbon Veil Modified by Phytosynthesized Gold Nanoparticles for Determination of Ascorbic Acid. Sensors 2020, 20, 1800. [Google Scholar] [CrossRef] [Green Version]
- Hou, C.; Liu, H.; Zhang, D.; Yang, C.; Zhang, M. Synthesis of ZnO nanorods-Au nanoparticles hybrids via in-situ plasma sputtering-assisted method for simultaneous electrochemical sensing of ascorbic acid and uric acid. J. Alloys Compd. 2016, 666, 178–184. [Google Scholar] [CrossRef]
- Yang, Y.J.; Li, W. CTAB functionalized graphene oxide/multiwalled carbon nanotube composite modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite. Biosens. Bioelectron. 2014, 56, 300–306. [Google Scholar] [CrossRef]
- Huang, H.; Gao, Y.; Liu, A.; Yang, X.; Huang, F.; Xu, L.; Danfeng, X.; Chen, L. EIF3D promotes sunitinib resistance of renal cell carcinoma by interacting with GRP78 and inhibiting its degradation. EBioMedicine 2019, 49, 189–201. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Ma, Y.; Liu, Y.; Xin, G.; Wang, M.; Zhang, Z.; Liu, Z. Electrochemical sensor based on a three dimensional nanostructured MoS2 nanosphere-PANI/reduced graphene oxide composite for simultaneous detection of ascorbic acid, dopamine, and uric acid. RSC Adv. 2019, 9, 2997–3003. [Google Scholar] [CrossRef] [Green Version]
- Si, Y.; Park, J.W.; Jung, S.; Hwang, G.-S.; Goh, E.; Lee, H.J. Layer-by-layer electrochemical biosensors configuring xanthine oxidase and carbon nanotubes/graphene complexes for hypoxanthine and uric acid in human serum solutions. Biosens. Bioelectron. 2018, 121, 265–271. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Ye, D.; Luo, J.; Su, B.; Zhang, S.; Kong, J. An electrochemical sensor for simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan based on MWNTs bridged mesocellular graphene foam nanocomposite. Talanta 2014, 127, 255–261. [Google Scholar] [CrossRef] [PubMed]
Sensor | Linear Detection Range | Limit of Detection | Reference |
---|---|---|---|
ZnO-Au NPs | 4–400 μM | 2.375 μM | [35] |
CTAB-GO/MWCNT | 3–60 μM | 1 μM | [36] |
GO/TmPO4 | 10–100 μM | 5.9 μM | [37] |
MoS2-PANI/RGO | 1–500 μM | 0.36 μM | [38] |
PDDA-CNT-G/SPE | 5–50 μM | 4.4 μM | [39] |
MWCNTs/MGF/GCE | 5–100 μM | 0.9 μM | [40] |
graphene-PEDOT/SPE | 0.05–30 μM | 15 nM | This work |
Egg Number | Phosphotungstic Acid Reduction | Electrochemical Sensor | ||
---|---|---|---|---|
Absorbance | Uric Acid Concentration | Current | Uric Acid Concentration | |
0 | 0.425 | 0.000 μM | 4.020 μA | 0.000 μM |
2 | 0.442 | 2.511 μM | 9.112 μA | 2.504 μM |
4 | 0.449 | 3.781 μM | 11.241 μA | 3.779 μM |
6 | 0.455 | 5.713 μM | 14.647 μA | 5.710 μM |
8 | 0.462 | 7.101 μM | 19.202 μA | 7.095 μM |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, L.; Zhu, J.; Karimi-Maleh, H. An Analytical Method Based on Electrochemical Sensor for the Assessment of Insect Infestation in Flour. Biosensors 2021, 11, 325. https://doi.org/10.3390/bios11090325
Fu L, Zhu J, Karimi-Maleh H. An Analytical Method Based on Electrochemical Sensor for the Assessment of Insect Infestation in Flour. Biosensors. 2021; 11(9):325. https://doi.org/10.3390/bios11090325
Chicago/Turabian StyleFu, Li, Jiangwei Zhu, and Hassan Karimi-Maleh. 2021. "An Analytical Method Based on Electrochemical Sensor for the Assessment of Insect Infestation in Flour" Biosensors 11, no. 9: 325. https://doi.org/10.3390/bios11090325
APA StyleFu, L., Zhu, J., & Karimi-Maleh, H. (2021). An Analytical Method Based on Electrochemical Sensor for the Assessment of Insect Infestation in Flour. Biosensors, 11(9), 325. https://doi.org/10.3390/bios11090325