Wearable Intracranial Pressure Monitoring Sensor for Infants
Abstract
:1. Introduction
2. Materials and Methods
2.1. ICP Sensor Design
2.2. Artificial Fontanelle Model
2.3. ICP Sensor Fabrication
2.4. ICP Sensor Characterization
3. Results and Discussions
3.1. Fabricated ICP Sensor
3.2. Fontanelle Model Validation
3.3. ICP Sensor Design Analysis
3.4. Performance of the ICP Sensor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Massager, N.; Wayenberg, J.L.; Raftopoulos, C.; Christophe, C.; Vermeylen, D.; Franco, P. Anterior fontanelle pressure monitoring for the evaluation of asymptomatic infants with increased head growth rate. Child’s Nerv. Syst. 1996, 12, 38–42. [Google Scholar] [CrossRef]
- Hanlo, P.W.; Gooskens, R.H.; Faber, J.A.; Peters, R.J.; Hermsen, A.A.; Nijhuis, I.J.; Vandertop, W.P.; Tulleken, C.A.; Willemse, J. Relationship between anterior fontanelle pressure measurements and clinical signs in infantile hydrocephalus. Child’s Nerv. Syst. 1996, 12, 200–209. [Google Scholar] [CrossRef]
- Hanlo, P.W.; Gooskens, R.H.; Nijhuis, I.J.; Faber, J.A.; Peters, R.J.; van Huffelen, A.C.; Tulleken, C.A.; Willemse, J. Value of transcranial Doppler indices in predicting raised ICP in infantile hydrocephalus. A study with review of the literature. Child’s Nerv. Syst. 1995, 11, 595–603. [Google Scholar] [CrossRef]
- Czosnyka, M.; Hutchinson, P.J.; Balestreri, M.; Hiler, M.; Smielewski, P.; Pickard, J.D. Monitoring and interpretation of intracranial pressure after head injury. Acta Neurochir. Suppl. 2006, 96, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Unnerback, M.; Bloomfield, E.L.; Soderstrom, S.; Reinstrup, P. The intracranial pressure curve correlates to the pulsatile component of cerebral blood flow. J. Clin. Monit. Comput. 2019, 33, 77–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dixon, R.R.; Nocera, M.; Zolotor, A.J.; Keenan, H.T. Intracranial Pressure Monitoring in Infants and Young Children With Traumatic Brain Injury. Pediatr. Crit. Care Med. 2016, 17, 1064–1072. [Google Scholar] [CrossRef] [PubMed]
- Kannan, N.; Quistberg, A.; Wang, J.; Groner, J.I.; Mink, R.B.; Wainwright, M.S.; Bell, M.J.; Giza, C.C.; Zatzick, D.F.; Ellenbogen, R.G.; et al. Frequency of and factors associated with emergency department intracranial pressure monitor placement in severe paediatric traumatic brain injury. Brain Inj. 2017, 31, 1745–1752. [Google Scholar] [CrossRef] [PubMed]
- Padayachy, L.C.; Padayachy, V.; Galal, U.; Pollock, T.; Fieggen, A.G. The relationship between transorbital ultrasound measurement of the optic nerve sheath diameter (ONSD) and invasively measured ICP in children. Part II: Age-related ONSD cut-off values and patency of the anterior fontanelle. Child’s Nerv. Syst. 2016, 32, 1779–1785. [Google Scholar] [CrossRef] [PubMed]
- Christian, K. Modern intracranial pressure measurement techniques. Der Unf. 2002, 105, 577. [Google Scholar]
- Tilford, J.M.; Simpson, P.M.; Yeh, T.S.; Lensing, S.; Aitken, M.E.; Green, J.W.; Harr, J.; Fiser, D.H. Variation in therapy and outcome for pediatric head trauma patients. Crit. Care Med. 2001, 29, 1056–1061. [Google Scholar] [CrossRef]
- Wiegand, C.; Richards, P. Measurement of intracranial pressure in children: A critical review of current methods. Dev. Med. Child Neurol. 2007, 49, 935–941. [Google Scholar] [CrossRef]
- Ducharme-Crevier, L.; Mills, M.G.; Mehta, P.M.; Smith, C.M.; Wainwright, M.S. Use of Transcranial Doppler for Management of Central Nervous System Infections in Critically Ill Children. Pediatr. Neurol. 2016, 65, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.; Li, L.H.; Yang, Y.L.; Li, M.; Qu, Y.; Gao, L. Transcranial Doppler Ultrasonography for the Management of Severe Traumatic Brain Injury After Decompressive Craniectomy. World Neurosurg. 2019, 126, E116–E124. [Google Scholar] [CrossRef]
- Ghoshal, S.; Gomez, J.; Sarwal, A. Noninvasive ICP Monitoring by Serial Transcranial Doppler in Coagulopathic Patient. Neurocrit. Care 2019, 31, 216–221. [Google Scholar] [CrossRef]
- Shimbles, S.; Dodd, C.; Banister, K.; Mendelow, A.D.; Chambers, I.R. Clinical comparison of tympanic membrane displacement with invasive ICP measurements. Acta Neurochir. Suppl. 2005, 95, 197–199. [Google Scholar]
- Samuel, M.; Burge, D.; Marchbanks, R. Quantitative assessment of intracranial pressure by the tympanic membrane displacement audiometric technique in children with shunted hydrocephalus. Eur. J. Pediatr. Surg. 1998, 8, 200–207. [Google Scholar] [CrossRef]
- Shimbles, S.; Dodd, C.; Banister, K.; Mendelow, A.D.; Chambers, I.R. Clinical comparison of tympanic membrane displacement with invasive intracranial pressure measurements. Physiol. Meas. 2005, 26, 1085–1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, M. Monitoring intracranial pressure in traumatic brain injury. Anesth. Analg. 2008, 106, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Liu, Z.H.; Bai, W.B.; Liu, Y.H.; Yan, Y.; Xue, Y.G.; Kandela, I.; Pezhouh, M.; MacEwan, M.R.; Huang, Y.G.; et al. Bioresorbable optical sensor systems for monitoring of intracranial pressure and temperature. Sci. Adv. 2019, 5, eaaw1899. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Q.; Yang, X.M.; Zhou, H.G.; Yang, J.S. Analysis of surface acoustic wave pressure sensors. Sens. Actuators A Phys. 2005, 118, 1–5. [Google Scholar] [CrossRef]
- Fonseca, M.A.; English, J.M.; Arx, M.v.; Allen, M.G. Wirelss Micromachined Ceramic Pressure Sensor for High-Temperature Applications. J. Microelectromech. Syst. 2002, 11, 337–343. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.; Chen, Y.; Okhai, T.A.; Snyman, L.W. Micro optical sensors based on avalanching silicon light-emitting devices monolithically integrated on chips. Opt. Mater. Express 2019, 9, 3985. [Google Scholar] [CrossRef]
- Xu, F.L.; Wang, Z.G.; Li, X.Y.; Liang, M.M.; Liu, R.P.; Wang, W.; Li, L.H. Research on Creep Resistance of Flexible Pressure Sensor Based on Anhydride Curing Agent. Appl. Sci. Graph. Commun. Packag. 2018, 477, 901–908. [Google Scholar] [CrossRef]
- Yang, X.F.; Wang, Y.S.; Sun, H.; Qing, X.L. A flexible ionic liquid-polyurethane sponge capacitive pressure sensor. Sens. Actuators A Phys. 2019, 285, 67–72. [Google Scholar] [CrossRef]
- Wong, R.D.P.; Posner, J.D.; Santos, V.J. Flexible microfluidic normal force sensor skin for tactile feedback. Sens. Actuators A Phys. 2012, 179, 62–69. [Google Scholar] [CrossRef]
- Fan, S.C.; Meng, L.J.; Dan, L.; Zheng, W.; Wang, X.H. Polymer Microelectromechanical System-Integrated Flexible Sensors for Wearable Technologies. IEEE Sens. J. 2019, 19, 443–450. [Google Scholar] [CrossRef]
- Surapaneni, R.; Xie, Y.; Park, K.; Mastrangelo, C. Microfabrication of Flexible Self-Repairing Ground Reaction Sensor with Liquid Metal Electrodes. Procedia Eng. 2011, 25. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.C.; Karmakar, R.S.; Lu, Y.J.; Chan, S.H.; Wu, M.C.; Lin, K.J.; Chen, C.K.; Wei, K.C.; Hsu, Y.H. Miniaturized Flexible Piezoresistive Pressure Sensors: Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Copolymers Blended with Graphene Oxide for Biomedical Applications. ACS Appl. Mater. Interfaces 2019, 11, 34305–34315. [Google Scholar] [CrossRef]
- Yang, C.C.; Maimaitiyiming, X.E.A.L.; Mi, H.Y. High Temperature Sensitivity Pressure Sensors Based on Filter Paper as a Mold. J. Electrochem. Soc. 2019, 166, B1286–B1292. [Google Scholar] [CrossRef]
- Li, G.; Lee, D.W. An advanced selective liquid-metal plating technique for stretchable biosensor applications. Lab Chip 2017, 17, 3415–3421. [Google Scholar] [CrossRef]
- Yu, Z.W.; Yun, F.F.; Wang, X.L. A novel liquid metal patterning technique: Voltage induced non-contact electrochemical lithography at room temperature. Mater. Horiz. 2018, 5, 36–40. [Google Scholar] [CrossRef]
- Khoshmanesh, K.; Tang, S.Y.; Zhu, J.Y.; Schaefer, S.; Mitchell, A.; Kalantar-Zadeh, K.; Dickey, M.D. Liquid metal enabled microfluidics. Lab Chip 2017, 17, 974–993. [Google Scholar] [CrossRef]
- Chossat, J.B.; Park, Y.L.; Wood, R.J.; Duchaine, V. A Soft Strain Sensor Based on Ionic and Metal Liquids. IEEE Sens. J. 2013, 13, 3405–3414. [Google Scholar] [CrossRef]
- Ota, H.; Chen, K.; Lin, Y.; Kiriya, D.; Shiraki, H.; Yu, Z.; Ha, T.J.; Javey, A. Highly deformable liquid-state heterojunction sensors. Nat. Commun. 2014, 5, 5032. [Google Scholar] [CrossRef] [PubMed]
- So, J.H.; Dickey, M.D. Inherently aligned microfluidic electrodes composed of liquid metal. Lab Chip 2011, 11, 905–911. [Google Scholar] [CrossRef] [PubMed]
- Shay, T.; Velev, O.D.; Dickey, M.D. Soft electrodes combining hydrogel and liquid metal. Soft Matter 2018, 14, 3296–3303. [Google Scholar] [CrossRef] [PubMed]
- Hallfors, N.; Khan, A.; Dickey, M.D.; Taylor, A.M. Integration of pre-aligned liquid metal electrodes for neural stimulation within a user-friendly microfluidic platform. Lab Chip 2013, 13, 522–526. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.Y.; Liao, W.H.; Tung, Y.C. Integrated ionic liquid-based electrofluidic circuits for pressure sensing within polydimethylsiloxane microfluidic systems. Lab Chip 2011, 11, 1740–1746. [Google Scholar] [CrossRef]
- Ali, S.; Maddipatla, D.; Narakathu, B.B.; Chlaihawi, A.A.; Emamian, S.; Janabi, F.; Bazuin, B.J.; Atashbar, M.Z. Flexible Capacitive Pressure Sensor Based on PDMS Substrate and Ga-In Liquid Metal. IEEE Sens. J. 2019, 19, 97–104. [Google Scholar] [CrossRef]
- Green Marques, D.; Alhais Lopes, P.; Anibal, T.d.A.; Majidi, C.; Tavakoli, M. Reliable interfaces for EGaIn multi-layer stretchable circuits and microelectronics. Lab Chip 2019, 19, 897–906. [Google Scholar] [CrossRef]
- Jung, T.; Yang, S. Highly Stable Liquid Metal-Based Pressure Sensor Integrated with a Microfluidic Channel. Sensors 2015, 15, 11823–11835. [Google Scholar] [CrossRef] [Green Version]
- Parekh, D.P.; Ladd, C.; Panich, L.; Moussa, K.; Dickey, M.D. 3D printing of liquid metals as fugitive inks for fabrication of 3D microfluidic channels. Lab Chip 2016, 16, 1812–1820. [Google Scholar] [CrossRef]
- Tang, S.Y.; Khoshmanesh, K.; Sivan, V.; Petersen, P.; O’Mullane, A.P.; Abbott, D.; Mitchell, A.; Kalantar-Zadeh, K. Liquid metal enabled pump. Proc. Natl. Acad. Sci. USA 2014, 111, 3304–3309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- May, J.M.; Kyriacou, P.A.; Honsel, M.; Petros, A.J. Investigation of photoplethysmographs from the anterior fontanelle of neonates. Physiol. Meas. 2014, 35, 1961–1973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedroso, F.S.; Rotta, N.; Quintal, A.; Giordani, G. Evolution of anterior fontanel size in normal infants in the first year of life. J. Child Neurol. 2008, 23, 1419–1423. [Google Scholar] [CrossRef] [PubMed]
- Behmanesh, B.; Setzer, M.; Noack, A.; Bartels, M.; Quick-Weller, J.; Seifert, V.; Freiman, T.M. Noninvasive epicutaneous transfontanelle intracranial pressure monitoring in children under the age of 1 year: A novel technique. J. Neurosurg. Pediatr. 2016, 18, 372–376. [Google Scholar] [CrossRef] [Green Version]
- Steggerda, S.J.; van Wezel-Meijler, G. Cranial ultrasonography of the immature cerebellum: Role and limitations. Semin. Fetal Neonatal Med. 2016, 21, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Luciano, M.G.; Dombrowski, S.M.; Qvarlander, S.; El-Khoury, S.; Yang, J.; Thyagaraj, S.; Loth, F. Novel method for dynamic control of intracranial pressure. J. Neurosurg. 2017, 126, 1629–1640. [Google Scholar] [CrossRef] [Green Version]
- Lang, S.S.; Beslow, L.A.; Gabel, B.; Judkins, A.R.; Fisher, M.J.; Sutton, L.N.; Storm, P.B.; Heuer, G.G. Surgical Treatment of Brain Tumors in Infants Younger than Six Months of Age and Review of the Literature. World Neurosurg. 2012, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- March, K. Intracranial pressure monitoring: Why monitor? AACN Clin. Issues 2005, 16, 456–475. [Google Scholar] [CrossRef]
- Brain Trauma, F.; Brain Trauma Foundation; American Association of Neurological Surgeons; Congress of Neurological Surgeons; Joint Section on Neurotrauma and Critical Care; Bratton, S.L.; Chestnut, R.M.; Ghajar, J.; McConnell Hammond, F.F.; Harris, O.A.; et al. Guidelines for the management of severe traumatic brain injury. VII. Intracranial pressure monitoring technology. J. Neurotrauma 2007, 24 (Suppl. 1), S45–S54. [Google Scholar] [CrossRef]
ICP Sensor Design | ||||
---|---|---|---|---|
W500-H100 | W500-H300 | W1000-H300 | ||
Gallium structure design | Width (µm) | 500 | 500 | 1000 |
Height (µm) | 100 | 300 | 300 | |
Length (µm) | 4.55 × 105 | 4.55 × 105 | 4.55 × 105 | |
Sensor thickness (µm) | 500 | 500 | 500 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Huang, Z.; Song, H.; Kim, H.S.; Park, J. Wearable Intracranial Pressure Monitoring Sensor for Infants. Biosensors 2021, 11, 213. https://doi.org/10.3390/bios11070213
Zhang B, Huang Z, Song H, Kim HS, Park J. Wearable Intracranial Pressure Monitoring Sensor for Infants. Biosensors. 2021; 11(7):213. https://doi.org/10.3390/bios11070213
Chicago/Turabian StyleZhang, Baoyue, Ziyi Huang, Huixue Song, Hyun Soo Kim, and Jaewon Park. 2021. "Wearable Intracranial Pressure Monitoring Sensor for Infants" Biosensors 11, no. 7: 213. https://doi.org/10.3390/bios11070213
APA StyleZhang, B., Huang, Z., Song, H., Kim, H. S., & Park, J. (2021). Wearable Intracranial Pressure Monitoring Sensor for Infants. Biosensors, 11(7), 213. https://doi.org/10.3390/bios11070213