Restoring the Oxidase-Like Activity of His@AuNCs for the Determination of Alkaline Phosphatase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Instruments
2.2. Synthesis of His@AuNCs
2.3. Synthesis of His@AuNCs/GO
2.4. Oxidase-Like Activity of His@AuNCs/GO
2.5. Inhibiting of the Oxidase-Like Activity of His@AuNCs/GO by PPi
2.6. Colorimetric Detection of ALP Activity
3. Results
3.1. Characterization of His@AuNCs/GO
3.2. Oxidase-Like Activity of His@AuNCs/GO
3.3. Inhibitory Effects of PPi
3.4. Detection of ALP Activity
3.5. Analytical Application in Real Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fernley, H.N. 18 Mammalian Alkaline Phosphatases. In Enzymes; Academic Press: Cambridge, MA, USA, 1971; pp. 417–447. [Google Scholar] [CrossRef]
- Coleman, J.E. Structure and mechanism of alkaline phosphatase. Annu. Rev. Biophys. Biomol. Struct. 1992, 21, 441–483. [Google Scholar] [CrossRef]
- Couttenye, M.M.; D’Haese, P.C.; Van, H.V.O.; Lemoniatou, E.; Goodman, W.; Verpooten, G.A.; De, B.M.E. Low serum levels of alkaline phosphatase of bone origin: A good marker of adynamic bone disease in haemodialysis patients. Nephrol. Dial. Transplant. 1996, 11, 1065–1072. [Google Scholar] [CrossRef]
- Lorente, J.A.; Valenzuela, H.; Morote, J.; Gelabert, A. Serum bone alkaline phosphatase levels enhance the clinical utility of prostate specific antigen in the staging of newly diagnosed prostate cancer patients. Eur. J. Nucl. Med. 1999, 26, 625–632. [Google Scholar] [CrossRef]
- Rao, G.M.; Morghom, L.O. Correlation between serum alkaline phosphatase activity and blood glucose levels. Enzyme 1986, 35, 57. [Google Scholar] [CrossRef]
- Ooi, K.; Shiraki, K.; Morishita, Y.; Nobori, T. High-molecular intestinal alkaline phosphatase in chronic liver diseases. J. Clin. Lab. Anal. 2007, 21, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Nistor, C.; Emnéus, J. An enzyme flow immunoassay using alkaline phosphatase as the label and a tyrosinase biosensor as the label detector. Anal. Commun. 1998, 35, 417–419. [Google Scholar] [CrossRef]
- Ruan, C.; Wang, W.; Gu, B. Detection of alkaline phosphatase using surface-enhanced Raman spectroscopy. Anal. Chem. 2006, 78, 3379–3384. [Google Scholar] [CrossRef]
- Wang, D.E.; Gao, X.; Li, G.; Xue, T.; Yang, H.; Xu, H. Facile colorimetric assay of alkaline phosphatase activity using polydiacetylene liposomes with calcium ions and pyrophosphate. Sens. Actuators B Chem. 2019, 289, 85–92. [Google Scholar] [CrossRef]
- Liu, Y.; Xiong, E.; Li, X.; Li, J.; Zhang, X.; Chen, J. Sensitive electrochemical assay of alkaline phosphatase activity based on TdT-mediated hemin/G-quadruplex DNAzyme nanowires for signal amplification. Biosens. Bioelectron. 2017, 87, 970–975. [Google Scholar] [CrossRef]
- Wu, Z.; Zhou, C.H.; Pan, L.J.; Zeng, T.; Zhu, L.; Pang, D.W.; Zhang, Z.L. Reliable Digital Single Molecule Electrochemistry for Ultrasensitive Alkaline Phosphatase Detection. Anal. Chem. 2016, 88, 9166–9172. [Google Scholar] [CrossRef] [PubMed]
- Hayat, A.; Andreescu, S. Nanoceria Particles As Catalytic Amplifiers for Alkaline Phosphatase Assays. Anal. Chem. 2013, 85, 10028–10032. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, J.; Duan, M.; Zhang, H.; Jiang, J.; Yu, R. Inhibition of dsDNA-Templated Copper Nanoparticles by Pyrophosphate as a Label-Free Fluorescent Strategy for Alkaline Phosphatase Assay. Anal. Chem. 2013, 85, 3797–3801. [Google Scholar] [CrossRef]
- Gao, Z.; Deng, K.; Wang, X.D.; Miró, M.; Tang, D. High-resolution colorimetric assay for rapid visual readout of phosphatase activity based on gold/silver core/shell nanorod. ACS Appl. Mater. Interfaces 2014, 6, 18243–18250. [Google Scholar] [CrossRef]
- Jiao, H.; Chen, J.; Li, W.; Wang, F.; Zhou, H.; Li, Y.; Yu, C. Nucleic Acid-Regulated Perylene Probe-Induced Gold Nanoparticle Aggregation: A New Strategy for Colorimetric Sensing of Alkaline Phosphatase Activity and Inhibitor Screening. ACS Appl. Mater. Interfaces 2014, 6, 1979–1985. [Google Scholar] [CrossRef]
- Whyte, M.P. Hypophosphatasia—Aetiology, nosology, pathogenesis, diagnosis and treatment. Nat. Rev. Endocrinol. 2016, 12, 233. [Google Scholar] [CrossRef]
- Babson, A.L.; Greeley, S.J.; Coleman, C.M.; Phillips, G.E. Phenolphthalein Monophosphate as a Substrate for Serum Alkaline Phosphatase. Clin. Chem. 1966, 12, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ni, P.; Chen, C.; Jiang, Y.; Zhang, C.; Wang, B.; Cao, B.; Lu, Y. Colorimetric determination of the activity of alkaline phosphatase by exploiting the oxidase-like activity of palladium cube@CeO2 core-shell nanoparticles. Microchim. Acta 2020, 187. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Chen, Z.; Wang, S.; Cheng, F.; Chen, L. Iodine-Mediated Etching of Gold Nanorods for Plasmonic ELISA Based on Colorimetric Detection of Alkaline Phosphatase. ACS Appl. Mater. Interfaces 2015, 7, 27639–27645. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Wu, J.; Li, J.; Ju, H. A plasmonic colorimetric strategy for biosensing through enzyme guided growth of silver nanoparticles on gold nanostars. Biosens. Bioelectron. 2016, 78, 267–273. [Google Scholar] [CrossRef]
- Chen, Y.; Li, W.Y.; Wang, Y.; Yang, X.D.; Chen, J.; Jiang, Y.N.; Yu, C.; Lin, Q. Cysteine-directed fluorescent gold nanoclusters for the sensing of pyrophosphate and alkaline phosphatase. J. Mater. Chem. C 2014, 2, 4080–4085. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, C.L.; Yu, S.H. Tuning Gold Nanoparticle Aggregation through the Inhibition of Acid Phosphatase Bioactivity: A Plasmonic Sensor for Light-Up Visual Detection of Arsenate (As-V). ChemPlusChem 2016, 81, 1147–1151. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Li, S.; Liu, Y.; Zhang, X.; Tang, Y.; Chai, H.; Huang, Y. Size-controllable Fe-N/C single-atom nanozyme with exceptional oxidase-like activity for sensitive detection of alkaline phosphatase. Sens. Actuators B Chem. 2020, 305. [Google Scholar] [CrossRef]
- Lin, Z.; Zhang, X.; Liu, S.; Zheng, L.; Bu, Y.; Deng, H.; Chen, R.; Peng, H.; Lin, X.; Chen, W. Colorimetric acid phosphatase sensor based on MoO3 nanozyme. Anal. Chim. Acta 2020, 1105, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Zhou, J.; Ma, J.; Liu, S.; Jiao, B.; He, Y. MnO2 nanosheets as oxidase mimics for colorimetric detection of alkaline phosphatase activity. Microchim. Acta 2019, 186. [Google Scholar] [CrossRef]
- Chen, C.X.; Zhao, D.; Jiang, Y.Y.; Ni, P.J.; Zhang, C.H.; Wang, B.; Yang, F.; Lu, Y.Z.; Sun, J. Logically Regulating Peroxidase-Like Activity of Gold Nanoclusters for Sensing Phosphate-Containing Metabolites and Alkaline Phosphatase Activity. Anal. Chem. 2019, 91, 15017–15024. [Google Scholar] [CrossRef]
- Wang, C.H.; Gao, J.; Cao, Y.L.; Tan, H.L. Colorimetric logic gate for alkaline phosphatase based on copper (II)-based metal-organic frameworks with peroxidase-like activity. Anal. Chim. Acta 2018, 1004, 74–81. [Google Scholar] [CrossRef]
- Fan, S.; Jiang, X.; Yang, M.; Wang, X. Sensitive colorimetric assay for the determination of alkaline phosphatase activity utilizing nanozyme based on copper nanoparticle-modified Prussian blue. Anal. Bioanal. Chem. 2021, 1–9. [Google Scholar] [CrossRef]
- Xie, X.; Wang, Y.; Zhou, X.; Chen, J.; Wang, M.; Su, X. Fe––C single-atom nanozymes with peroxidase-like activity for the detection of alkaline phosphatase. Analyst 2021, 146, 896–903. [Google Scholar] [CrossRef]
- Hou, Y.; Lu, Y.; Chen, Q.; Zhang, X.; Huang, Y. Ultrathin two-dimensional carbon nanosheets with highly active Cu-Nx sites as specific peroxidase mimic for determining total antioxidant capacity. Sens. Actuators B Chem. 2021, 333, 129549. [Google Scholar] [CrossRef]
- Adegoke, O.; Zolotovskaya, S.; Abdolvand, A.; Daeid, N.N. Rapid and highly selective colorimetric detection of nitrite based on the catalytic-enhanced reaction of mimetic Au nanoparticle-CeO2 nanoparticle-graphene oxide hybrid nanozyme. Talanta 2021, 224, 121875. [Google Scholar] [CrossRef]
- Nana, L.; Ruiyi, L.; Qinsheng, W.; Yongqiang, Y.; Xiulan, S.; Guangli, W.; Zaijun, L. Colorimetric detection of chlorpyrifos in peach based on cobalt-graphene nanohybrid with excellent oxidase-like activity and reusability. J. Hazard. Mater. 2021, 415, 125752. [Google Scholar] [CrossRef]
- Xue, Q.; Li, X.; Peng, Y.; Liu, P.; Peng, H.; Niu, X. Polyethylenimine-stabilized silver nanoclusters act as an oxidoreductase mimic for colorimetric determination of chromium(VI). Microchim. Acta 2020, 187. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, S.; Liu, J.; Li, J.; Lu, X. Efficient visual Chemosensor for Hexavalent Chromium via a Controlled Strategy for Signal Amplification in Water. Anal. Chem. 2020, 92, 3426–3433. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Wang, Y.-T.; Wang, X.-Y.; Guo, F.-N.; Wen, H.; Yang, T.; Wang, J.-H. Enhanced peroxidase-like activity of AuNPs loaded graphitic carbon nitride nanosheets for colorimetric biosensing. Anal. Chim. Acta 2019, 1091, 69–75. [Google Scholar] [CrossRef]
- Chen, M.M.; Yang, B.C.; Zhu, J.L.; Liu, H.; Zhang, X.; Zheng, X.W.; Liu, Q.Y. FePt nanoparticles-decorated graphene oxide nanosheets as enhanced peroxidase mimics for sensitive response to H2O2. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 90, 610–620. [Google Scholar] [CrossRef]
- Liu, L.; Du, J.; Liu, W.-E.; Guo, Y.; Wu, G.; Qi, W.; Lu, X. Enhanced His@AuNCs oxidase-like activity by reduced graphene oxide and its application for colorimetric and electrochemical detection of nitrite. Anal. Bioanal. Chem. 2019, 411, 2189–2200. [Google Scholar] [CrossRef]
- Ren, W.; Fang, Y.; Wang, E. A Binary Functional Substrate for Enrichment and Ultrasensitive SERS Spectroscopic Detection of Folic Acid Using Graphene Oxide/Ag Nanoparticle Hybrids. ACS Nano 2011, 5, 6425–6433. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Liao, H.; Feng, L.; Wang, M.; Fu, W. Accelerating the Peroxidase-Like Activity of Gold Nanoclusters at Neutral pH for Colorimetric Detection of Heparin and Heparinase Activity. Anal. Chem. 2018, 90, 6247–6252. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Tian, L.; Du, J.; Wu, J.; Liu, Y.; Wu, G.; Lu, X.J.A. Triggered peroxidase-like activity of Au decorated carbon dots for colorimetric monitoring of Hg 2+ enrichment in Chlorella vulgaris. Analyst 2020, 145, 5500–5507. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, X.; Lin, A.; Wei, H.J.A.C. In Situ Exsolution of Noble-Metal Nanoparticles on Perovskites as Enhanced Peroxidase Mimics for Bioanalysis. Anal. Chem. 2021, 93, 5954–5962. [Google Scholar] [CrossRef]
- Kargar, S.; Elhamifar, D.; Zarnegaryan, A. Ionic liquid modified graphene oxide supported Mo-complex: A novel, efficient and highly stable catalyst. Surf. Interfaces 2021, 23, 100946. [Google Scholar] [CrossRef]
- Chaiyakun, S.; Witit-Anun, N.; Nuntawong, N.; Chindaudom, P.; Oaew, S.; Kedkeaw, C.; Limsuwan, P. Preparation and characterization of graphene oxide nanosheets. Procedia Eng. 2012, 32, 759–764. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zhu, L.; Yu, Q.; Chen, S.; Cui, Y.; Sun, H.; Gao, D.; Lan, X.; Yang, Q.; Xiao, H. Polymer Edition. Enhanced glucose detection using dendrimer encapsulated gold nanoparticles benefiting from their zwitterionic surface. J. Biomater. Sci. Polym. Ed. 2018, 29, 2267–2280. [Google Scholar] [CrossRef] [PubMed]
- Li, C.M.; Zhen, S.J.; Wang, J.; Li, Y.F.; Huang, C.Z. A gold nanoparticles-based colorimetric assay for alkaline phosphatase detection with tunable dynamic range. Biosens. Bioelectron. 2013, 43, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Chen, Z.; Chen, X.; Liu, J.; Tang, F. Sensitive optical detection of alkaline phosphatase activity with quantum dots. J. Lumin. 2014, 145, 330–334. [Google Scholar] [CrossRef]
- Kang, W.; Ding, Y.; Zhou, H.; Liao, Q.; Yang, X.; Yang, Y.; Jiang, J.; Yang, M. Monitoring the activity and inhibition of alkaline phosphatase via quenching and restoration of the fluorescence of carbon dots. Microchim. Acta 2015, 182, 1161–1167. [Google Scholar] [CrossRef]
- Qian, Z.S.; Chai, L.J.; Huang, Y.Y.; Tang, C.; Jia Shen, J.; Chen, J.R.; Feng, H. A real-time fluorescent assay for the detection of alkaline phosphatase activity based on carbon quantum dots. Biosens. Bioelectron. 2015, 68, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.K.; Pandey, S.; Khan, M.S.; Wu, H.F. Protein stabilized fluorescent gold nanocubes as selective probe for alkaline phosphatase via inner filter effect. Sens. Actuators B Chem. 2018, 259, 83–89. [Google Scholar] [CrossRef]
- Xue, Q.; Cao, X.; Zhang, C.; Xian, Y. Polydopamine nanodots are viable probes for fluorometric determination of the activity of alkaline phosphatase via the in situ regulation of a redox reaction triggered by the enzyme. Microchim. Acta 2018, 185, 1–9. [Google Scholar] [CrossRef]
- Yang, H.K.; Xiao, J.Y.; Su, L.; Feng, T.; Lv, Q.Y.; Zhang, X.J. Oxidase-mimicking activity of the nitrogen-doped Fe3C@C composites. Chem. Commun. 2017, 53, 3882–3885. [Google Scholar] [CrossRef]
- Deng, H.H.; Lin, X.L.; Liu, Y.H.; Li, K.L.; Zhuang, Q.Q.; Peng, H.P.; Liu, A.L.; Xia, X.H.; Chen, W. Chitosan-stabilized platinum nanoparticles as effective oxidase mimics for colorimetric detection of acid phosphatase. Nanoscale 2017, 9, 10292–10300. [Google Scholar] [CrossRef]
- Qin, L.; Wang, X.; Liu, Y.; Wei, H. 2D-Metal–Organic-Framework-Nanozyme Sensor Arrays for Probing Phosphates and Their Enzymatic Hydrolysis. Anal. Chem. 2018, 90, 9983–9989. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.; Qin, Y.; Li, J.; Qin, S.; Huang, Y.; Lin, T.; Guo, L.; Ye, F.; Zhao, S. A ratiometric multicolor fluorescence biosensor for visual detection of alkaline phosphatase activity via a smartphone. Biosens. Bioelectron. 2019, 143, 111605. [Google Scholar] [CrossRef] [PubMed]
- Muthuraj, B.; Mukherjee, S.; Chowdhury, S.R.; Patra, C.R.; Iyer, P.K. An efficient strategy to assemble water soluble histidine-perylene diimide and graphene oxide for the detection of PPi in physiological conditions and in vitro. Biosens. Bioelectron. 2017, 89, 636–644. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Lin, Y.X.; Xu, M.D.; Gao, Z.Q.; Yang, H.H.; Tang, D.P. Facile Synthesis of Enhanced Fluorescent Gold-Silver Bimetallic Nanocluster and Its Application for Highly Sensitive Detection of Inorganic Pyrophosphatase Activity. Anal. Chem. 2016, 88, 8886–8892. [Google Scholar] [CrossRef] [PubMed]
Catalyst | (10−7 M s−1) | |
---|---|---|
His@AuNCs (TMB) | 0.126 | 1.164 |
His@AuNCs/GO (TMB) | 0.098 | 1.728 |
Material | Method | Linear Range (mU/mL) | LOD (mU/mL) | References |
---|---|---|---|---|
Au NPs/ATP | Colorimetric | 100–600 | 10 | [51] |
Au nanorods | Colorimetric | 5–100 | 3.3 | [14] |
CdTe/CdS QDs | Fluorescent | 3–1000 | 3 | [52] |
CDs | Fluorescent | 2.5–40 | 1 | [53] |
GQDs | Fluorescent | 16.7–782.6 | 1.1 | [54] |
Protein stabilized gold nanocubes | Fluorescent | 0.0312–1 | 1.616 | [55] |
PDA nanodots | Colorimetric | 1–50 | 0.94 | [56] |
His@AuNCs/GO | Colorimetric | 0–40 | 0.26 | This work |
Sample | Added (mU/mL) | Detected (mU/mL) | RSD (%, n = 3) | Recovery (%) |
---|---|---|---|---|
1 | 3 | 2.96 | 3.22 | 98.67 |
2 | 4 | 3.97 | 4.44 | 99.17 |
3 | 6 | 6.15 | 2.08 | 102.50 |
4 | 9 | 9.15 | 2.24 | 101.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, F.; Yu, Y.; Wu, Y.; Tian, L.; Zhao, G.; Pang, H.; Du, J. Restoring the Oxidase-Like Activity of His@AuNCs for the Determination of Alkaline Phosphatase. Biosensors 2021, 11, 174. https://doi.org/10.3390/bios11060174
Xiao F, Yu Y, Wu Y, Tian L, Zhao G, Pang H, Du J. Restoring the Oxidase-Like Activity of His@AuNCs for the Determination of Alkaline Phosphatase. Biosensors. 2021; 11(6):174. https://doi.org/10.3390/bios11060174
Chicago/Turabian StyleXiao, Fanfan, Yuting Yu, Yang Wu, Lili Tian, Guoyan Zhao, Hailong Pang, and Jie Du. 2021. "Restoring the Oxidase-Like Activity of His@AuNCs for the Determination of Alkaline Phosphatase" Biosensors 11, no. 6: 174. https://doi.org/10.3390/bios11060174
APA StyleXiao, F., Yu, Y., Wu, Y., Tian, L., Zhao, G., Pang, H., & Du, J. (2021). Restoring the Oxidase-Like Activity of His@AuNCs for the Determination of Alkaline Phosphatase. Biosensors, 11(6), 174. https://doi.org/10.3390/bios11060174