Ten Years Progress of Electrical Detection of Heavy Metal Ions (HMIs) Using Various Field-Effect Transistor (FET) Nanosensors: A Review
Abstract
:1. Introduction
2. FET Configurations and General Experiment Setup for Electrical Detection of Heavy Metal Ions
3. FET Sensor Challenges
3.1. Screening Effect and Debye Length
3.2. Sensor Deployment
4. Silicon-Based FET
5. Carbon-Based FETs
5.1. Carbon Nanotubes (CNTs) FET
5.2. Graphene FET
6. III-V Materials High Electron Mobility Transistor (HEMT)
7. Transition Metal Dichalcogenides (TMDs)-Based FETs
8. Other FETs
8.1. Black Phosphorus FET
8.2. Organic Field-Effect Transistor (OFET)
8.3. Inorganic-Based FETs
9. Conclusions and Future Scopes
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Alias, N.; Rosli, S.A.; Sazalli, N.A.H.; Hamid, H.A.; Arivalakan, S.; Umar, S.N.H.; Khim, B.K.; Taib, B.N.; Keat, Y.K.; Razak, K.A.; et al. Metal Oxide for Heavy Metal Detection and Removal; Elsevier: Amsterdam, Netherlands, 2020; ISBN 9780128175057. [Google Scholar]
- Borrill, A.J.; Reily, N.E.; Macpherson, J.V. Addressing the Practicalities of Anodic Stripping Voltammetry for Heavy Metal Detection: A Tutorial Review. Analyst 2019, 144, 6834–6849. [Google Scholar] [CrossRef] [PubMed]
- Gumpu, M.B.; Sethuraman, S.; Krishnan, U.M.; Rayappan, J.B.B. A Review on Detection of Heavy Metal Ions in Water―An Electrochemical Approach. Sensors Actuators B Chem. 2015, 213, 515–533. [Google Scholar] [CrossRef]
- Hung, D.Q.; Nekrassova, O.; Compton, R.G. Analytical Methods for Inorganic Arsenic in Water: A Review. Talanta 2004, 64, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Kos, V.; Budic, B.; Hudnik, V.; Lobnik, F.; Zupan, M. Determination of Heavy Metal Concentrations in Plants Exposed to Different Degrees of Pollution using ICP-AES. Fresenius. J. Anal. Chem. 1996, 354, 648–652. [Google Scholar] [CrossRef]
- Zarazua, G.; Ávila-Pérez, P.; Tejeda, S.; Barcelo-Quintal, I.; Martínez, T. Analysis of Total and Dissolved Heavy Metals in Surface Water of a Mexican Polluted River by Total Reflection X-ray Fluorescence Spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2006, 61, 1180–1184. [Google Scholar] [CrossRef]
- Kim, S.; Lee, B.; Reeder, J.T.; Seo, S.H.; Lee, S.U.; Hourlier-Fargette, A.; Shin, J.; Sekine, Y.; Jeong, H.; Oh, Y.S.; et al. Soft, skin-interfaced microfluidic systems with integrated immunoassays, fluorometric sensors, and impedance measurement capabilities. Proc. Natl. Acad. Sci. USA 2020, 117, 27906–27915. [Google Scholar] [CrossRef]
- Sekine, Y.; Kim, S.B.; Zhang, Y.; Bandodkar, A.J.; Xu, S.; Choi, J.; Irie, M.; Ray, T.R.; Kohli, P.; Kozai, N.; et al. A fluorometric skin-interfaced microfluidic device and smartphone imaging module for: In situ quantitative analysis of sweat chemistry. Lab Chip 2018, 18, 2178–2186. [Google Scholar] [CrossRef]
- Bandodkar, A.J.; Wang, J. Non-invasive wearable electrochemical sensors: A review. Trends Biotechnol. 2014, 32, 363–371. [Google Scholar] [CrossRef]
- Yang, Y.; Song, Y.; Bo, X.; Min, J.; Pak, O.S.; Zhu, L.; Wang, M.; Tu, J.; Kogan, A.; Zhang, H.; et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 2020, 38, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Emaminejad, S.; Nyein, H.Y.Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H.M.; Ota, H.; Shiraki, H.; Kiriya, D.; et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Fang, D.; Liu, Y.; Liu, R.; Wang, X.; Yu, Y.; Zhi, J. Problems analysis and new fabrication strategies of mediated electrochemical biosensors for wastewater toxicity assessment. Biosens. Bioelectron. 2018, 108, 82–88. [Google Scholar] [CrossRef]
- Yoon, S.; Miller, E.W.; He, Q.; Do, P.H.; Chang, C.J. A Bright and Specific Fluorescent Sensor for Mercury in Water, Cells, and Tissue. Angew. Chemie 2007, 119, 6778–6781. [Google Scholar] [CrossRef]
- Heavy Metal Test Kit. Available online: https://www.simplexhealth.co.uk/product/heavy-metals-test-kit-presence-1-test/ (accessed on 16 November 2021).
- Bergveld, P. Short Communications: Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements. IEEE Trans. Biomed. Eng. 1970, BME-17, 70–71. [Google Scholar] [CrossRef]
- Moss, D.; Janata, J.; Johnson, C.C. Potassium Ion-Sensitive Field Effect Transistor. Anal. Chem. 1975, 47, 2238–2243. [Google Scholar] [CrossRef]
- Moss, S.D.; Johnson, C.C.; Janata, J. Hydrogen, Calcium, and Potassium Ion-Sensitive FET Transducers: A Preliminary Report. IEEE Trans. Biomed. Eng. 1978, BME-25, 49–54. [Google Scholar] [CrossRef]
- Esashi, M.; Matsuo, T. Integrated Micro Multi Ion Sensor Using Field Effect of Semiconductor. IEEE Trans. Biomed. Eng. 1978, BME-25, 184–192. [Google Scholar] [CrossRef]
- Collins, S.; Janata, J. A critical Evaluation of the Mechanism of Potential Response of Antigen Polymer Membranes to the Corresponding Serum. Anal. Chim. Acta 1982, 136, 93–99. [Google Scholar] [CrossRef]
- Aragay, G.; Merkoçi, A. Nanomaterials application in electrochemical detection of heavy metals. Electrochim. Acta 2012, 84, 49–61. [Google Scholar] [CrossRef]
- Martín-Yerga, D.; González-García, M.B.; Costa-García, A. Electrochemical determination of mercury: A review. Talanta 2013, 116, 1091–1104. [Google Scholar] [CrossRef]
- Wang, L.; Peng, X.; Fu, H.; Huang, C.; Li, Y.; Liu, Z. Recent advances in the development of electrochemical aptasensors for detection of heavy metals in food. Biosens. Bioelectron. 2019, 111777. [Google Scholar] [CrossRef]
- Lu, Y.; Liang, X.; Niyungeko, C.; Zhou, J.; Xu, J.; Tian, G. A review of the identification and detection of heavy metal ions in the environment by voltammetry. Talanta 2018, 178, 324–338. [Google Scholar] [CrossRef]
- Barón-Jaimez, J.; Joya, M.R.; Barba-Ortega, J. Anodic stripping voltammetry―ASV for determination of heavy metals. J. Phys. Conf. Ser. 2013, 466. [Google Scholar] [CrossRef] [Green Version]
- Sawan, S.; Maalouf, R.; Errachid, A.; Jaffrezic-Renault, N. Metal and metal oxide nanoparticles in the voltammetric detection of heavy metals: A review. TrAC Trends Anal. Chem. 2020, 131, 116014. [Google Scholar] [CrossRef]
- Ullah, N.; Mansha, M.; Khan, I.; Qurashi, A. Nanomaterial-based optical chemical sensors for the detection of heavy metals in water: Recent advances and challenges. TrAC Trends Anal. Chem. 2018, 100, 155–166. [Google Scholar] [CrossRef]
- Terra, I.A.A.; Mercante, L.A.; Andre, R.S.; Correa, D.S. Fluorescent and colorimetric electrospun nanofibers for heavy-metal sensing. Biosensors 2017, 7, 61. [Google Scholar] [CrossRef] [Green Version]
- Perrot, H.; Jaffrezic-Renault, N.; De Rooij, N.F.; Van Den Vlekkert, H.H. Ionic detection using differential measurement between an ion-sensitive FET and a reference FET. Sens. Actuators 1989, 20, 293–299. [Google Scholar] [CrossRef]
- Bergveld, P. The future of biosensors. Sens. Actuators A Phys. 1996, 56, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Dankerl, M.; Hauf, M.V.; Lippert, A.; Hess, L.H.; Birner, S.; Sharp, I.D.; Mahmood, A.; Mallet, P.; Veuillen, J.Y.; Stutzmann, M.; et al. Graphene solution-gated field-effect transistor array for sensing applications. Adv. Funct. Mater. 2010, 20, 3117–3124. [Google Scholar] [CrossRef]
- Ang, P.K.; Chen, W.; Thye, A.; Wee, S.; Loh, K.P. Solution-Gated Epitaxial Graphene as pH Sensor. J. Am. Chem. Soc. 2008, 130, 14392–14393. [Google Scholar] [CrossRef] [PubMed]
- Song, K.S.; Zhang, G.J.; Nakamura, Y.; Furukawa, K.; Hiraki, T.; Yang, J.H.; Funatsu, T.; Ohdomari, I.; Kawarada, H. Label-free DNA sensors using ultrasensitive diamond field-effect transistors in solution. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2006, 74, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Gao, A.; Zou, N.; Dai, P.; Lu, N.; Li, T.; Wang, Y.; Zhao, J.; Mao, H. Signal-to-noise ratio enhancement of silicon nanowires biosensor with rolling circle amplification. Nano Lett. 2013, 13, 4123–4130. [Google Scholar] [CrossRef] [PubMed]
- Falina, S.; Kawai, S.; Oi, N.; Yamano, H.; Kageura, T.; Suaebah, E.; Inaba, M.; Shintani, Y.; Syamsul, M.; Kawarada, H. Role of Carboxyl and Amine Termination on a Boron-Doped Diamond Solution Gate Field Effect Transistor (SGFET) for pH Sensing. Sensors 2018, 18, 2178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadighbayan, D.; Hasanzadeh, M.; Ghafar-Zadeh, E. Biosensing based on field-effect transistors (FET): Recent progress and challenges. TrAC Trends Anal. Chem. 2020, 133, 116067. [Google Scholar] [CrossRef] [PubMed]
- Alkhamis, O.; Canoura, J.; Yu, H.; Liu, Y.; Xiao, Y. Innovative engineering and sensing strategies for aptamer-based small-molecule detection. TrAC Trends Anal. Chem. 2019, 121, 115699. [Google Scholar] [CrossRef]
- Woo, J.M.; Kim, S.H.; Chun, H.; Kim, S.J.; Ahn, J.; Park, Y.J. Modulation of molecular hybridization and charge screening in a carbon nanotube network channel using the electrical pulse method. Lab Chip 2013, 13, 3755–3763. [Google Scholar] [CrossRef]
- Spijkman, M.J.; Brondijk, J.J.; Geuns, T.C.T.; Smits, E.C.P.; Cramer, T.; Zerbetto, F.; Stoliar, P.; Biscarini, F.; Blom, P.W.M.; De Leeuw, D.M. Dual-gate organic field-effect transistors as potentiometrie sensors in aqueous solution. Adv. Funct. Mater. 2010, 20, 898–905. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.; Lieber, C.M. Nano-Bioelectronics. Chem. Rev. 2016, 116, 215–257. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.S.; Lee, H.S.; Yang, J.A.; Jo, M.H.; Hahn, S.K. The fabrication, characterization and application of aptamer-functionalized Si-nanowire FET biosensors. Nanotechnology 2009, 20. [Google Scholar] [CrossRef]
- Stern, E.; Wagner, R.; Sigworth, F.J.; Breaker, R.; Fahmy, T.M.; Reed, M.A. Importance of the debye screening length on nanowire field effect transistor sensors. Nano Lett. 2007, 7, 3405–3409. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, G.S.; Zhong, Z. Detection beyond the Debye screening length in a high-frequency nanoelectronic biosensor. Nano Lett. 2012, 12, 719–723. [Google Scholar] [CrossRef]
- Elnathan, R.; Kwiat, M.; Pevzner, A.; Engel, Y.; Burstein, L.; Khatchtourints, A.; Lichtenstein, A.; Kantaev, R.; Patolsky, F. Biorecognition Layer Engineering: Overcoming Screening. Nano Lett. 2012, 12, 5245. [Google Scholar] [CrossRef]
- Maehashi, K.; Katsura, T.; Kerman, K.; Takamura, Y.; Matsumoto, K.; Tamiya, E. Label-Free Protein Biosensor Based on Aptamer-Modified Carbon Nanotube Field-Effect Transistors. Anal. Chem. 2007, 79, 782–787. [Google Scholar] [CrossRef]
- Piccinini, E.; Alberti, S.; Longo, G.S.; Berninger, T.; Breu, J.; Dostalek, J.; Azzaroni, O.; Knoll, W. Pushing the Boundaries of Interfacial Sensitivity in Graphene FET Sensors: Polyelectrolyte Multilayers Strongly Increase the Debye Screening Length. J. Phys. Chem. C 2018, 122, 10181–10188. [Google Scholar] [CrossRef]
- Gao, N.; Zhou, W.; Jiang, X.; Hong, G.; Fu, T.M.; Lieber, C.M. General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors. Nano Lett. 2015, 15, 2143–2148. [Google Scholar] [CrossRef] [Green Version]
- Hwang, M.T.; Heiranian, M.; Kim, Y.; You, S.; Leem, J.; Taqieddin, A.; Faramarzi, V.; Jing, Y.; Park, I.; van der Zande, A.M.; et al. Ultrasensitive detection of nucleic acids using deformed graphene channel field effect biosensors. Nat. Commun. 2020, 11. [Google Scholar] [CrossRef]
- Ahn, J.H.; Kim, J.Y.; Choi, K.; Moon, D.I.; Kim, C.H.; Seol, M.L.; Park, T.J.; Lee, S.Y.; Choi, Y.K. Nanowire FET biosensors on a bulk silicon substrate. IEEE Trans. Electron Devices 2012, 59, 2243–2249. [Google Scholar] [CrossRef]
- Zheng, G.; Patolsky, F.; Cui, Y.; Wang, W.U.; Lieber, C.M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 2005, 23, 1294–1301. [Google Scholar] [CrossRef]
- Riul, A.; Dantas, C.A.R.; Miyazaki, C.M.; Oliveira, O.N. Recent advances in electronic tongues. Analyst 2010, 135, 2481–2495. [Google Scholar] [CrossRef]
- Paulovich, F.V.; Moraes, M.L.; Maki, R.M.; Ferreira, M.; Oliveira, O.N.; De Oliveira, M.C.F. Information visualization techniques for sensing and biosensing. Analyst 2011, 136, 1344–1350. [Google Scholar] [CrossRef]
- Melzer, K.; Bhatt, V.D.; Schuster, T.; Jaworska, E.; Maksymiuk, K.; Michalska, A.; Scarpa, G.; Lugli, P. Multi ion-sensor arrays: Towards an “electronic tongue”. In Proceedings of the 2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO), Sendai, Japan, 22–25 August 2016; pp. 475–478. [Google Scholar] [CrossRef]
- Chung, W.Y.; Chang, K.C.; Hong, D.Y.; Cheng, C.; Cruza, F.; Liu, T.S.; Yang, C.H.; Chiang, J.L.; Pijanowska, D.G.; Dawgul, M.; et al. An electronic tongue system design using ion sensitive field effect transistors and their interfacing circuit techniques. Bienn. Univ. Microelectron. Symp. Proc. 2008, 44–48. [Google Scholar] [CrossRef]
- Moreno, L.; Merlos, A.; Abramova, N.; Jiménez, C.; Bratov, A. Multi-sensor array used as an “electronic tongue” for mineral water analysis. Sens. Actuators B Chem. 2006, 116, 130–134. [Google Scholar] [CrossRef]
- Shimizu, F.M.; Braunger, M.L.; Riul, A. Heavy metal/toxins detection using electronic tongues. Chemosensors 2019, 7, 36. [Google Scholar] [CrossRef] [Green Version]
- Bridle, H. Miniaturized Detection Systems; Academic Press: London, UK, 2013; ISBN 9780444595430. [Google Scholar]
- Lynn, N.S.; Bocková, M.; Adam, P.; Homola, J. Biosensor enhancement using grooved micromixers: Part II, experimental studies. Anal. Chem. 2015, 87, 5524–5530. [Google Scholar] [CrossRef]
- Wang, Z.; Fan, Y.; Chen, J.; Guo, Y.; Wu, W.; He, Y.; Xu, L.; Fu, F. A microfluidic chip-based fluorescent biosensor for the sensitive and specific detection of label-free single-base mismatch via magnetic beads-based “sandwich” hybridization strategy. Electrophoresis 2013, 34, 2177–2184. [Google Scholar] [CrossRef]
- Jones, P.V.; Salmon, G.L.; Ros, A. Continuous Separation of DNA Molecules by Size Using Insulator-Based Dielectrophoresis. Anal. Chem. 2017, 89, 1531–1539. [Google Scholar] [CrossRef]
- Jirage, K.B.; Hulteen, J.C.; Martin, C.R. Nanotubed-based Molecular-Filtration Membranes. Science 1997, 278, 655–658. [Google Scholar] [CrossRef]
- Spinnrock, A.; Cölfen, H. Putting a New Spin on It: Gradient Centrifugation for Analytical and Preparative Applications. Chem. A Eur. J. 2019, 25, 10026–10032. [Google Scholar] [CrossRef]
- Norberg, A.B.; Persson, H. Accumulation of Heavy-Metal Ions. Biotechnol. Bioeng. 1984, 26, 239–246. [Google Scholar] [CrossRef]
- Say, R.; Yilmaz, N.; Denizli, A. Removal of heavy metal ions using the fungus penicillium canescens. Adsorpt. Sci. Technol. 2003, 21, 643–650. [Google Scholar] [CrossRef]
- Zhang, R.; Richardson, J.J.; Masters, A.F.; Yun, G.; Liang, K.; Maschmeyer, T. Effective Removal of Toxic Heavy Metal Ions from Aqueous Solution by CaCO3 Microparticles. Water. Air. Soil Pollut. 2018, 229. [Google Scholar] [CrossRef]
- Yavuz, O.; Guzel, R.; Aydin, F.; Tegin, I.; Ziyadanogullari, R. Removal of Cadmium and Lead from Aqueous Solution by Calcite. Polish J. Environ. Stud. 2007, 16, 467–471. [Google Scholar] [CrossRef]
- Park, S.; Zhang, Y.; Wang, T.H.; Yang, S. Continuous dielectrophoretic bacterial separation and concentration from physiological media of high conductivity. Lab Chip 2011, 11, 2893–2900. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Park, D.; Baek, S.Y.; Yang, S.H.; Kim, Y.S.; Lim, S.M.; Kim, J.; Hwang, K.S. Dielectrophoresis-based filtration effect and detection of amyloid beta in plasma for Alzheimer’s disease diagnosis. Biosens. Bioelectron. 2019, 128, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; De Palma, R.; Reekmans, G.; Laureyn, W.; Stakenborg, T.; Lagae, L. Discrimination of specific and non-specific bindings by dielectrophoretic repulsion in on-chip magnetic bio-assays. Biosens. Bioelectron. 2009, 24, 2294–2297. [Google Scholar] [CrossRef]
- Kumar, N.; Wang, W.; Ortiz-Marquez, J.C.; Catalano, M.; Gray, M.; Biglari, N.; Hikari, K.; Ling, X.; Gao, J.; van Opijnen, T.; et al. Dielectrophoresis assisted rapid, selective and single cell detection of antibiotic resistant bacteria with G-FETs. Biosens. Bioelectron. 2020, 156, 112123. [Google Scholar] [CrossRef]
- Puttaswamy, S.V.; Lin, C.H.; Sivashankar, S.; Yang, Y.S.; Liu, C.H. Electrodeless dielectrophoretic concentrator for analyte pre-concentration on poly-silicon nanowire field effect transistor. Sens. Actuators B Chem. 2013, 178, 547–554. [Google Scholar] [CrossRef]
- Star, A.; Gabriel, J.C.P.; Bradley, K.; Grüner, G. Electronic detection of specific protein binding using nanotube FET devices. Nano Lett. 2003, 3, 459–463. [Google Scholar] [CrossRef]
- Cui, F.; Rhee, M.; Singh, A.; Tripathi, A. Microfluidic Sample Preparation for Medical Diagnostics. Annu. Rev. Biomed. Eng. 2015, 17, 267–286. [Google Scholar] [CrossRef]
- Khan, N.I.; Song, E. Lab-on-a-chip systems for aptamer-based biosensing. Micromachines 2020, 11, 220. [Google Scholar] [CrossRef] [Green Version]
- Dutta, G. Electrochemical biosensors for rapid detection of malaria. Mater. Sci. Energy Technol. 2020, 3, 150–158. [Google Scholar] [CrossRef]
- Hanssen, B.L.; Siraj, S.; Wong, D.K.Y. Recent strategies to minimise fouling in electrochemical detection systems. Rev. Anal. Chem. 2016, 35, 1–28. [Google Scholar] [CrossRef]
- Yang, L.; Jin, Y.; Wang, X.; Yu, B.; Chen, R.; Zhang, C.; Zhao, Y.; Yu, Y.; Liu, Y.; Wei, D. Antifouling Field-Effect Transistor Sensing Interface Based on Covalent Organic Frameworks. Adv. Electron. Mater. 2020, 6, 1–7. [Google Scholar] [CrossRef]
- Lohse, M.S.; Bein, T. Covalent Organic Frameworks: Structures, Synthesis, and Applications. Adv. Funct. Mater. 2018, 28. [Google Scholar] [CrossRef] [Green Version]
- White, S.P.; Sreevatsan, S.; Frisbie, C.D.; Dorfman, K.D. Rapid, Selective, Label-Free Aptameric Capture and Detection of Ricin in Potable Liquids Using a Printed Floating Gate Transistor. ACS Sensors 2016, 1, 1213–1216. [Google Scholar] [CrossRef]
- Meyburg, S.; Goryll, M.; Moers, J.; Ingebrandt, S.; Böcker-Meffert, S.; Lüth, H.; Offenhäusser, A. N-Channel field-effect transistors with floating gates for extracellular recordings. Biosens. Bioelectron. 2006, 21, 1037–1044. [Google Scholar] [CrossRef]
- Meyburg, S.; Stockmann, R.; Moers, J.; Offenhäusser, A.; Ingebrandt, S. Advanced CMOS process for floating gate field-effect transistors in bioelectronic applications. Sens. Actuators B Chem. 2007, 128, 208–217. [Google Scholar] [CrossRef]
- Wu, T.; Alharbi, A.; You, K.D.; Kisslinger, K.; Stach, E.A.; Shahrjerdi, D. Experimental Study of the Detection Limit in Dual-Gate Biosensors Using Ultrathin Silicon Transistors. ACS Nano 2017, 11, 7142–7147. [Google Scholar] [CrossRef]
- Ahn, J.H.; Choi, S.J.; Han, J.W.; Park, T.J.; Lee, S.Y.; Choi, Y.K. Double-gate nanowire field effect transistor for a biosensor. Nano Lett. 2010, 10, 2934–2938. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, H.; Tunuguntla, R.H.; Noy, A. Silicon Nanoribbon pH Sensors Protected by a Barrier Membrane with Carbon Nanotube Porins. Nano Lett. 2019, 19, 629–634. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Chen, Y.; Feng, C.; Wang, W.; Bo, B.; Ren, R.; Li, G. Assembly of Self-Cleaning Electrode Surface for the Development of Refreshable Biosensors. Anal. Chem. 2017, 89, 4131–4138. [Google Scholar] [CrossRef]
- De Vera, J.S.; Venault, A.; Chou, Y.N.; Tayo, L.; Chiang, H.C.; Aimar, P.; Chang, Y. Self-Cleaning Interfaces of Polydimethylsiloxane Grafted with pH-Responsive Zwitterionic Copolymers. Langmuir 2019, 35, 1357–1368. [Google Scholar] [CrossRef]
- Bandaru, P.R.; Pichanusakorn, P. An outline of the synthesis and properties of silicon nanowires. Semicond. Sci. Technol. 2010, 25. [Google Scholar] [CrossRef] [Green Version]
- Zheng, G.; Gao, X.P.A.; Lieber, C.M. Frequency domain detection of biomolecules using silicon nanowire biosensors. Nano Lett. 2010, 10, 3179–3183. [Google Scholar] [CrossRef] [Green Version]
- Gao, A.; Lu, N.; Wang, Y.; Dai, P.; Li, T.; Gao, X.; Wang, Y.; Fan, C. Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors. Nano Lett. 2012, 12, 5262–5268. [Google Scholar] [CrossRef]
- Nguyen Duc, T.; El Zein, R.; Raimundo, J.M.; Dallaporta, H.; Charrier, A.M. Label free femtomolar electrical detection of Fe(iii) ions with a pyridinone modified lipid monolayer as the active sensing layer. J. Mater. Chem. B 2013, 1, 443–446. [Google Scholar] [CrossRef]
- Cremer, P.S.; Boxer, S.G. Formation and spreading of lipid bilayers on planar glass supports. J. Phys. Chem. B 1999, 103, 2554–2559. [Google Scholar] [CrossRef]
- Chaves, S.; Canário, S.; Carrasco, M.P.; Mira, L.; Santos, M.A. Hydroxy(thio)pyrone and hydroxy(thio)pyridinone iron chelators: Physico-chemical properties and anti-oxidant activity. J. Inorg. Biochem. 2012, 114, 38–46. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Labed, A.; El Zein, R.; Lavandier, S.; Bedu, F.; Ozerov, I.; Dallaporta, H.; Raimundo, J.M.; Charrier, A.M. A field effect transistor biosensor with a γ-pyrone derivative engineered lipid-sensing layer for ultrasensitive Fe3+ ion detection with low pH interference. Biosens. Bioelectron. 2013, 54, 571–577. [Google Scholar] [CrossRef]
- Liu, Z.D.; Hider, R.C. Design of iron chelators with therapeutic application. Coord. Chem. Rev. 2002, 232, 151–171. [Google Scholar] [CrossRef]
- Thirumurugan, P.; Perumal, P.T. The synthesis and photophysical studies of pyridinyl-1,2,4-triazine derivatives and use as a fluorescent sensor for ferric salts. Dye. Pigment. 2011, 88, 403–412. [Google Scholar] [CrossRef]
- Kenaan, A.; Brunel, F.; Raimundo, J.M.; Charrier, A.M. Femtomolar detection of Cu2+ ions in solution using super-Nernstian FET-sensor with a lipid monolayer as top-gate dielectric. Sens. Actuators B Chem. 2020, 316, 128147. [Google Scholar] [CrossRef]
- Cui, Y.; Wei, Q.; Park, H.; Lieber, C.M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Gao, A.; Jin, Q.; Li, T.; Wang, Y.; Zhao, J. Ultra-sensitive and selective Detection of Mercury Ion (Hg2+) using free- standing Silicon Nanowire Sensors. Nanotechnology 2018, 29, 135501. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Chen, S.; Wang, Y.; Li, T. Gold nanoparticle modified silicon nanowire array based sensor for low-cost, high sensitivity and selectivity detection of mercury ions. Mater. Res. Express 2020, 7. [Google Scholar] [CrossRef]
- Chen, Y.; Muhammad, H. High Sensitive Detection of Ag + Ions in Aqueous Solution Using Silicon Nanowires and Silver-Specific Oligonucleotide. IFMBE Proc. 2014, 43, 428–431. [Google Scholar] [CrossRef]
- Sun, K.; Zeimpekis, I.; Hu, C.; Ditshego, N.M.J.; Thomas, O.; De Planque, M.R.R.; Chong, H.M.H.; Morgan, H.; Ashburn, P. Effect of subthreshold slope on the sensitivity of nanoribbon sensors. Nanotechnology 2016, 27. [Google Scholar] [CrossRef] [Green Version]
- Zeimpekis, I.; Sun, K.; Hu, C.; Ditshego, N.M.J.; Thomas, O.; De Planque, M.R.R.; Chong, H.M.H.; Morgan, H.; Ashburn, P. Dual-gate polysilicon nanoribbon biosensors enable high sensitivity detection of proteins. Nanotechnology 2016, 27. [Google Scholar] [CrossRef]
- Chang, H.K.; Wang, X.; Aroonyadet, N.; Zhang, R.; Song, Y.; Datar, R.; Cote, R.; Thompson, M.; Zhou, C. Top-down fabricated polysilicon nanoribbon biosensor chips for cancer diagnosis. Mater. Res. Soc. Symp. Proc. 2013, 1569, 213–218. [Google Scholar] [CrossRef]
- Sun, K.; Zeimpekis, I.; Lombardini, M.; Ditshego, N.M.J.; Pearce, S.J.; Kiang, K.S.; Thomas, O.; De Planque, M.R.R.; Chong, H.M.H.; Morgan, H.; et al. Three-mask polysilicon thin-film transistor biosensor. IEEE Trans. Electron Devices 2014, 61, 2170–2176. [Google Scholar] [CrossRef] [Green Version]
- Synhaivska, O.; Mermoud, Y.; Baghernejad, M.; Alshanski, I.; Hurevich, M.; Yitzchaik, S.; Wipf, M.; Calame, M. Detection of Cu2+ Ions with GGH Peptide Realized with Si-Nanoribbon ISFET. Sensors 2019, 19, 4022. [Google Scholar] [CrossRef] [Green Version]
- Le Borgne, B.; Girard, A.; Cardinaud, C.; Salaün, A.C.; Pichon, L.; Geneste, F. Covalent functionalization of polycrystalline silicon nanoribbons applied to Pb(II) electrical detection. Sens. Actuators B Chem. 2018, 268, 368–375. [Google Scholar] [CrossRef]
- Nair, P.R.; Alam, M.A. Screening-limited response of NanoBiosensors. Nano Lett. 2008, 8, 1281–1285. [Google Scholar] [CrossRef] [Green Version]
- Puglisi, D.; Eriksson, J.; Bur, C.; Schütze, A.; Spetz, A.L.; Andersson, M. Silicon carbide field effect transistors for detection of ultra-low concentrations of hazardous volatile organic compounds. Mater. Sci. Forum 2014, 778–780, 1067–1070. [Google Scholar] [CrossRef]
- Singh, A.; Amin, S.I.; Anand, S. Label Free Detection of Biomolecules Using SiGe Sourced Dual Electrode Doping-Less Dielectrically Modulated Tunnel FET. Silicon 2020, 12, 2301–2308. [Google Scholar] [CrossRef]
- Uno, T.; Tabata, H.; Kawal, T. Peptide-nucleic acid-modified ion-sensitive field-effect transistor-based biosensor for direct detection of DNA hybridization. Anal. Chem. 2007, 79, 52–59. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Minot, E.D.; Janssens, A.M.; Heller, I.; Heering, H.A.; Dekker, C.; Lemay, S.G. Carbon nanotube biosensors: The critical role of the reference electrode. Appl. Phys. Lett. 2007, 91, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Yao, X.; Zhang, Y.; Jin, W.; Hu, Y.; Cui, Y. Carbon nanotube field-effect transistor-based chemical and biological sensors. Sensors 2021, 21, 995. [Google Scholar] [CrossRef]
- Allen, B.L.; Kichambare, P.D.; Star, A. Carbon nanotube field-effect-transistor-based biosensors. Adv. Mater. 2007, 19, 1439–1451. [Google Scholar] [CrossRef]
- Oh, J.; Yoo, G.; Chang, Y.W.; Kim, H.J.; Jose, J.; Kim, E.; Pyun, J.C.; Yoo, K.H. A carbon nanotube metal semiconductor field effect transistor-based biosensor for detection of amyloid-beta in human serum. Biosens. Bioelectron. 2013, 50, 345–350. [Google Scholar] [CrossRef]
- Meyyappan, M. Carbon Nanotube-Based Chemical Sensors. Small 2016, 12, 2118–2129. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Lee, J.; Namgung, S.; Kim, J.; Park, J.Y.; Lee, M.S.; Hong, S. DNA sensors based on CNT-FET with floating electrodes. Sens. Actuators B Chem. 2012, 169, 182–187. [Google Scholar] [CrossRef]
- Zhang, J. RNA-cleaving DNAzymes: Old catalysts with new tricks for intracellular and in vivo applications. Catalysts 2018, 8, 550. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Tang, L.; Zeng, G.; Zhang, C.; Zhang, Y.; Xie, X. Current progress in biosensors for heavy metal ions based on DNAzymes/DNA molecules functionalized nanostructures: A review. Sens. Actuators B Chem. 2016, 223, 280–294. [Google Scholar] [CrossRef]
- Hu, L.; Fu, X.; Kong, G.; Yin, Y.; Meng, H.M.; Ke, G.; Zhang, X.B. DNAzyme-gold nanoparticle-based probes for biosensing and bioimaging. J. Mater. Chem. B 2020, 8, 9449–9465. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Liu, G. Label-free biosensor using a silver specific RNA-cleaving DNAzyme functionalized single-walled carbon nanotube for silver ion determination. Nanomaterials 2018, 8, 258. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Yin, Y.; Gang, L. Single-gap Microelectrode Functionalized with Single-walled Carbon Nanotubes and Pbzyme for the Determination of Pb2+. Electroanalysis 2019, 31, 1174–1181. [Google Scholar] [CrossRef]
- Huang, X.; Li, J.; Zhang, Q.; Chen, S.; Xu, W.; Wu, J.; Niu, W.; Xue, J.; Li, C. A protease-free and signal-on electrochemical biosensor for ultrasensitive detection of lead ion based on GR-5 DNAzyme and catalytic hairpin assembly. J. Electroanal. Chem. 2018, 816, 75–82. [Google Scholar] [CrossRef]
- Lan, T.; Furuya, K.; Lu, Y. A highly selective lead sensor based on a classic lead DNAzyme. Chem. Commun. 2010, 46, 3896–3898. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Liu, Y.; Wang, J.; Xiong, B.; Hou, X. Electrochemical impedance biosensor array based on DNAzyme-functionalized single-walled carbon nanotubes using Gaussian process regression for Cu(II) and Hg(II) determination. Microchim. Acta 2020, 187. [Google Scholar] [CrossRef]
- Yang, K.; Jin, H.; Chen, X.; Dai, J.; Wang, L.; Zhang, D. Soft sensor development for online quality prediction of industrial batch rubber mixing process using ensemble just-in-time Gaussian process regression models. Chemom. Intell. Lab. Syst. 2016, 155, 170–182. [Google Scholar] [CrossRef]
- Wang, H.; Zheng, S.; Nan, X.; Zhao, Y.; Wang, Y.; Zhang, F.; Yang, L.; Lixing, X.; Xiong, B. Non-specific DNAzyme-based biosensor with interfering ions for the Cd2+ determination in feed. Sens. Actuators B Chem. 2021, 329. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Liu, G. Reusable resistive aptasensor for Pb(II) based on the Pb(II)-induced despiralization of a DNA duplex and formation of a G-quadruplex. Microchim. Acta 2018, 185, 1–8. [Google Scholar] [CrossRef]
- Long, F.; Zhu, A.; Wang, H. Optofluidics-based DNA structure-competitive aptasensor for rapid on-site detection of lead(II) in an aquatic environment. Anal. Chim. Acta 2014, 849, 43–49. [Google Scholar] [CrossRef]
- Yang, D.; Liu, X.; Zhou, Y.; Luo, L.; Zhang, J.; Huang, A.; Mao, Q.; Chen, X.; Tang, L. Aptamer-based biosensors for detection of lead(ii) ion: A review. Anal. Methods 2017, 9, 1976–1990. [Google Scholar] [CrossRef]
- Reardan, D.T.; Meares, C.F.; Goodwin, D.A.; McTigue, M.; David, G.S.; Stone, M.R.; Leung, J.P.; Bartholomew, R.M.; Frincke, J.M. Antibodies against metal chelates. Nature 1985, 316, 265–268. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, C.; Liu, F. Antibody developments for metal ions and their applications. Food Agric. Immunol. 2020, 31, 1079–1103. [Google Scholar] [CrossRef]
- Cámara-Martos, F.; Da Costa, J.; Justino, C.I.L.; Cardoso, S.; Duarte, A.C.; Rocha-Santos, T. Disposable biosensor for detection of iron (III) in wines. Talanta 2016, 154, 80–84. [Google Scholar] [CrossRef]
- Ando, T. The electronic properties of graphene and carbon nanotubes. NPG Asia Mater. 2009, 1, 17–21. [Google Scholar] [CrossRef]
- Pinto, A.M.; Gonçalves, I.C.; Magalhães, F.D. Graphene-based materials biocompatibility: A review. Colloids Surfaces B Biointerfaces 2013, 111, 188–202. [Google Scholar] [CrossRef]
- Basu, J.; RoyChaudhuri, C. Graphene nanogrids FET immunosensor: Signal to noise ratio enhancement. Sensors 2016, 16, 1481. [Google Scholar] [CrossRef] [Green Version]
- Falina, S.; Syamsul, M.; Iyama, Y.; Hasegawa, M.; Koga, Y.; Kawarada, H. Carboxyl-functionalized graphene SGFET: pH sensing mechanism and reliability of anodization. Diam. Relat. Mater. 2019, 91, 15–21. [Google Scholar] [CrossRef]
- Zhang, T.; Cheng, Z.; Wang, Y.; Li, Z.; Wang, C.; Li, Y.; Fang, Y. Self-assembled 1-octadecanethiol monolayers on graphene for mercury detection. Nano Lett. 2010, 10, 4738–4741. [Google Scholar] [CrossRef]
- Patrick A., G.; Andrew R., K.; Xavier, M.; Victor J., M. Scanning tunnelling microscopy. J. Chem. Soc. Faraday Transcations 1994, 90, 2551–2554. [Google Scholar] [CrossRef]
- Sheng, H.Y.; Fujita, D.; Ohgi, T.; Dong, Z.C.; Jiang, Q.D.; Nejoh, H. Two-dimensional ordering of octadecanethiol molecules on graphite observed by scanning tunneling microscope. Appl. Surf. Sci. 1997, 121–122, 129–132. [Google Scholar] [CrossRef]
- Xu, Q.M.; Wan, L.J.; Yin, S.X.; Wang, C.; Bai, C.L. Effect of chemically modified tips on STM imaging of 1-octadecanethiol molecule. J. Phys. Chem. B 2001, 105, 10465–10467. [Google Scholar] [CrossRef]
- Afsharimani, N.; Uluutku, B.; Saygin, V.; Baykara, M.Z. Self-Assembled Molecular Films of Alkanethiols on Graphene for Heavy Metal Sensing. J. Phys. Chem. C 2018, 122, 474–480. [Google Scholar] [CrossRef] [Green Version]
- Kagi, J.H.; Kojima, Y. Metallothionein II―1987 Birkhauser Verlag Basel CHEMISTRY AND BIOCHEMISTRY OF METALLOTHIONEIN. Exp. Suppl. 1987, 52, 25–61. [Google Scholar]
- Chee, L.H.; Kumar, P.; Kang, C.H.; Burhanudin, Z.A. DNA/AuNP-graphene back-gated field effect transistor as a biosensor for lead (II) ion detection. Proc. 2017 IEEE Reg. Symp. Micro Nanoelectron. RSM 2017 2017, 127–130. [Google Scholar] [CrossRef]
- Priyadarshini, E.; Pradhan, N. Gold nanoparticles as efficient sensors in colorimetric detection of toxic metal ions: A review. Sens. Actuators B Chem. 2017, 238, 888–902. [Google Scholar] [CrossRef]
- Liu, W.; Zheng, B.; Cheng, S.; Fu, Y.; Li, W.; Lau, T.C.; Liang, H. G-quadruplex formation and sequence effect on the assembly of G-rich oligonucleotides induced by Pb2+ ions. Soft Matter 2012, 8, 7017–7023. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Zhu, Y.; Zhou, X.; Xiang, Y.; He, M.; Zeng, S. Fully integrated graphene electronic biosensor for label-free detection of lead (II) ion based on G-quadruplex structure-switching. Biosens. Bioelectron. 2017, 89, 758–763. [Google Scholar] [CrossRef] [PubMed]
- Stotzky, G. Persistence and Biological Activity in Soil of Insecticidal Proteins from Bacillus thuringiensis and of Bacterial DNA Bound on Clays and Humic Acids. J. Environ. Qual. 2000, 29, 691–705. [Google Scholar] [CrossRef]
- Tu, J.; Gan, Y.; Liang, T.; Hu, Q.; Wang, Q.; Ren, T.; Sun, Q.; Wan, H.; Wang, P. Graphene FET array biosensor based on ssDNA aptamer for ultrasensitive Hg2+ detection in environmental pollutants. Front. Chem. 2018, 6. [Google Scholar] [CrossRef] [Green Version]
- An, J.H.; Park, S.J.; Kwon, O.S.; Bae, J.; Jang, J. High-performance flexible graphene aptasensor for mercury detection in mussels. ACS Nano 2013, 7, 10563–10571. [Google Scholar] [CrossRef]
- Besada, V.; Fumega, J.; Vaamonde, A. Temporal trends of Cd, Cu, Hg, Pb and Zn in mussel (Mytilus galloprovincialis) from the Spanish North-Atlantic coast 1991–1999. Sci. Total Environ. 2002, 288, 239–253. [Google Scholar] [CrossRef]
- Li, F.; Wang, Z.; Jia, Y. Reduced Carboxylate Graphene Oxide Based Field Effect Transistor as Pb2+ Aptamer Sensor. Micromachines 2019, 10, 388. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Kempaiah, R.; Huang, P.J.; Maheshwari, V.; Liu, J. Adsorption and Desorption of DNA on Graphene Oxide Studied by Fluorescently Labeled Oligonucleotides. Langmuir 2011, 27, 2731–2738. [Google Scholar] [CrossRef] [Green Version]
- Park, J.S.; Goo, N.I.; Kim, D.E. Mechanism of DNA Adsorption and Desorption on Graphene Oxide. Langmuir 2014, 30, 12587–12595. [Google Scholar] [CrossRef]
- Wen, Y.; Li, F.Y.; Dong, X.; Zhang, J.; Xiong, Q.; Chen, P. The Electrical Detection of Lead Ions Using Gold-Nanoparticle- and DNAzyme-Functionalized Graphene Device. Adv. Healthc. Mater. 2012, 2, 271–274. [Google Scholar] [CrossRef]
- Liang, G.; Man, Y.; Li, A.; Jin, X.; Liu, X.; Pan, L. DNAzyme-based biosensor for detection of lead ion: A review. Microchem. J. 2017, 131, 145–153. [Google Scholar] [CrossRef]
- Zhang, X.B.; Kong, R.M.; Lu, Y. Metal ion sensors based on DNAzymes and related DNA molecules. Annu. Rev. Anal. Chem. 2011, 4, 105–128. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Cui, X.; Li, Y.; Li, H.; Huang, L.; Bi, J.; Luo, J.; Ma, L.Q.; Zhou, W.; Cao, Y.; et al. A label-free and portable graphene FET aptasensor for children blood lead detection. Sci. Rep. 2016, 6, 1–8. [Google Scholar] [CrossRef]
- Chang, J.; Zhou, G.; Gao, X.; Mao, S.; Cui, S.; Ocola, L.E.; Yuan, C.; Chen, J. Real-time detection of mercury ions in water using a reduced graphene oxide/DNA field-effect transistor with assistance of a passivation layer. Sens. Bio-Sens. Res. 2015, 5, 97–104. [Google Scholar] [CrossRef]
- Tanaka, Y.; Oda, S.; Yamaguchi, H.; Kondo, Y.; Kojima, C.; Ono, A. 15 N-15 N J-coupling across HgII: Direct observation of HgII-mediated T-T base pairs in a DNA duplex. J. Am. Chem. Soc. 2007, 129, 244–245. [Google Scholar] [CrossRef]
- Clever, G.H.; Kaul, C.; Carell, T. DNA-metal base pairs. Angew. Chemie Int. Ed. 2007, 46, 6226–6236. [Google Scholar] [CrossRef]
- Zhu, Z.; Su, Y.; Li, J.; Li, D.; Zhang, J.; Song, S.; Zhao, Y.; Li, G.; Fan, C. Highly sensitive electrochemical sensor for mercury(II) ions by using a mercury-specific oligonucleotide probe and gold nanoparticle-based amplification. Anal. Chem. 2009, 81, 7660–7666. [Google Scholar] [CrossRef]
- Zhou, G.; Chang, J.; Cui, S.; Pu, H.; Wen, Z.; Chen, J. Real-time, selective detection of Pb2+ in water using a reduced graphene oxide/gold nanoparticle field-effect transistor device. ACS Appl. Mater. Interfaces 2014, 6, 19235–19241. [Google Scholar] [CrossRef]
- Sui, X.; Pu, H.; Maity, A.; Chang, J.; Jin, B.; Lu, G.; Wang, Y.; Ren, R.; Mao, S.; Chen, J. Field-Effect Transistor Based on Percolation Network of Reduced Graphene Oxide for Real-Time ppb-Level Detection of Lead Ions in Water. ECS J. Solid State Sci. Technol. 2020, 9, 115012. [Google Scholar] [CrossRef]
- Maity, A.; Sui, X.; Tarman, C.R.; Pu, H.; Chang, J.; Zhou, G.; Ren, R.; Mao, S.; Chen, J. Pulse-Driven Capacitive Lead Ion Detection with Reduced Graphene Oxide Field-Effect Transistor Integrated with an Analyzing Device for Rapid Water Quality Monitoring. ACS Sens. 2017, 2, 1653–1661. [Google Scholar] [CrossRef]
- Chen, K.; Lu, G.; Chang, J.; Mao, S.; Yu, K.; Cui, S.; Chen, J. Hg(II) Ion Detection using Thermally Reduced Graphene Oxide Decorated with Functionalized Gold Nanoparticles. Anal. Chem. 2012, 84, 4057–4062. [Google Scholar] [CrossRef]
- Takagiri, Y.; Ikuta, T.; Maehashi, K. Selective Detection of Cu2+ Ions by Immobilizing Thiacalix[4]arene on Graphene Field-Effect Transistors. ACS Omega 2019, 5, 877–881. [Google Scholar] [CrossRef] [Green Version]
- Sudibya, H.G.; He, Q.; Zhang, H.; Chen, P. Electrical detection of metal ions using field-effect transistors based on micropatterned reduced graphene oxide films. ACS Nano 2011, 5, 1990–1994. [Google Scholar] [CrossRef]
- Li, P.; Liu, B.; Zhang, D.; Sun, Y.; Liu, J. Graphene field-effect transistors with tunable sensitivity for high performance Hg (II) sensing. Appl. Phys. Lett. 2016, 109, 1–6. [Google Scholar] [CrossRef]
- Ayesh, A.I.; Karam, Z.; Awwad, F.; Meetani, M.A. Conductometric graphene sensors decorated with nanoclusters for selective detection of Hg2+ traces in water. Sens. Actuators B Chem. 2015, 221, 201–206. [Google Scholar] [CrossRef]
- Eickhoff, M.; Schalwig, J.; Steinhoff, G.; Weidemann, O.; Görgens, L.; Neuberger, R.; Hermann, M.; Baur, B.; Müller, G.; Ambacher, O.; et al. Electronics and sensors based on pyroelectric AlGaN/GaN heterostructures: Part B: Sensor applications. Phys. Status Solidi C Conf. 2003, 0, 1908–1918. [Google Scholar] [CrossRef]
- Bosacchi, A.; Franchi, S.; Gombia, E.; Mosca, R.; Fantini, F.; Franchi, S.; Menozzi, R. Thermal Stability of Al/GaAs and AI/GaAs/AIGaAs(MBE) Schottky Barriers. Electron. Lett. 1993, 29, 651–653. [Google Scholar] [CrossRef]
- Dammann, M.; Leuther, A.; Benkhelifa, F.; Feltgen, T.; Jantz, W. Reliability and degradation mechanism of AlGaAs/InGaAs and InAlAs/InGaAs HEMTs. Phys. Status Solidi Appl. Res. 2003, 195, 81–86. [Google Scholar] [CrossRef]
- Kikkawa, T.; Makiyama, K.; Ohki, T.; Kanamura, M.; Imanishi, K.; Hara, N.; Joshin, K. High performance and high reliability AlGaN/GaN HEMTs. Phys. Status Solidi Appl. Mater. Sci. 2009, 206, 1135–1144. [Google Scholar] [CrossRef]
- Shiojima, K.; Shigekawa, N. Thermal Stability of Electrical Properties in AlGaN/GaN Heterostructures. Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 2004, 43, 100–105. [Google Scholar] [CrossRef]
- Vuong, T.A.; Cha, H.Y.; Kim, H. Response enhancement of pt–algan/gan hemt gas sensors by thin algan barrier with the source-connected gate configuration at high temperature. Micromachines 2021, 12, 537. [Google Scholar] [CrossRef] [PubMed]
- Sarangadharan, I.; Regmi, A.; Chen, Y.W.; Hsu, C.P.; Chen, P.C.; Chang, W.H.; Lee, G.Y.; Chyi, J.I.; Shiesh, S.C.; Lee, G.B.; et al. High sensitivity cardiac troponin I detection in physiological environment using AlGaN/GaN High Electron Mobility Transistor (HEMT) Biosensors. Biosens. Bioelectron. 2018, 100, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Chen, D.; Bin, L.; Lu, H.; Zhang, R.; Zheng, Y. Highly selective and sensitive phosphate anion sensors based on AlGaN/GaN high electron mobility transistors functionalized by ion imprinted polymer. Sci. Rep. 2016, 6, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Bolotin, K.I.; Sikes, K.J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H.L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355. [Google Scholar] [CrossRef] [Green Version]
- Siddique, A.; Ahmed, R.; Anderson, J.; Holtz, M.; Piner, E.L. Improved Electrical Properties of AlGaN/GaN High-Electron-Mobility Transistors by in Situ Tailoring the SiNxPassivation Layer. ACS Appl. Mater. Interfaces 2021, 13, 18264–18273. [Google Scholar] [CrossRef]
- Tai, T.Y.; Sinha, A.; Sarangadharan, I.; Pulikkathodi, A.K.; Wang, S.L.; Lee, G.Y.; Chyi, J.I.; Shiesh, S.C.; Lee, G.B.; Wang, Y.L. Design and Demonstration of Tunable Amplified Sensitivity of AlGaN/GaN High Electron Mobility Transistor (HEMT)-Based Biosensors in Human Serum. Anal. Chem. 2019, 91, 5953–5960. [Google Scholar] [CrossRef]
- Sokolovskij, R.; Zhang, J.; Zheng, H.; Li, W.; Jiang, Y.; Yang, G.; Yu, H.; Sarro, P.M.; Zhang, G. The Impact of Gate Recess on the H Detection Properties of Pt-AlGaN/GaN HEMT Sensors. IEEE Sens. J. 2020, 20, 8947–8955. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Y.; Guan, M.; Cui, L.; Ding, K.; Zhang, B.; Lin, Z.; Huang, F.; Zeng, Y. Specific detection of mercury(II) irons using AlGaAs/InGaAs high electron mobility transistors. J. Cryst. Growth 2015, 425, 381–384. [Google Scholar] [CrossRef]
- Nigam, A.; Bhat, T.N.; Bhati, V.S.; Dolmanan, S.B.; Tripathy, S.; Kumar, M. MPA-GSH Functionalized AlGaN/GaN High-Electron Mobility Transistor-Based Sensor for Cadmium Ion Detection. IEEE Sens. J. 2019, 19, 2863–2870. [Google Scholar] [CrossRef]
- Leverrier, P.; Montigny, C.; Garrigos, M.; Champeil, P. Metal binding to ligands: Cadmium complexes with glutathione revisited. Anal. Biochem. 2007, 371, 215–228. [Google Scholar] [CrossRef]
- Díaz-Cruz, M.S.; Mendieta, J.; Tauler, R.; Esteban, M. Cadmium-binding properties of glutathione: A chemometrical analysis of voltammetric data. J. Inorg. Biochem. 1997, 66, 29–36. [Google Scholar] [CrossRef]
- Pei, K.L.; Sooriyaarachchi, M.; Sherrell, D.A.; George, G.N.; Gailer, J. Probing the coordination behavior of Hg2+, CH3Hg+, and Cd2+ towards mixtures of two biological thiols by HPLC-ICP-AES. J. Inorg. Biochem. 2011, 105, 375–381. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, Y.; Shao, H.; Wang, Z.; Wang, X.; Jiang, X. Label-free colorimetric detection of cadmium ions in rice samples using gold nanoparticles. Anal. Chem. 2014, 86, 8530–8534. [Google Scholar] [CrossRef]
- Chow, E.; Hibbert, D.B.; Gooding, J.J. Voltammetric detection of cadmium ions at glutathione-modified gold electrodes. Analyst 2005, 130, 831–837. [Google Scholar] [CrossRef]
- Nigam, A.; Bhati, V.S.; Bhat, T.N.; Dolmanan, S.B.; Tripathy, S.; Kumar, M. Sensitive and Selective Detection of Pb2+ Ions Using 2,5-Dimercapto-1,3,4-Thiadiazole Functionalized AlGaN/GaN High Electron Mobility Transistor. IEEE Electron Device Lett. 2019, 40, 1976–1979. [Google Scholar] [CrossRef]
- Wu, Y.; Bing Li, N.; Qun Luo, H. Electrochemical determination of Pb(II) at a gold electrode modified with a self-assembled monolayer of 2,5-dimercapto-1,3,4-thiadiazole. Microchim. Acta 2008, 160, 185–190. [Google Scholar] [CrossRef]
- He, X.; Su, Z.; Xie, Q.; Chen, C.; Fu, Y.; Chen, L.; Liu, Y.; Ma, M.; Deng, L.; Qin, D.; et al. Differential pulse anodic stripping voltammetric determination of Cd and Pb at a bismuth glassy carbon electrode modified with Nafion, poly(2,5-dimercapto-1,3,4-thiadiazole) and multiwalled carbon nanotubes. Microchim. Acta 2011, 173, 95–102. [Google Scholar] [CrossRef]
- Nigam, A.; Goel, N.; Bhat, T.N.; Tawabur Rahman, M.; Dolmanan, S.B.; Qiao, Q.; Tripathy, S.; Kumar, M. Real time detection of Hg2+ ions using MoS2 functionalized AlGaN/GaN high electron mobility transistor for water quality monitoring. Sensors Actuators, B Chem. 2020, 309, 127832. [Google Scholar] [CrossRef]
- Bakker, E.; Bühlmann, P.; Pretsch, E. Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics. Chem. Rev. 1997, 97, 3083–3132. [Google Scholar] [CrossRef]
- Bühlmann, P.; Pretsch, E.; Bakker, E. Carrier-based ion-selective electrodes and bulk optodes. 2. Ionophores for potentiometric and optical sensors. Chem. Rev. 1998, 98, 1593–1687. [Google Scholar] [CrossRef]
- Maehashi, K.; Sofue, Y.; Okamoto, S.; Ohno, Y.; Inoue, K.; Matsumoto, K. Selective ion sensors based on ionophore-modified graphene field-effect transistors. Sens. Actuators B Chem. 2013, 187, 45–49. [Google Scholar] [CrossRef]
- Zuliani, C.; Diamond, D. Opportunities and challenges of using ion-selective electrodes in environmental monitoring and wearable sensors. Electrochim. Acta 2012, 84, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Kamenica, M.; Kothur, R.R.; Willows, A.; Patel, B.A.; Cragg, P.J. Lithium ion sensors. Sensors 2017, 17, 2430. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.K.; Jain, A.K.; Upadhyay, A.; Thomas, K.R.J.; Singh, P. Electroanalytical performance of Cd(II) selective sensor based on PVC membranes of 5,5′-(5,5′-benzo[c][1,2,5]thiadiazole-4,7-diyl)bis(thiophene-5,2-diyl))bis(N1,N1,N3,N3-tetraphenylbenzene-1,3-diamine). Int. J. Environ. Anal. Chem. 2013, 93, 813–827. [Google Scholar] [CrossRef]
- Kondratyeva, Y.O.; Tolstopjatova, E.G.; Kirsanov, D.O.; Mikhelson, K.N. Chronoamperometric and coulometric analysis with ionophore-based ion-selective electrodes: A modified theory and the potassium ion assay in serum samples. Sens. Actuators B Chem. 2020, 310, 127894. [Google Scholar] [CrossRef]
- Chen, Y.-T.; Hseih, C.-Y.; Sarangadharan, I.; Sukesan, R.; Lee, G.-Y.; Chyi, J.-I.; Wang, Y.-L. Beyond the Limit of Ideal Nernst Sensitivity: Ultra-High Sensitivity of Heavy Metal Ion Detection with Ion-Selective High Electron Mobility Transistors. ECS J. Solid State Sci. Technol. 2018, 7, Q176–Q183. [Google Scholar] [CrossRef]
- Chen, Y.-T.; Sarangadharan, I.; Sukesan, R.; Hseih, C.Y.; Lee, G.Y.; Chyi, J.I.; Wang, Y.L. High-field modulated ion-selective field-effect-Transistor (FET) sensors with sensitivity higher than the ideal Nernst sensitivity. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, C.-Y.; Chen, Y.-T.; Sukesan, R.; Wang, Y.-L. Ultra-High Sensitivity for Lead Ion Detection Beyond the Ideal Nernst Response with AlGaN/GaN High Electron Mobility Transistors (HEMTs). ECS Trans. 2018, 85, 3–8. [Google Scholar] [CrossRef]
- Sukesan, R.; Chen, Y.-T.; Wang, Y.-L. Mercury Selective GaN HEMT Sensor for Dynamic Water Quality Monitoring. ECS Trans. 2017, 80, 953–957. [Google Scholar] [CrossRef]
- Sarangadharan, I.; Pulikkathodi, A.K.; Chu, C.-H.; Chen, Y.-W.; Regmi, A.; Chen, P.-C.; Hsu, C.-P.; Wang, Y.-L. Review—High Field Modulated FET Biosensors for Biomedical Applications. ECS J. Solid State Sci. Technol. 2018, 7, Q3032–Q3042. [Google Scholar] [CrossRef]
- Chu, C.H.; Sarangadharan, I.; Regmi, A.; Chen, Y.W.; Hsu, C.P.; Chang, W.H.; Lee, G.Y.; Chyi, J.I.; Chen, C.C.; Shiesh, S.C.; et al. Beyond the Debye length in high ionic strength solution: Direct protein detection with field-effect transistors (FETs) in human serum. Sci. Rep. 2017, 7, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Sukesan, R.; Chen, Y.T.; Shahim, S.; Wang, S.L.; Sarangadharan, I.; Wang, Y.L. Instant mercury ion detection in industrial waste water with a microchip using extended gate field-effect transistors and a portable device. Sensors 2019, 19, 2209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambacher, O.; Smart, J.; Shealy, J.R.; Weimann, N.G.; Chu, K.; Murphy, M.; Schaff, W.J.; Eastman, L.F.; Dimitrov, R.; Wittmer, L.; et al. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- And Ga-face AIGaN/GaN heterostructures. J. Appl. Phys. 1999, 85, 3222–3233. [Google Scholar] [CrossRef] [Green Version]
- Asadnia, M.; Myers, M.; Akhavan, N.D.; O’Donnell, K.; Umana-Membreno, G.A.; Mishra, U.K.; Nener, B.; Baker, M.; Parish, G. Mercury(II) selective sensors based on AlGaN/GaN transistors. Anal. Chim. Acta 2016, 943, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Gu, L.; Yang, S.; Miao, B.; Gu, Z.; Wang, J.; Sun, W.; Wu, D.; Li, J. Electrical detection of trace zinc ions with an extended gate-AlGaN/GaN high electron mobility sensor. Analyst 2019, 144, 663–668. [Google Scholar] [CrossRef]
- Cheng, J.; Li, J.; Miao, B.; Wang, J.; Wu, Z.; Wu, D.; Pei, R. Ultrasensitive detection of Hg2+ using oligonucleotide- functionalized AlGaN/GaN high electron mobility transistor. Appl. Phys. Lett. 2014, 105. [Google Scholar] [CrossRef]
- Ren, F.; Pearton, S.J. Sensors using AlGaN/GaN based high electron mobility transistor for environmental and bio-applications. Phys. Status Solidi Curr. Top. Solid State Phys. 2012, 9, 393–398. [Google Scholar] [CrossRef]
- Niu, J.; Zhang, Y.; Guan, M.; Wang, C.; Cui, L.; Yang, Q.; Li, Y.; Zeng, Y. Detection of lead ions with AlGaAs/InGaAs pseudomorphic high electron mobility transistor. J. Semicond. 2016, 37. [Google Scholar] [CrossRef]
- Pumera, M.; Loo, A.H. Layered transition-metal dichalcogenides (MoS2 and WS2) for sensing and biosensing. TrAC Trends Anal. Chem. 2014, 61, 49–53. [Google Scholar] [CrossRef]
- Mao, S.; Chang, J.; Pu, H.; Lu, G.; He, Q.; Zhang, H.; Chen, J. Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing. Chem. Soc. Rev. 2017, 46, 6872–6904. [Google Scholar] [CrossRef]
- Li, M.-Z.; Han, S.-T.; Zhou, Y. Recent Advances in Flexible Field-Effect Transistors toward Wearable Sensors. Adv. Intell. Syst. 2020, 2, 2000113. [Google Scholar] [CrossRef]
- Dickinson, R.G.; Pauling, L. The crystal structure of molybdenite. J. Am. Chem. Soc. 1923, 45, 1466–1471. [Google Scholar] [CrossRef]
- Ermolaev, G.A.; Grudinin, D.V.; Stebunov, Y.V.; Voronin, K.V.; Kravets, V.G.; Duan, J.; Mazitov, A.B.; Tselikov, G.I.; Bylinkin, A.; Yakubovsky, D.I.; et al. Giant optical anisotropy in transition metal dichalcogenides for next-generation photonics. Nat. Commun. 2021, 12, 1–8. [Google Scholar] [CrossRef]
- Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O.V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2. [Google Scholar] [CrossRef]
- Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150. [Google Scholar] [CrossRef]
- Zhou, G.; Chang, J.; Pu, H.; Shi, K.; Mao, S.; Sui, X.; Ren, R.; Cui, S.; Chen, J. Ultrasensitive Mercury Ion Detection Using DNA-Functionalized Molybdenum Disulfide Nanosheet/Gold Nanoparticle Hybrid Field-Effect Transistor Device. ACS Sens. 2016, 1, 295–302. [Google Scholar] [CrossRef]
- Gong, J.; Zhou, T.; Song, D.; Zhang, L. Monodispersed Au nanoparticles decorated graphene as an enhanced sensing platform for ultrasensitive stripping voltammetric detection of mercury(II). Sens. Actuators B Chem. 2010, 150, 491–497. [Google Scholar] [CrossRef]
- Mahajan, R.K.; Kaur, I.; Lobana, T.S. A mercury(II) ion-selective electrode based on neutral salicylaldehyde thiosemicarbazone. Talanta 2003, 59, 101–105. [Google Scholar] [CrossRef]
- Jiang, S.; Cheng, R.; Ng, R.; Huang, Y.; Duan, X. Highly sensitive detection of mercury(II) ions with few-layer molybdenum disulfide. Nano Res. 2015, 8, 257–262. [Google Scholar] [CrossRef]
- Li, P.; Zhang, D.; Sun, Y.; Chang, H.; Liu, J.; Yin, N. Towards intrinsic MoS2 devices for high performance arsenite sensing. Appl. Phys. Lett. 2016, 109. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Dak, P.; Lee, Y.; Park, H.; Choi, W.; Alam, M.A.; Kim, S. Two-dimensional layered MoS2 biosensors enable highly sensitive detection of biomolecules. Sci. Rep. 2014, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Chen, L.; Liu, G.; Abbas, A.N.; Fathi, M.; Zhou, C. High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. ACS Nano 2014, 8, 5304–5314. [Google Scholar] [CrossRef]
- Li, P.; Zhang, D.; Wu, Z. Flexible MoS2 sensor arrays for high performance label-free ion sensing. Sens. Actuators A Phys. 2019, 286, 51–58. [Google Scholar] [CrossRef]
- Tsai, M.Y.; Tarasov, A.; Hesabi, Z.R.; Taghinejad, H.; Campbell, P.M.; Joiner, C.A.; Adibi, A.; Vogel, E.M. Flexible MoS2 Field-Effect Transistors for Gate-Tunable Piezoresistive Strain Sensors. ACS Appl. Mater. Interfaces 2015, 7, 12850–12855. [Google Scholar] [CrossRef]
- Manzeli, S.; Allain, A.; Ghadimi, A.; Kis, A. Piezoresistivity and Strain-induced Band Gap Tuning in Atomically Thin MoS2. Nano Lett. 2015, 15, 5330–5335. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Wang, L.; Li, Y.; Zhang, F.; Lin, L.; Niu, S.; Chenet, D.; Zhang, X.; Hao, Y.; Heinz, T.F.; et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 2014, 514, 470–474. [Google Scholar] [CrossRef]
- John, A.P.; Thenapparambil, A.; Thalakulam, M. Strain-engineering the Schottky barrier and electrical transport on MoS2. Nanotechnology 2020, 31, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Bazylewski, P.; Van Middelkoop, S.; Divigalpitiya, R.; Fanchini, G. Solid-State Chemiresistors from Two-Dimensional MoS2 Nanosheets Functionalized with l-Cysteine for In-Line Sensing of Part-Per-Billion Cd2+ Ions in Drinking Water. ACS Omega 2020, 5, 643–649. [Google Scholar] [CrossRef] [Green Version]
- An, J.H.; Jang, J. A highly sensitive FET-type aptasensor using flower-like MoS2 nanospheres for real-time detection of arsenic(III). Nanoscale 2017, 9, 7483–7492. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, X.; Xue, M.; Ye, X.; Lei, W.; Tang, H.; Li, C. Hydrothermal synthesis and characterization of 3D flower-like MoS2 microspheres. Mater. Lett. 2015, 148, 67–70. [Google Scholar] [CrossRef]
- Neog, A.; Deb, S.; Biswas, R. Atypical electrical behavior of few layered WS2 nanosheets based platform subject to heavy metal ion treatment. Mater. Lett. 2020, 268. [Google Scholar] [CrossRef] [Green Version]
- Neog, A.; Biswas, R. WS2 nanosheets as a potential candidate towards sensing heavy metal ions: A new dimension of 2D materials. Mater. Res. Bull. 2021, 144, 111471. [Google Scholar] [CrossRef]
- Anju, S.; Ashtami, J.; Mohanan, P.V. Black phosphorus, a prospective graphene substitute for biomedical applications. Mater. Sci. Eng. C 2019, 97, 978–993. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Konar, A.; Hwang, W.S.; Lee, J.H.; Lee, J.; Yang, J.; Jung, C.; Kim, H.; Yoo, J.B.; Choi, J.Y.; et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 2012, 3, 1011–1017. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Peng, Z.; Tour, J.M. Chemical vapor deposition of graphene single crystals. Acc. Chem. Res. 2014, 47, 1327–1337. [Google Scholar] [CrossRef]
- Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314. [Google Scholar] [CrossRef] [Green Version]
- Kou, L.; Frauenheim, T.; Chen, C. Phosphorene as a superior gas sensor: Selective adsorption and distinct i - V response. J. Phys. Chem. Lett. 2014, 5, 2675–2681. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.S.; Liu, Y.; Zhu, W.; Kim, S.; Wu, D.; Tao, L.; Dodabalapur, A.; Lai, K.; Akinwande, D. Toward air-stable multilayer phosphorene thin-films and transistors. Sci. Rep. 2015, 5, 1–7. [Google Scholar] [CrossRef]
- Island, J.O.; Steele, G.A.; Van Der Zant, H.S.J.; Castellanos-Gomez, A.; Wood, J.D.; Wells, S.A.; Jariwala, D.; Chen, K.; Cho, E.; Sangwan, V.K.; et al. Effective Passivation of Exfoliated Black Phosphorus Transistors against Ambient Degradation. Nano Lett. 2014, 14, 6964–6970. [Google Scholar]
- Huang, Y.; Qiao, J.; He, K.; Bliznakov, S.; Sutter, E.; Chen, X.; Luo, D.; Meng, F.; Su, D.; Decker, J.; et al. Interaction of black phosphorus with oxygen and water. Chem. Mater. 2016, 28, 8330–8339. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Zhang, D.; Liu, J.; Chang, H.; Sun, Y.; Yin, N. Air-Stable Black Phosphorus Devices for Ion Sensing. ACS Appl. Mater. Interfaces 2015, 7, 24396–24402. [Google Scholar] [CrossRef]
- Wan, B.; Yang, B.; Wang, Y.; Zhang, J.; Zeng, Z.; Liu, Z.; Wang, W. Enhanced stability of black phosphorus field-effect transistors with SiO2 passivation. Nanotechnology 2015, 26, 435702. [Google Scholar] [CrossRef]
- Abate, Y.; Akinwande, D.; Gamage, S.; Wang, H.; Snure, M.; Poudel, N.; Cronin, S.B. Recent Progress on Stability and Passivation of Black Phosphorus. Adv. Mater. 2018, 30, 1–13. [Google Scholar] [CrossRef]
- Zhou, G.; Pu, H.; Chang, J.; Sui, X.; Mao, S.; Chen, J. Real-time electronic sensor based on black phosphorus/Au NPs/DTT hybrid structure: Application in arsenic detection. Sens. Actuators B Chem. 2018, 257, 214–219. [Google Scholar] [CrossRef]
- Forzani, E.S.; Foley, K.; Westerhoff, P.; Tao, N. Detection of arsenic in groundwater using a surface plasmon resonance sensor. Sens. Actuators B Chem. 2007, 123, 82–88. [Google Scholar] [CrossRef]
- Kreel, A.; Leniak, W.; Jeowska-Bojczuk, M.; Mlynarz, P.; Brasu, J.; Kozlowski, H.; Bal, W. Coordination of heavy metals by dithiothreitol, a commonly used thiol group protectant. J. Inorg. Biochem. 2001, 84, 77–88. [Google Scholar] [CrossRef]
- Delnomdedieu, M.; Basti, M.M.; Otvos, J.D.; Thomas, D.J. Reduction and binding of arsenate and dimethylarsinate by glutathione: A magnetic resonance study. Chem. Biol. Interact. 1994, 90, 139–155. [Google Scholar] [CrossRef]
- Oviedo, C.; Rodríguez, J. EDTA: The chelating agent under environmental scrutiny. Quim. Nova 2003, 26, 901–905. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.D.; Sang, D.K.; Guo, Z.N.; Cao, R.; Zhao, J.L.; Ullah Shah, M.N.; Fan, T.J.; Fan, D.Y.; Zhang, H. Black phosphorus-based field effect transistor devices for Ag ions detection. Chin. Phys. B 2018, 27. [Google Scholar] [CrossRef]
- Jiang, X.; Jin, H.; Gui, R. The emerging metal-ion-coordinated black phosphorus nanosheets and black phosphorus quantum dots with excellent stabilities. J. Chem. Soc. Dalt. Trans. 2020, 49, 11911–11920. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, S.; Wang, Z.; Yang, Z.; Liu, F.; Xu, Y.; Wang, J.; Yi, Y.; Zhang, H.; Liao, L.; et al. Metal-Ion-Modified Black Phosphorus with Enhanced Stability and Transistor Performance. Adv. Mater. 2017, 29, 1–8. [Google Scholar] [CrossRef]
- Chang, J.; Pu, H.; Wells, S.A.; Shi, K.; Guo, X.; Zhou, G.; Sui, X.; Ren, R.; Mao, S.; Chen, Y.; et al. Semi-quantitative design of black phosphorous field-effect transistor sensors for heavy metal ion detection in aqueous media. Mol. Syst. Des. Eng. 2019, 4, 491–502. [Google Scholar] [CrossRef]
- Jacob, M.V. Organic semiconductors: Past, present and future. Electronics 2014, 3, 594–597. [Google Scholar] [CrossRef] [Green Version]
- Torsi, L.; Magliulo, M.; Manoli, K.; Palazzo, G. Organic field-effect transistor sensors: A tutorial review. Chem. Soc. Rev. 2013, 42, 8612–8628. [Google Scholar] [CrossRef]
- Minami, T.; Minamiki, T.; Tokito, S. Detection of mercury(II) ion in water using an organic field-effect transistor with a cysteine-immobilized gold electrode. Jpn. J. Appl. Phys. 2016, 55, 2–5. [Google Scholar] [CrossRef]
- Minami, T.; Sasaki, Y.; Minamiki, T.; Koutnik, P.; Anzenbacher, P.; Tokito, S. A mercury(II) ion sensor device based on an organic field effect transistor with an extended-gate modified by dipicolylamine. Chem. Commun. 2015, 51, 17666–17668. [Google Scholar] [CrossRef]
- Li, X.; Su, X.; Shi, Z.; Cheng, X.; Liu, S.; Zhao, Q. Highly selective and reversible colorimetric detection of mercury ions by a hydrophilic cycloruthenated complex in water. Sens. Actuators B Chem. 2014, 201, 343–350. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, W. Nitrogen-doped carbon quantum dots: Facile synthesis and application as a “turn-off” fluorescent probe for detection of Hg2+ ions. Biosens. Bioelectron. 2013, 55, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Afkhami, A.; Madrakian, T.; Sabounchei, S.J.; Rezaei, M.; Samiee, S.; Pourshahbaz, M. Construction of a modified carbon paste electrode for the highly selective simultaneous electrochemical determination of trace amounts of mercury(II) and cadmium(II). Sens. Actuators B Chem. 2012, 161, 542–548. [Google Scholar] [CrossRef]
- Knopfmacher, O.; Hammock, M.L.; Appleton, A.L.; Schwartz, G.; Mei, J.; Lei, T.; Pei, J.; Bao, Z. Highly stable organic polymer field-effect transistor sensor for selective detection in the marine environment. Nat. Commun. 2014, 5, 2954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sayyad, P.W.; Ingle, N.N.; Al-Gahouari, T.; Mahadik, M.M.; Bodkhe, G.A.; Shirsat, S.M.; Shirsat, M.D. Selective Hg2+ sensor: rGO-blended PEDOT:PSS conducting polymer OFET. Appl. Phys. A Mater. Sci. Process. 2021, 127. [Google Scholar] [CrossRef]
- Mahadik, M.M.; Bodkhe, G.A.; Ingle, N.N.; Sayyad, P.W.; Al-Gahouari, T.; Shirsat, S.M.; Datta, K.; Shirsat, M.D. Ethylenediaminetetra Acetic Acid Functionalized Polyaniline Nanowires: Organic Field Effect Transistor for the Detection of Hg2+. J. Electron. Mater. 2021, 50, 2339–2347. [Google Scholar] [CrossRef]
- Sasaki, Y.; Minami, T.; Minamiki, T.; Tokito, S. An organic transistor-based electrical assay for copper(II) in water. Electrochemistry 2017, 85, 775–778. [Google Scholar] [CrossRef] [Green Version]
- Ramesh, M.; You, Y.R.; Shellaiah, M.; Wu, M.C.; Lin, H.C.; Chu, C.W. Star-shaped self-assembly of an organic thin film transistor sensor in the presence of Cu2+ and CN- ions. Org. Electron. 2014, 15, 582–589. [Google Scholar] [CrossRef]
- Shellaiah, M.; Wu, Y.H.; Singh, A.; Ramakrishnam Raju, M.V.; Lin, H.C. Novel pyrene- and anthracene-based Schiff base derivatives as Cu2+ and Fe3+ fluorescence turn-on sensors and for aggregation induced emissions. J. Mater. Chem. A 2013, 1, 1310–1318. [Google Scholar] [CrossRef]
- Wager, J.F.; Yeh, B.; Hoffman, R.L.; Keszler, D.A. An amorphous oxide semiconductor thin-film transistor route to oxide electronics. Curr. Opin. Solid State Mater. Sci. 2014, 18, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Presley, R.E.; Munsee, C.L.; Park, C.H.; Hong, D.; Wager, J.F.; Keszler, D.A. Tin oxide transparent thin-film transistors. J. Phys. D. Appl. Phys. 2004, 37, 2810–2813. [Google Scholar] [CrossRef] [Green Version]
- Yang, P.; Cai, G.; Wang, X.; Pei, Y. Electrolyte-Gated Indium Oxide Thin Film Transistor Based Biosensor with Low Operation Voltage. IEEE Trans. Electron Devices 2019, 66, 3554–3559. [Google Scholar] [CrossRef]
- Reyes, P.I.; Ku, C.J.; Duan, Z.; Lu, Y.; Solanki, A.; Lee, K.B. ZnO thin film transistor immunosensor with high sensitivity and selectivity. Appl. Phys. Lett. 2011, 98, 2011–2014. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Liang, L.; Pei, Y.; Yu, J.; Duan, H.; Chang, T.-C.; Cao, H. Solution-processed amorphous Ga2O3: CdO TFT-type deep-UV photodetectors. Appl. Phys. Lett. 2020, 116, 192102. [Google Scholar] [CrossRef]
- Jo, J.W.; Kang, S.H.; Heo, J.S.; Kim, Y.H.; Park, S.K. Flexible Metal Oxide Semiconductor Devices Made by Solution Methods. Chem. A Eur. J. 2020, 26, 9126–9156. [Google Scholar] [CrossRef]
- Kim, D.H.; Lu, N.; Ghaffari, R.; Rogers, J.A. Inorganic semiconductor nanomaterials for flexible and stretchable bio-integrated electronics. NPG Asia Mater. 2012, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Han, S.Y.; Herman, G.S.; Chang, C.H. Low-temperature, high-performance, solution-processed indium oxide thin-film transistors. J. Am. Chem. Soc. 2011, 133, 5166–5169. [Google Scholar] [CrossRef]
- Fortunato, E.; Barquinha, P.; Martins, R. Oxide semiconductor thin-film transistors: A review of recent advances. Adv. Mater. 2012, 24, 2945–2986. [Google Scholar] [CrossRef]
- Rim, Y.S.; Bae, S.H.; Chen, H.; De Marco, N.; Yang, Y. Recent Progress in Materials and Devices toward Printable and Flexible Sensors. Adv. Mater. 2016, 28, 4415–4440. [Google Scholar] [CrossRef]
- Alqahtani, Z.; Alghamdi, N.; Grell, M. Monitoring the lead-and-copper rule with a water-gated field effect transistor. J. Water Health 2020, 18, 159–171. [Google Scholar] [CrossRef]
- Bakker, E.; Pretsch, E. Potentiometry at trace levels. TrAC Trends Anal. Chem. 2001, 20, 11–19. [Google Scholar] [CrossRef]
- Kim, E.-B.; Imran, M.; Lee, E.-H.; Akhtar, M.S.; Ameen, S. Multiple ions detection by field-effect transistor sensors based on ZnO@GO and ZnO@rGO nanomaterials:Application to trace detection of Cr (III) and Cu (II). Chemosphere 2022, 286. [Google Scholar] [CrossRef]
- Pham, T.T.T.; Tran, D.P.; Thierry, B. High performance indium oxide nanoribbon FETs: Mitigating devices signal variation from batch fabrication. Nanoscale Adv. 2019, 1, 4870–4877. [Google Scholar] [CrossRef] [Green Version]
- Rim, Y.S.; Chen, H.; Zhu, B.; Bae, S.H.; Zhu, S.; Li, P.J.; Wang, I.C.; Yang, Y. Interface Engineering of Metal Oxide Semiconductors for Biosensing Applications. Adv. Mater. Interfaces 2017, 4. [Google Scholar] [CrossRef]
- Dasgupta, S.; Gottschalk, S.; Kruk, R.; Hahn, H. A nanoparticulate indium tin oxide field-effect transistor with solid electrolyte gating. Nanotechnology 2008, 19. [Google Scholar] [CrossRef] [PubMed]
- Rullyani, C.; Shellaiah, M.; Ramesh, M.; Lin, H.C.; Chu, C.W. Pyrene-SH functionalized OTFT for detection of Hg2+ ions in aquatic environments. Org. Electron. 2019, 69, 275–280. [Google Scholar] [CrossRef]
- Cong, Y.; Han, D.; Dong, J.; Zhang, S.; Zhang, X.; Wang, Y. Fully transparent high performance thin film transistors with bilayer ITO/Al-Sn-Zn-O channel structures fabricated on glass substrate. Sci. Rep. 2017, 7, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, J.; Livache, C.; Martinez, B.; Gréboval, C.; Chu, A.; Meriggio, E.; Ramade, J.; Cruguel, H.; Xu, X.Z.; Proust, A.; et al. Transport in ITO Nanocrystals with Short- To Long-Wave Infrared Absorption for Heavy-Metal-Free Infrared Photodetection. ACS Appl. Nano Mater. 2019, 2, 1621–1630. [Google Scholar] [CrossRef] [Green Version]
- Ito, D.; Yokoyama, S.; Zaikova, T.; Masuko, K.; Hutchison, J.E. Synthesis of ligand-stabilized metal oxide nanocrystals and epitaxial core/shell nanocrystals via a lower-temperature esterification process. ACS Nano 2014, 8, 64–75. [Google Scholar] [CrossRef]
Metals | WHO Limit a (mgL−1) | Common Sources | Effects |
---|---|---|---|
Lead (Pb) | 0.05 | PVC pipes in sanitation, agriculture, recycled PVC lead paints, jewellery, lead batteries, lunch boxes, etc. | Penetrates through protective blood brain barrier (BBB) and is proving to be a risk factor for Alzheimer’s disease and senile dementia; leads also to neuro-degenerative diseases, decreases IQ, kidney damage, decreased bone growth, behavioral issues, ataxia, hyperirritability and stupor |
Cadmium (Cd) | 0.005 | Paints, pigments, electroplated parts, batteries, plastics, synthetic rubber, photographic and engraving process, photoconductors and photovoltaic cells | Renal toxicity, hypertension, weight loss, fatigue, microcytic hypochromic anaemia, lymphocytosis, pulmonary fibrosis, atherosclerosis, peripheral neuropathy, lung cancer, osteomalacia, osteoporosis and hyperuricemia |
Mercury (Hg) | 0.001 | Combustion of coal, municipal solid waste incineration and volcanic emissions | Impaired neurologic development, effects on digestive system, immune system, lungs, kidneys, skin and eyes, minamata, acrodynia, increases salivation, hypotonia and hypertension |
Arsenic (As) | 0.05 | Wooden electricity poles that are treated with arsenic based preservatives, pesticides, fertilizers, release of untreated effluents, oxidation of pyrite (FeS) and arseno pyrite (FeAsS) | Causes effects on central nervous system (CNS), peripheral nervous system (PNS), cardiovascular, pulmonary diseases, gastrointestinal tract (GI), genitourinary (GU), haemopoietic, dermatologic, foetal and teratogenic diseases, anorexia, brown pigmentation, hyper-pigmentation, localized edema and skin cancer |
Chromium (Cr) | 0.05 | Leather industry, tanning, and chrome plating industries | Reproductive toxicity, embryotoxicity, teratogenicity, mutagenicity, carcinogenicity, lung cancer, dermatitis, skin ulcers, perforation of septum and irritant contact dermatitis |
Silver (Ag) | 0.1 | Refining of copper, gold, nickel, zinc, jewellery and electroplating industries | Argyria, gastroenteritis, neuronal disorders, mental fatigue, rheumatism, knotting of cartilage, cytopathological effects in fibroblast, keratinocytes and mast cells |
Zinc (Zn) | 5 | Soldering, cosmetics and pigments | Respiratory disorders, metal fume fever, bronchiolar leukocytes, neuronal disorder, prostate cancer risks, macular degeneration and impotence |
Copper (Cu) | 1.3 | Fertilizers, tanning and photovoltaic cells | Adreno-corticol hyperactivity, allergies, anaemia, alopecia, arthritis, autism, cystic fibrosis, diabetes, haemorrhaging and kidney disorders |
Sample | Adding Ag(I) (nM) | DNAyme/SWNTs/FET (nM) | AAS (nM) | Recovery (%) |
---|---|---|---|---|
1 | - | 1.23 | 1.17 | 105.12 |
5 | 6.31 | 102.27 | ||
2 | - | 1.46 | 1.42 | 102.82 |
5 | 6.35 | 98.91 | ||
3 | - | 0.98 | 1.06 | 92.45 |
5 | 6.14 | 101.32 |
Sample | Pbzyme/SWNTs/FET (nM) | AES (nM) | Relative Error (%) |
---|---|---|---|
1 | 16.39 ± 3.39 | 17.31 | 5.31 |
2 | 19.34 ± 4.11 | 21.32 | 9.28 |
3 | 16.87 ± 2.67 | 15.56 | 8.42 |
4 | 10.21 ± 2.95 | 11.03 | 7.43 |
5 | 0.78 ± 0.24 | 0.73 | 6.85 |
6 | 1.43 ± 0.41 | 1.32 | 8.33 |
7 | 2.11 ± 0.37 | 2.23 | 5.38 |
8 | 1.35 ± 0.21 | 1.42 | 4.93 |
Surface Functionalization/Modification | Target Ions | Real Sample | Linear Range | Limit of Detection (LOD) | Reference |
---|---|---|---|---|---|
Self-assembled 1-octadecanethiol monolayer | Hg2+ | 4.985 nM | Zhang et al. [137] | ||
Self-assembled monolayer Alkanethiols (1-octadecanethiol and 1-Dodecanethiol) | Hg2+ and Pb2+ | 4.985 nM | Afsharimani et al. [141] | ||
Guanine-rich DNA/AuNPs | Pb2+ | 20 nM | Chee et al. [143] | ||
G-rich DNA | Pb2+ | 163.7 ng/L | Li et al. [146] | ||
ssDNA aptamer | Hg2+ | 0.1 nM–100 nM | 40 pM | Tu et al. [148] | |
Aptamer (3′-amine-TTC TTT CTT CCC CTT GTT TGT-C10 carboxylic acid-5′) | Hg2+ | mussel | 10 pM | An et al. [149] | |
LSA Aptamer (a kind of Pb2+ sensitive DNAzyme) | Pb2+ | Drinking water | 4.826 nM–48.826 nM | 4.826 pM | Li et al. [151] |
Pb2+-dependent DNAzyme | Pb2+ | 0.02 nM | Wen et al. [154] | ||
Aptamer 8-17 DNAzyme | Pb2+ | Children blood | 37.5 ng/L | Wang et al. [157] | |
Hg-dependent DNAzyme | Hg2+ | 1 nM | Chang et al. [158] | ||
L-Glutathione reduce (GSH)/AuNPs | Pb2+ | 10 nM–10 μM | 10 nM | Zhou et al. [162] | |
L-Glutathione reduce (GSH)/AuNPs | Pb2+ | 6.274 nM | Sui et al. [163] | ||
L-Glutathione reduce (GSH)/AuNP | Pb2+ | < 4.826 nM | Maity et al. [164] | ||
Thioglycolic acid (TGA)/AuNPs | Hg2+ | 25 nM–14.2 µM | 25 nM | Chen et al. [165] | |
Thiacalix[4]arene (TCA) | Cu2+ | 1 μM–1 mM | 1 μM | Takagiri et al. [166] | |
metallothionein type II protein (MT-II) | Hg2+ Cd2+ | Lake water | 1 nM (Hg2+ & Cd2+) | Sudibya et al. [167] | |
Hg ionophore | Hg2+ | 4.985 nM | Li et al. [168] | ||
Gold nanocluster | Hg2+ | 0.24926 nM | Ayesh et al. [169] |
Surface Functionalization/Modification | Target Ions | Matrix | Detection Range | Limit of Detection (LOD) | Reference |
---|---|---|---|---|---|
Mercaptopropionic Acid (MPA) and Glutathione (GSH) | Cd2+ | 2.2685 nM | Nigam et al. [183] | ||
2,5-dimercapto-1,3,4-thiadiazole (DMTD) | Pb2+ | Lake water | 86.87 pM | Nigam et al. [189] | |
molybdenum disulfide (MoS2) | Hg2+ | 0.4985 nM–498.5 nM | 57.43 pM | Nigam et al. [192] | |
Ion-selective membrane (ISM) | Pb2+ and Hg2+ | 0.1 nM–10 µM (Pb2+) 10 pM–10 µM (Hg2+) | 0.1 nM (Pb2+) 0.01 nM (Hg2+) | Chen et al. [200] | |
Ion-selective membrane (ISM) | Pb2+ | 0.1 nM | Chen et al. [201] | ||
Ion-selective membrane (ISM) | Pb2+ | Tap water | 0.1 nM–10 µM | 0.1 nM–10 pM | Hsieh et al. [202] |
Ion-selective membrane (ISM) | Hg2+ | 0.1 pM | Sukesan et al. [203] | ||
Ion-selective membrane (ISM) | Hg2+ | 0.1 pM–10 µM | 0.1 pM | Sukesan et al. [206] | |
Ion-selective membrane (ISM) | Hg2+ | 10 nM–0.1 mM | <10 nM | Asadnia et al. [208] | |
Schiff base | Zn2+ | 1 fM - 1μM | 1 fM | Gu et al. [209] | |
Oligonucleotide (DNA) | Hg2+ | 0.01 pM–10 nM | <0.01 pM | Cheng et al. [210] | |
self-assembled thioglycolic acids (TGA) | Hg2+ | 0.1 µM | Ren et al. [211] | ||
Glutathione (GSH) | Pb2+ | 0.1 pM–10 pM | 0.1 pM | Jiqiang et al. [212] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falina, S.; Syamsul, M.; Rhaffor, N.A.; Sal Hamid, S.; Mohamed Zain, K.A.; Abd Manaf, A.; Kawarada, H. Ten Years Progress of Electrical Detection of Heavy Metal Ions (HMIs) Using Various Field-Effect Transistor (FET) Nanosensors: A Review. Biosensors 2021, 11, 478. https://doi.org/10.3390/bios11120478
Falina S, Syamsul M, Rhaffor NA, Sal Hamid S, Mohamed Zain KA, Abd Manaf A, Kawarada H. Ten Years Progress of Electrical Detection of Heavy Metal Ions (HMIs) Using Various Field-Effect Transistor (FET) Nanosensors: A Review. Biosensors. 2021; 11(12):478. https://doi.org/10.3390/bios11120478
Chicago/Turabian StyleFalina, Shaili, Mohd Syamsul, Nuha Abd Rhaffor, Sofiyah Sal Hamid, Khairu Anuar Mohamed Zain, Asrulnizam Abd Manaf, and Hiroshi Kawarada. 2021. "Ten Years Progress of Electrical Detection of Heavy Metal Ions (HMIs) Using Various Field-Effect Transistor (FET) Nanosensors: A Review" Biosensors 11, no. 12: 478. https://doi.org/10.3390/bios11120478
APA StyleFalina, S., Syamsul, M., Rhaffor, N. A., Sal Hamid, S., Mohamed Zain, K. A., Abd Manaf, A., & Kawarada, H. (2021). Ten Years Progress of Electrical Detection of Heavy Metal Ions (HMIs) Using Various Field-Effect Transistor (FET) Nanosensors: A Review. Biosensors, 11(12), 478. https://doi.org/10.3390/bios11120478