Microfluidics: A Novel Approach for Dehydration Protein Droplets
Abstract
:1. Introduction
Theoretical Background of Droplet Dissolution
2. Materials and Methods
2.1. Dehydration Experiments
2.2. Microfluidic System Fabrication
2.3. Analysis of Experimental Results
Protein Hydration Potential
3. Results and Discussion
3.1. Dissolution Process
3.2. The Hydration of Protein Solution
3.3. The Equation of State of The Protein
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bouchoux, A.; Cayemitte, P.-E.; Jardin, J.; Gésan-Guiziou, G.; Cabane, B. Casein Micelle Dispersions under Osmotic Stress. Biophys. J. 2009, 96, 693–706. [Google Scholar] [CrossRef] [PubMed]
- Bouchoux, A.; Gesan-Guiziou, G.; Pérez, J.; Cabane, B. How to Squeeze a Sponge: Casein Micelles under Osmotic Stress, a SAXS Study. Biophys. J. 2010, 99, 3754–3762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouchoux, A.; Qu, P.; Bacchin, P.; Gésan-Guiziou, G. A General Approach for Predicting the Filtration of Soft and Permeable Colloids: The Milk Example. Langmuir 2014, 30, 22–34. [Google Scholar] [CrossRef] [PubMed]
- Pasquier, C.; Beaufils, S.; Bouchoux, A.; Rigault, S.; Cabane, B.; Lund, M.; Lechevalier, V.; Floch-Fouéré, C.L.; Pasco, M.; Pabœuf, G.; et al. Osmotic Pressures of Lysozyme Solutions from Gas-like to Crystal States. Phys. Chem. Chem. Phys. 2016, 18, 28458–28465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grobelny, S.; Erlkamp, M.; Möller, J.; Tolan, M.; Winter, R. Intermolecular Interactions in Highly Concentrated Protein Solutions upon Compression and the Role of the Solvent. J. Chem. Phys. 2014, 141, 22D506. [Google Scholar] [CrossRef] [PubMed]
- Pasquier, C.; Beaufils, S.; Bouchoux, A.; Cabane, B.; Rigult, S.; Perez, J.; Lechevalier, V.; Fouéré, C.L.F.; Paboeuf, G.; Pasco, M.; et al. Equation of State and Structure of Highly Concentrated Globular Protein Solutions. In Proceedings of the ECIS 2012 26th Conference of the European Colloid and Interface Society, Malmö, Sweden, 2–7 September 2012. [Google Scholar]
- Rickard, D.L.; Duncan, P.B.; Needham, D. Hydration Potential of Lysozyme: Protein Dehydration Using a Single Microparticle Technique. Biophys. J. 2010, 98, 1075–1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epstein, P.S.; Plesset, M.S. On the Stability of Gas Bubbles in Liquid-Gas Solutions. J. Chem. Phys. 1950, 18, 1505. [Google Scholar] [CrossRef] [Green Version]
- Duncan, P.B.; Needham, D. Test of the Epstein–Plesset Model for Gas Microparticle Dissolution in Aqueous Media: Effect of Surface Tension and Gas Undersaturation in Solution. Langmuir 2004, 20, 2567–2578. [Google Scholar] [CrossRef] [PubMed]
- Duncan, P.B.; Needham, D. Microdroplet Dissolution into a Second-Phase Solvent Using a Micropipet Technique: Test of the Epstein−Plesset Model for an Aniline−Water System. Langmuir 2006, 22, 4190–4197. [Google Scholar] [CrossRef] [PubMed]
- Su, J.T.; Needham, D. Mass Transfer in the Dissolution of a Multi-Component Liquid Droplet in an Immiscible Liquid Environment. Langmuir 2013, 29, 13339–13345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, Y.; Whitesides, G.M. Soft Lithography. Annu. Rev. Mater. Sci. 1998, 28, 153–184. [Google Scholar] [CrossRef]
- Murphy, L.R.; Matubayasi, N.; Payne, V.A.; Levy, R.M. Protein Hydration and Unfolding—Insights from Experimental Partial Specific Volumes and Unfolded Protein Models. Fold. Des. 1998, 3, 105–118. [Google Scholar] [PubMed] [Green Version]
- Chaikin, P.M.; Donev, A.; Man, W.; Stillinger, F.H.; Torquato, S. Some Observations on the Random Packing of Hard Ellipsoids. Ind. Eng. Chem. Res. 2006, 45, 6960–6965. [Google Scholar] [CrossRef]
- Šegatin, N.; Klofutar, C. Thermodynamics of the Solubility of Water in 1-Hexanol, 1-Octanol, 1-Decanol, and Cyclohexanol. Mon. Chem. 2003, 135, 241–248. [Google Scholar] [CrossRef]
- Carnahan, N.F.; Starling, K.E. Equation of State for Nonattracting Rigid Spheres. J. Chem. Phys. 1969, 51, 635–636. [Google Scholar] [CrossRef]
- Lüscher-mattli, M.; Rüegg, M. Thermodynamic Functions of Biopolymer Hydration. I. Their Determination by Vapor Pressure Studies, Discussed in an Analysis of the Primary Hydration Process. Biopolymers 1982, 21, 403–418. [Google Scholar] [CrossRef]
- De la Torre, J.G.; Huertas, M.L.; Carrasco, B. Calculation of Hydrodynamic Properties of Globular Proteins from Their Atomic-Level Structure. Biophys. J. 2000, 78, 719–730. [Google Scholar] [CrossRef] [Green Version]
- Okuzono, T.; Ozawa, K.; Doi, M. Simple Model of Skin Formation Caused by Solvent Evaporation in Polymer Solutions. Phys. Rev. Lett. 2006, 97, 136103. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pham, V.N.; Radajewski, D.; Rodríguez-Ruiz, I.; Teychene, S. Microfluidics: A Novel Approach for Dehydration Protein Droplets. Biosensors 2021, 11, 460. https://doi.org/10.3390/bios11110460
Pham VN, Radajewski D, Rodríguez-Ruiz I, Teychene S. Microfluidics: A Novel Approach for Dehydration Protein Droplets. Biosensors. 2021; 11(11):460. https://doi.org/10.3390/bios11110460
Chicago/Turabian StylePham, Van Nhat, Dimitri Radajewski, Isaac Rodríguez-Ruiz, and Sebastien Teychene. 2021. "Microfluidics: A Novel Approach for Dehydration Protein Droplets" Biosensors 11, no. 11: 460. https://doi.org/10.3390/bios11110460
APA StylePham, V. N., Radajewski, D., Rodríguez-Ruiz, I., & Teychene, S. (2021). Microfluidics: A Novel Approach for Dehydration Protein Droplets. Biosensors, 11(11), 460. https://doi.org/10.3390/bios11110460