Development of Fluorescence In Situ Hybridization as a Rapid, Accurate Method for Detecting Coliforms in Water Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Probe Design
2.3. Culture of Coliform Bacteria and Pretreatment of Samples
2.4. FISH Conditions
2.5. Epifluorescence Microscopy
2.6. Detection of Coliform Bacteria in Simulated Water and Domestic Wastewater Samples
3. Results
3.1. Establishment of the Optimal Fixation Conditions for Detecting Four Types of Coliform Bacteria Simultaneously
3.2. Identification of the Optimal Hybridization Temperature and Time for Detecting Four Types of Coliform Bacteria Simultaneously
3.3. Comparison of FISH Detection with Traditional Coliform Detection Methods for Coliforms Detection in Simulated Water and Domestic Wastewater Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Makuwa, S.; Tlou, M.; Fosso-Kankeu, E.; Green, E. Evaluation of fecal coliform prevalence and physicochemical indicators in the effluent from a wastewater treatment plant in the north-west province, South Africa. Int. J. Environ. Res. Public Health 2020, 17, 6381. [Google Scholar] [CrossRef] [PubMed]
- McFeters, G.; Kippin, J.; LeChevallier, M. Injured coliforms in drinking water. Appl. Environ. Microbiol. 1986, 51, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- APHA—American Public Health Association; AWWA—American Water Works Association; AEF. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association (APHA): Washington, DC, USA, 1998. [Google Scholar]
- Burlingame, G.; McElhaney, J.; Bennett, M.; Pipes, W. Bacterial interference with coliform colony sheen production on membrane filters. Appl. Environ. Microbiol. 1984, 47, 56–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rice, E.; Allen, M.; Edberg, S. Efficacy of β-D-glucuronidase assay for identification of Escherichia coli by the defined-substrate technology. Appl. Environ. Microbiol. 1990, 56, 1203–1205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McFeters, G.A.; Pyle, B.H.; Gillis, S.J.; Acomb, C.J.; Ferraza, D. Chlorine injury and the comparative performance of Colisure, Colilert and Coliquick for the enumeration of coliform bacteria and E. coli in drinking water. Water Sci. Technol. 1993, 27, 261–265. [Google Scholar] [CrossRef]
- Clark, J.A.; El-Shaarawi, A.H. Evaluation of commercial presence-absence test kits for detection of total coliforms, Escherichia coli, and other indicator bacteria. Appl. Environ. Microbiol. 1993, 59, 380–388. [Google Scholar] [CrossRef] [Green Version]
- Colquhuon, K.O.; Timms, S.; Fricker, C.R. Detection of Escherichia coli in potable water using direct impedance technology. J. Appl. Bacteriol. 1995, 79, 635–639. [Google Scholar] [CrossRef]
- Carvalho, F.; George, J.; Sheikh, H.M.A.; Selvin, R. Advances in screening, detection and enumeration of Escherichia coli using nanotechnology-based methods: A review. J. Biomed. Nanotechnol. 2018, 14, 829–846. [Google Scholar] [CrossRef]
- Rodriguez-Mateos, P.; Azevedo, N.F.; Almeida, C.; Pamme, N. FISH and chips: A review of microfluidic platforms for FISH analysis. Med. Microbiol. Immunol. 2020, 209, 373–391. [Google Scholar] [CrossRef] [Green Version]
- Frickmann, H.; Zautner, A.E.; Moter, A.; Kikhney, J.; Hagen, R.M.; Stender, H.; Poppert, S. Fluorescence in situ hybridization (FISH) in the microbiological diagnostic routine laboratory: A review. Crit. Rev. Microbiol. 2017, 43, 263–293. [Google Scholar] [CrossRef]
- Packard, M.M.; Shusteff, M.; Alocilja, E.C. Microfluidic-based amplification-free bacterial DNA detection by dielectrophoretic concentration and fluorescent resonance energy transfer assisted in situ hybridization (FRET-ISH). Biosensors 2012, 2, 405–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isfahani, B.N.; Fazeli, H.; Babaie, Z.; Poursina, F.; Moghim, S.; Rouzbahani, M. Evaluation of polymerase chain reaction for detecting coliform bacteria in drinking water sources. Adv. Biomed. Res. 2017, 16, 130. [Google Scholar]
- Zhang, Y.; Hong, P.Y.; LeChevallier, M.W.; Liu, W.T. Phenotypic and phylogenetic identification of coliform bacteria obtained using 12 coliform methods approved by the U.S. Environmental Protection Agency. Appl. Environ. Microbiol. 2015, 81, 6012–6023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, J.T.; Cheng, C.; Huang, H.; Tsao, C.; Chung, Y.C. A rapid method for the detection of representative coliforms in water samples: Polymerase chain reaction-enzyme-linked immunosorbent assay (PCR-ELISA). J. Ind. Microbiol. Biotechnol. 2010, 37, 237–244. [Google Scholar] [CrossRef]
- Batani, G.; Bayer, K.; Böge, J.; Hentschel, U.; Thomas, T. Fluorescence in situ hybridization (FISH) and cell sorting of living bacteria. Sci. Rep. 2019, 9, 18618. [Google Scholar] [CrossRef] [Green Version]
- Wagner, M.; Haider, S. New trends in fluorescence in situ hybridization for identification and functional analyses of microbes. Curr. Opin. Biotechnol. 2012, 23, 96–102. [Google Scholar] [CrossRef]
- Rompré, A.; Servais, P.; Baudart, J.; de-Roubin, M.; Laurent, P. Detection and enumeration of coliforms in drinking water: Current methods and emerging approaches. J. Microbiol. Methods 2002, 49, 31–54. [Google Scholar] [CrossRef]
- Garcia-Armisen, T.; Servais, P. Enumeration of viable E. coli in rivers and wastewaters by fluorescent in situ hybridization. J. Microbiol. Methods 2004, 58, 269–279. [Google Scholar] [CrossRef]
- Baudart, J.; Lebaron, P. Rapid detection of Escherichia coli in waters using fluorescent in situ hybridization, direct viable counting and solid phase cytometry. J. Appl. Microbiol. 2010, 109, 1253–1264. [Google Scholar] [CrossRef]
- Barrero-Canosa, J.; Moraru, C.; Zeugner, L.; Fuchs, B.; Amann, R. Direct-gene FISH: A simplified protocol for the simultaneous detection and quantification of genes and rRNA in microorganisms. Environ. Microbiol. 2017, 19, 70–82. [Google Scholar] [CrossRef]
- Rocha, R.; Almeida, C.; Azevedo, N.F. Influence of the fixation/permeabilization step on peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) for the detection of bacteria. PLoS ONE 2018, 13, e0196522. [Google Scholar]
- Huang, X.X.; Urosevic, N.; Inglis, T.J.J. Accelerated bacterial detection in blood culture by enhanced acoustic flow cytometry (AFC) following peptide nucleic acid fluorescence in situ hybridization (PNA-FISH). PLoS ONE 2019, 14, e0201332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; McSwiggen, D.; Ünal, E.C. Single Molecule Fluorescence in situ Hybridization (smFISH) Analysis in Budding Yeast Vegetative Growth and Meiosis. J. Vis. Exp. 2018, 25, 57774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moffitt, J.R.; Pandey, S.; Boettiger, A.N.; Wang, S.; Zhuang, X. Spatial organization shapes the turnover of a bacterial transcriptome. eLife 2016, 5, e13065. [Google Scholar] [CrossRef] [PubMed]
- Haffar, M.; Gilbride, K. The utility and application of real-time PCR and FISH in the detection of single-copy gene targets in Escherichia coli O157:H7 and Salmonella typhimurium. Can. J. Microbiol. 2010, 56, 254–262. [Google Scholar] [CrossRef]
- Madar, M.; Slizova, M.; Czerwinski, J.; Hrckova, G.; Mudronova, D.; Gancarcikova, S.; Popper, M.; Pistl, J.; Soltys, J.; Nemcova, R. Histo-FISH protocol to detect bacterial compositions and biofilms formation in vivo. Benef. Microbes 2015, 6, 899–907. [Google Scholar] [CrossRef]
- Wu, Q.; Li, Y.; Wang, M.; Pan, X.P.; Tang, Y.F. Fluorescence in situ hybridization rapidly detects three different pathogenic bacteria in urinary tract infection samples. J. Microbiol. Methods 2010, 83, 175–178. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Y.; Xiao, F.; Guo, W.; Zhang, Y.; Wang, A.; Liu, Y. A comparison of in-house real-time LAMP assays with a commercial assay for the detection of pathogenic bacteria. Molecules 2015, 20, 9487–9495. [Google Scholar] [CrossRef] [Green Version]
- Shih, Y.E.; Chen, C.H.; Lin, N.H.; Tzen, J.T.C. Development of indirect competitive ELISA for lithospermic acid B of Salvia miltiorrhiza with its specific antibodies generated via artificial oil bodies. Molecules 2019, 24, 1952. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, B.; Wallner, G.; Beisker, W.; Schwippl, I.; Ludwig, W.; Amann, R. Flow cytometric analysis of the in situ accessibility of Escherichia coli 16S rRNA for fluorescently labeled oligonucleotide probes. Appl. Environ. Microbiol. 1998, 64, 4973–4982. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Gin, K.; Lim, T. High-temperature fluorescent in situ hybridization for detecting Escherichia coli in seawater samples, using rRNA-targeted oligonucleotide probes and flow cytometry. Appl. Environ. Microbiol. 2005, 71, 8157–8164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGregor, D.P.; Fortser, S.; Steven, J.; Adair, J.; Leary, S.E.C.; Leslie, D.L.; Harris, W.J.; Titball, R.W. Simultaneous detection of microorganisms in soil suspension based on PCR amplification of bacterial 16S rRNA fragments. BioTechniques 1996, 21, 463–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jansen, G.J.; Mooibroek, M.; Idema, J.; Harmsen, H.J.M.; Welling, G.W.; Degener, J.E. Rapid identification of bacteria in blood cultures by using fluorescently labeled oligonucleotide probes. Appl. Environ. Microbiol. 2000, 38, 814–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Regnault, B.; Martin-Delautre, S.; Lejay-Collin, M.; Lefe’vre, M.; Grimont, P.A.D. Oligonucleotide probe for the visualization of Escherichia coli/Escherichia fergusonii cells by in situ hybridization: Specificity and potential application. Res. Microbiol. 2000, 151, 521–533. [Google Scholar] [CrossRef]
- Amann, R.; Krumholz, L.; Stahl, D. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Bacteriol. 1990, 172, 762–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuchs, B.; Syutsubo, K.; Ludwig, W.; Amann, R. In situ accessibility of Escherichia coli 23S rRNA to fluorescently labeled oligonucleotide probes. Appl. Environ. Microbiol. 2001, 67, 961–968. [Google Scholar] [CrossRef] [Green Version]
- Winkler, R.; Perner, B.; Rapp, A.; Durm, M.; Cremer, C.; Greulich, K.O.; Hausmann, M. Labelling quality and chromosome morphology after low temperature FISH analyzed by scanning far-field and near-field optical microscopy. J. Microsc. 2003, 209, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Buno, I.; Moreno-Lopez, E.; Jimenez-Mahillo, M.; Balsalobre, P.; Serrano, D.; Carrion, R.; Gomez-Pineda, A.; Diez-Martin, J. Post-BMT chimerism quantification by FISH on routine smears: Easier, faster and more sensitive than STR-PCR. Blood 2002, 100, 5271. [Google Scholar]
- Ootsubo, M.; Shimizu, T.; Tanaka, R.; Sawabe, T.; Tajima, K.; Ezura, Y. Seven-hour fluorescence in situ hybridization technique for enumeration of Enterobacteriaceae in food and environmental water sample. J. Appl. Microbiol. 2003, 95, 1182–1190. [Google Scholar] [CrossRef]
- Hügler, M.; Böckle, K.; Eberhagen, I.; Thelen, K.; Beimfohr, C.; Hambsch, B. Development and validation of a FISH-based method for the detection and quantification of E. coli and coliform bacteria in water samples. Water Sci. Technol. 2011, 64, 1435–1442. [Google Scholar] [CrossRef]
Simulated Water Samples | ||||||
---|---|---|---|---|---|---|
Detection Time | E. coli | K. pneumoniae | E. aerogenes | C. freundii | Total Cell Numbers (CFU/mL) | |
Plate Counting * | 24 h | 2.80 ± 0.31 × 107 | 2.20 ± 0.30 × 107 | 2.60 ± 0.33 × 107 | 2.40 ± 0.32 × 107 | 1.00 ± 0.21 × 108 |
Multiple-Tube Fermentation (MTF) | 4 d | − | − | − | − | 8.00 ± 0.43 × 108 |
Membrane Filter (MF) | 24 h | − | − | − | − | 2.60 ± 0.23 × 108 |
FISH | 4 h | 4.30 ± 0.13 × 107 | 4.10 ± 0.16 × 107 | 3.20 ± 0.25 × 107 | 2.80 ± 0.21 × 107 | 1.44 ± 0.14 × 108 |
Domestic Wastewater Samples | ||||||
Detection Time | E. coli | K. pneumoniae | E. aerogenes | C. freundii | Total Cell Numbers (CFU/mL) | |
Coliform Detection Kit (Merck) | 24 h | − | − | − | − | 2.60 ± 0.21 × 107 |
Multiple-Tube Fermentation (MTF) | 4 d | − | − | − | − | 8.30 ± 0.38 × 106 |
Membrane Filter (MF) | 24 h | − | − | − | − | 4.80 ± 0.33 × 106 |
FISH | 4 h | 3.80 ± 0.22 × 106 | − | 1.10 ± 0.15 × 106 | − | 4.90 ± 0.36 × 106 |
Detection Method | Detection Time | Operating Procedures | Distinguish the four Coliform Groups | Analysis Cost | Accuracy |
---|---|---|---|---|---|
Plate Counting | Medium | Simple | Yes | Cheap | - |
Coliform Detection Kit | Medium | Simple | No | Medium | Medium |
Multiple-Tube Fermentation | Long | Not Complicated | No | Cheap | Low |
Membrane Filter | Medium | Not Complicated | No | Cheap | Medium |
FISH | Short (4 h) | Complicated | Yes | Medium | High |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuo, J.-T.; Chang, L.-L.; Yen, C.-Y.; Tsai, T.-H.; Chang, Y.-C.; Huang, Y.-T.; Chung, Y.-C. Development of Fluorescence In Situ Hybridization as a Rapid, Accurate Method for Detecting Coliforms in Water Samples. Biosensors 2021, 11, 8. https://doi.org/10.3390/bios11010008
Kuo J-T, Chang L-L, Yen C-Y, Tsai T-H, Chang Y-C, Huang Y-T, Chung Y-C. Development of Fluorescence In Situ Hybridization as a Rapid, Accurate Method for Detecting Coliforms in Water Samples. Biosensors. 2021; 11(1):8. https://doi.org/10.3390/bios11010008
Chicago/Turabian StyleKuo, Jong-Tar, Li-Li Chang, Chia-Yuan Yen, Teh-Hua Tsai, Yu-Chi Chang, Yu-Tang Huang, and Ying-Chien Chung. 2021. "Development of Fluorescence In Situ Hybridization as a Rapid, Accurate Method for Detecting Coliforms in Water Samples" Biosensors 11, no. 1: 8. https://doi.org/10.3390/bios11010008
APA StyleKuo, J. -T., Chang, L. -L., Yen, C. -Y., Tsai, T. -H., Chang, Y. -C., Huang, Y. -T., & Chung, Y. -C. (2021). Development of Fluorescence In Situ Hybridization as a Rapid, Accurate Method for Detecting Coliforms in Water Samples. Biosensors, 11(1), 8. https://doi.org/10.3390/bios11010008