Low-Fouling Substrates for Plasmonic Sensing of Circulating Biomarkers in Biological Fluids
Abstract
:1. Introduction
2. Antifouling Surfaces
2.1. SAMs and Hydrophilic PEG/OEG Polymers
2.2. Zwitterionic Compounds
2.3. Polysaccharide-Based Materials
2.4. Other Antifouling Materials
3. Plasmonics Applications
3.1. Blood
3.1.1. Nucleic Acids
MicroRNA
Circulating Tumor DNA
Circulating Tumor Cells
3.1.2. Exosomes
3.1.3. Cancer-Related Proteins
Prostate-Specific Antigen
Carcinoembryonic Antigen
Other Cancer-Related Proteins
3.1.4. Alzheimer’s Disease Biomarkers
3.1.5. Inflammation Biomarkers
3.1.6. Biomarkers for Infectious Diseases
3.2. Saliva
3.3. Urine
3.4. Other Biological Fluids
3.4.1. Cerebrospinal Fluid
3.4.2. Synovial
3.4.3. Tears
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, J.; Jalali, M.; Mahshid, S.; Wachsmann-Hogiu, S. Are plasmonic optical biosensors ready for use in point-of-need applications? Analyst 2020, 145, 364–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The BEST Resource: Harmonizing Biomarker Terminology. Available online: https://www.fda.gov/media/99221/download (accessed on 1 April 2020).
- Cappelletti, V.; Appierto, V.; Tiberio, P.; Fina, E.; Callari, M.; Daidone, M.G. Circulating biomarkers for prediction of treatment response. J. Natl. Cancer Inst. Monogr. 2015, 2015, 60–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veenstra, T. The search for biomarkers in biofluids. In Proteomic Applications in Cancer Detection and Discovery; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; pp. 171–194. ISBN 978-1-118-63449-3. [Google Scholar]
- Rapisuwon, S.; Vietsch, E.E.; Wellstein, A. Circulating biomarkers to monitor cancer progression and treatment. Comput. Struct. Biotechnol. J. 2016, 14, 211–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atif, H.; Hicks, S.D. A review of microRNA biomarkers in traumatic brain injury. J. Exp. Neurosci. 2019, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pallares, R.M.; Thanh, N.T.K.; Su, X. Sensing of circulating cancer biomarkers with metal nanoparticles. Nanoscale 2019, 11, 22152–22171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steckl, A.J.; Ray, P. Stress biomarkers in biological fluids and their point-of-use detection. ACS Sens. 2018, 3, 2025–2044. [Google Scholar] [CrossRef] [PubMed]
- Masson, J.-F. Surface plasmon resonance clinical biosensors for medical diagnostics. ACS Sens. 2017, 2, 16–30. [Google Scholar] [CrossRef]
- Ferhan, A.R.; Jackman, J.A.; Park, J.H.; Cho, N.-J.; Kim, D.-H. Nanoplasmonic sensors for detecting circulating cancer biomarkers. Adv. Drug Deliv. Rev. 2018, 125, 48–77. [Google Scholar] [CrossRef]
- Bellassai, N.; D’Agata, R.; Jungbluth, V.; Spoto, G. Surface plasmon resonance for biomarker detection: Advances in non-invasive cancer diagnosis. Front. Chem. 2019, 7, 570. [Google Scholar] [CrossRef] [Green Version]
- Cui, F.; Zhou, Z.; Zhou, H.S. Review—Measurement and analysis of cancer biomarkers based on electrochemical biosensors. J. Electrochem. Soc. 2020, 167, 037525. [Google Scholar] [CrossRef]
- Pirzada, M.; Altintas, Z. Recent progress in optical sensors for biomedical diagnostics. Micromachines 2020, 11, 356. [Google Scholar] [CrossRef] [Green Version]
- Homola, J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 2008, 108, 462–493. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Liu, K.; Li, Z.; Wang, P. Point of care testing for infectious diseases. Clin. Chim. Acta 2019, 493, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Sun, Y.; Cao, Y.; Kang, S.H. Plasmonic nanostructure-based bioimaging and detection techniques at the single-cell level. TrAC Trends Anal. Chem. 2019, 117, 58–68. [Google Scholar] [CrossRef]
- Strobbia, P.; Languirand, E.; Cullum, B.M. Recent advances in plasmonic nanostructures for sensing: A review. Opt. Eng. 2015, 54, 100902. [Google Scholar] [CrossRef] [Green Version]
- Oliverio, M.; Perotto, S.; Messina, G.C.; Lovato, L.; De Angelis, F. Chemical functionalization of plasmonic surface biosensors: A tutorial review on issues, strategies, and costs. ACS Appl. Mater. Interfaces 2017, 9, 29394–29411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ewa, G.; Lukaszewski, Z. Recent progress in surface plasmon resonance biosensors (2016 to Mid-2018). Biosensors 2018, 8, 132. [Google Scholar]
- Valprapuram, I.; Candeloro, P.; Coluccio, M.L.; Parrotta, E.I.; Giugni, A.; Das, G.; Cuda, G.; Di Fabrizio, E.; Perozziello, G. Waveguiding and SERS simplified Raman spectroscopy on biological samples. Biosensors 2019, 9, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Couture, M.; Zhao, S.S.; Masson, J.-F. Modern surface plasmon resonance for bioanalytics and biophysics. Phys. Chem. Chem. Phys. 2013, 15, 11190. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Cushing, S.K.; Wu, N. Plasmon-enhanced optical sensors: A review. Analyst 2015, 140, 386–406. [Google Scholar] [CrossRef] [Green Version]
- Gauglitz, G. Critical assessment of relevant methods in the field of biosensors with direct optical detection based on fibers and waveguides using plasmonic, resonance, and interference effects. Anal. Bioanal. Chem. 2020, 412, 3317–3349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masson, J.-F. Portable and field-deployed surface plasmon resonance and plasmonic sensors. Analyst 2020, 145, 3776–3800. [Google Scholar] [CrossRef] [PubMed]
- Bantz, K.C.; Meyer, A.F.; Wittenberg, N.J.; Im, H.; Kurtuluş, Ö.; Lee, S.H.; Lindquist, N.C.; Oh, S.-H.; Haynes, C.L. Recent progress in SERS biosensing. Phys. Chem. Chem. Phys. 2011, 13, 11551–11567. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, J.; Stojanovic, I.; Schasfoort, R.B.M.; Saris, D.B.F.; Karperien, M. Nanoparticle enhancement cascade for sensitive multiplex measurements of biomarkers in complex fluids with surface plasmon resonance imaging. Anal. Chem. 2018, 90, 6563–6571. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Lee, S.H.; Ahn, Y.J.; Lee, S.H.; Ryu, J.; Choi, S.K.; Choi, S. A label-free cellulose SERS biosensor chip with improvement of nanoparticle-enhanced LSPR effects for early diagnosis of subarachnoid hemorrhage-induced complications. Biosens. Bioelectron. 2018, 111, 59–65. [Google Scholar] [CrossRef]
- Premaratne, G.; Dharmaratne, A.C.; Al Mubarak, Z.H.; Mohammadparast, F.; Andiappan, M.; Krishnan, S. Multiplexed surface plasmon imaging of serum biomolecules: Fe3O4@Au Core/shell nanoparticles with plasmonic simulation insights. Sens. Actuators B Chem. 2019, 299, 126956. [Google Scholar] [CrossRef]
- Gordon, R.; Sinton, D.; Kavanagh, K.L.; Brolo, A.G. A new generation of sensors based on extraordinary optical transmission. Acc. Chem. Res. 2008, 41, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Escobedo, C. On-chip nanohole array based sensing: A review. Lab Chip 2013, 13, 2445. [Google Scholar] [CrossRef] [PubMed]
- Dahlin, A. Sensing applications based on plasmonic nanopores: The hole story. Analyst 2015, 140, 4748–4759. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Cruz, J.; Nair, S.; Manjarrez-Hernandez, A.; Gavilanes-Parra, S.; Ascanio, G.; Escobedo, C. Cost-effective flow-through nanohole array-based biosensing platform for the label-free detection of uropathogenic E. coli in real time. Biosens. Bioelectron. 2018, 106, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Escobedo, C.; Chou, Y.-W.; Rahman, M.; Duan, X.; Gordon, R.; Sinton, D.; Brolo, A.G.; Ferreira, J. Quantification of ovarian cancer markers with integrated microfluidic concentration gradient and imaging nanohole surface plasmon resonance. Analyst 2013, 138, 1450. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Liu, X.; Shi, S.; Huangb, R.; Su, R.; Qi, W.; He, Z. Design and mechanisms of antifouling materials for surface plasmon resonance sensors. Acta Biomater. 2016, 40, 100–118. [Google Scholar] [CrossRef] [PubMed]
- Xing, C.-M.; Meng, F.-N.; Quan, M.; Ding, K.; Dang, Y.; Gong, Y.-K. Quantitative fabrication, performance optimization and comparison of PEG and zwitterionic polymer antifouling coatings. Acta Biomater. 2017, 59, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Adibnia, V.; Shan, C.; Huangb, R.; Qi, W.; He, Z.; Xie, G.; Olszewski, M.; De Crescenzo, G.; Matyjaszewski, K.; et al. Synergy between Zwitterionic polymers and hyaluronic acid enhances antifouling performance. Langmuir 2019, 35, 15535–15542. [Google Scholar] [CrossRef]
- Wang, Y.-S.; Yau, S.; Chau, L.-K.; Mohamed, A.; Huang, C.-J. Functional biointerfaces based on mixed zwitterionic self-assembled monolayers for biosensing applications. Langmuir 2018, 35, 1652–1661. [Google Scholar] [CrossRef] [PubMed]
- Mauriz, E.; Dey, P.; Lechuga, L.M. Advances in nanoplasmonic biosensors for clinical applications. Analyst 2019, 144, 7105–7129. [Google Scholar] [CrossRef] [PubMed]
- Shandilya, R.; Bhargava, A.; Bunkar, N.; Tiwari, R.; Goryacheva, I.Y.; Mishra, P.K. Nanobiosensors: Point-of-care approaches for cancer diagnostics. Biosens. Bioelectron. 2019, 130, 147–165. [Google Scholar] [CrossRef] [PubMed]
- Nie, W.; Wang, Q.; Zou, L.; Zheng, Y.; Liu, X.; Yang, X.; Wang, K. Low-fouling surface plasmon resonance sensor for highly sensitive detection of microRNA in a complex matrix based on the DNA tetrahedron. Anal. Chem. 2018, 90, 12584–12591. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.-H.; Dillen, A.; Saeys, W.; Lammertyn, J.; Spasic, D. Advancements in SPR biosensing technology: An overview of recent trends in smart layers design, multiplexing concepts, continuous monitoring and in vivo sensing. Anal. Chim. Acta 2020, 1104, 10–27. [Google Scholar] [CrossRef]
- Chen, S.; Li, L.; Zhao, C.; Zheng, J. Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer 2010, 51, 5283–5293. [Google Scholar] [CrossRef] [Green Version]
- Akdogan, Y.; Wei, W.; Huang, K.-Y.; Kageyama, Y.; Danner, E.W.; Miller, D.R.; Rodriguez, N.R.M.; Waite, J.H.; Han, S. Intrinsic surface-drying properties of bioadhesive proteins. Angew. Chem. Int. Ed. 2014, 53, 11253–11256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowe, S.; Connal, L.A.; O’Brien-Simpson, N.M. Antibiofouling polymer interfaces: Poly(ethylene glycol) and other promising candidates. Polym. Chem. 2015, 6, 198–212. [Google Scholar] [CrossRef] [Green Version]
- Pop-Georgievski, O.; Verreault, D.; Diesner, M.-O.; Proks, V.; Heissler, S.; Rypáček, F.; Koelsch, P. Nonfouling Poly(ethylene oxide) layers end-tethered to Polydopamine. Langmuir 2012, 28, 14273–14283. [Google Scholar] [CrossRef] [Green Version]
- Tai, F.-I.; Sterner, O.; Andersson, O.; Ekblad, T.; Ederth, T. pH-control of the protein resistance of thin hydrogel gradient films. Soft Matter 2014, 10, 5955–5964. [Google Scholar] [CrossRef] [Green Version]
- Xia, Y.; Adibnia, V.; Qi, W.; Murschel, F.; Faivre, J.; Xie, G.; Olszewski, M.; De Crescenzo, G.; Qi, W.; He, Z.; et al. Biomimetic bottlebrush polymer coatings for fabrication of ultralow fouling surfaces. Angew. Chem. Int. Ed. 2018, 58, 1308–1314. [Google Scholar] [CrossRef] [PubMed]
- Shao, Q.; Jiang, S. Molecular understanding and design of Zwitterionic materials. Adv. Mater. 2014, 27, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Knight, A.S.; Zhou, E.Y.; Francis, M.B.; Zuckermann, R.N. Sequence programmable Peptoid polymers for diverse materials applications. Adv. Mater. 2015, 27, 5665–5691. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Xue, H.; Li, W.; Zhang, J.; Jiang, S. Pursuing “zero” protein adsorption of Poly(carboxybetaine) from undiluted blood serum and plasma. Langmuir 2009, 25, 11911–11916. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Zhang, B.; Skoumal, M.J.; Ramunno, B.; Li, X.; Wesdemiotis, C.; Liu, L.; Jia, L. Antifouling Poly(β-peptoid)s. Biomacromolecules 2011, 12, 2573–2582. [Google Scholar] [CrossRef] [PubMed]
- Chou, Y.-N.; Sun, F.; Hung, H.-C.; Jain, P.; Sinclair, A.; Zhang, X.; Bai, T.; Chang, Y.; Wen, T.-C.; Yu, Q.; et al. Ultra-low fouling and high antibody loading zwitterionic hydrogel coatings for sensing and detection in complex media. Acta Biomater. 2016, 40, 31–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, C.; Li, X.; Li, L.; Cheng, G.; Gong, X.; Zheng, J. Dual functionality of antimicrobial and antifouling of Poly(N-hydroxyethylacrylamide)/salicylate hydrogels. Langmuir 2013, 29, 1517–1524. [Google Scholar] [CrossRef]
- Drescher, D.G.; Selvakumar, D.; Drescher, M.J. Analysis of protein interactions by surface plasmon resonance. In Advances in Protein Chemistry and Structural Biology; Elsevier: Amsterdam, The Netherlands, 2018; Volume 110, pp. 1–30. [Google Scholar]
- Liu, X.; Huangb, R.; Su, R.; Qi, W.; Wang, L.; He, Z. Grafting hyaluronic acid onto gold surface to achieve low protein fouling in surface plasmon resonance biosensors. ACS Appl. Mater. Interfaces 2014, 6, 13034–13042. [Google Scholar] [CrossRef] [PubMed]
- Toma, M.; Tawa, K. Polydopamine thin films as protein linker layer for sensitive detection of Interleukin-6 by surface plasmon enhanced fluorescence spectroscopy. ACS Appl. Mater. Interfaces 2016, 8, 22032–22038. [Google Scholar] [CrossRef] [PubMed]
- Das, J.; Kelley, S.O.; Das, J. High-performance nucleic acid sensors for liquid biopsy applications. Angew. Chem. Int. Ed. 2020, 59, 2554–2564. [Google Scholar] [CrossRef] [PubMed]
- Vaisocherová, H.; Šípová-Jungová, H.; Víšová, I.; Bocková, M.; Špringer, T.; Ermini, M.L.; Song, X.; Krejcik, Z.; Chrastinová, L.; Pastva, O.; et al. Rapid and sensitive detection of multiple microRNAs in cell lysate by low-fouling surface plasmon resonance biosensor. Biosens. Bioelectron. 2015, 70, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Vaisocherová-Lísalová, H.; Brynda, E.; Houska, M.; Víšová, I.; Mrkvová, K.; Song, X.C.; Gedeonová, E.; Surman, F.; Riedel, T.; Pop-Georgievski, O.; et al. Ultralow-fouling behavior of Biorecognition coatings based on Carboxy-functional brushes of Zwitterionic homo- and copolymers in blood plasma: Functionalization Matters. Anal. Chem. 2017, 89, 3524–3531. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Xu, J.; Chen, Y. Surface plasmon resonance imaging detection of sub-Femtomolar microRNA. Anal. Chem. 2017, 89, 10071–10077. [Google Scholar] [CrossRef]
- Sun, Y.; Li, T. Composition-tunable hollow Au/Ag SERS Nanoprobes coupled with target-catalyzed hairpin assembly for triple-amplification detection of miRNA. Anal. Chem. 2018, 90, 11614–11621. [Google Scholar] [CrossRef] [PubMed]
- Tadimety, A.; Zhang, Y.; Kready, K.M.; Palinski, T.J.; Tsongalis, G.J.; Zhang, J.X.J. Design of peptide nucleic acid probes on plasmonic gold nanorods for detection of circulating tumor DNA point mutations. Biosens. Bioelectron. 2019, 130, 236–244. [Google Scholar] [CrossRef]
- Loyez, M.; Hassan, E.M.; Lobry, M.; Liu, F.; Caucheteur, C.; Wattiez, R.; DeRosa, M.C.; Willmore, W.G.; Albert, J. Rapid detection of circulating breast cancer cells using a Multiresonant optical fiber Aptasensor with plasmonic amplification. ACS Sens. 2020, 5, 454–463. [Google Scholar] [CrossRef]
- Li, H.; Jing, C.; Wu, J.; Ni, J.; Sha, H.; Xu, X.; Du, Y.; Lou, R.; Dong, S.; Feng, J.; et al. Circulating tumor DNA detection: A potential tool for colorectal cancer management. Oncol. Lett. 2018, 17, 1409–1416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendoza, A.; Torrisi, D.M.; Sell, S.; Cady, N.C.; Lawrence, D.A. Grating coupled SPR microarray analysis of proteins and cells in blood from mice with breast cancer. Analyst 2016, 141, 704–712. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-S.; Zhao, X.-P.; Liu, F.-F.; Younis, M.R.; Xia, X.-H.; Wang, C. Direct plasmon-enhanced electrochemistry for enabling ultrasensitive and label-free detection of circulating tumor cells in blood. Anal. Chem. 2019, 91, 4413–4420. [Google Scholar] [CrossRef] [PubMed]
- Lim, W.; Kim, H.-S. Exosomes as therapeutic vehicles for cancer. Tissue Eng. Regen. Med. 2019, 16, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Duan, X.; Zhao, M.; Wei, X.; Wu, J.; Chen, W.; Liu, P.; Cheng, W.; Cheng, Q.; Ding, S.-J.; et al. High-sensitive and multiplex biosensing assay of NSCLC-derived exosomes via different recognition sites based on SPRi array. Biosens. Bioelectron. 2020, 154, 112066. [Google Scholar] [CrossRef]
- Picciolini, S.; Gualerzi, A.; Vanna, R.; Sguassero, A.; Gramatica, F.; Bedoni, M.; Masserini, M.; Morasso, C. Detection and characterization of different brain-derived subpopulations of plasma Exosomes by surface plasmon resonance imaging. Anal. Chem. 2018, 90, 8873–8880. [Google Scholar] [CrossRef] [PubMed]
- Najeeb, M.A.; Ahmad, Z.; Shakoor, R.; Mohamed, A.; Kahraman, R. A novel classification of prostate specific antigen (PSA) biosensors based on transducing elements. Talanta 2017, 168, 52–61. [Google Scholar] [CrossRef]
- Kim, H.-M.; Park, J.-H.; Jeong, D.H.; Lee, H.-Y.; Lee, S.-K. Real-time detection of prostate-specific antigens using a highly reliable fiber-optic localized surface plasmon resonance sensor combined with micro fluidic channel. Sensors Actuators B Chem. 2018, 273, 891–898. [Google Scholar] [CrossRef]
- Rath, D.; Kumar, S.; Panda, S. pH-based detection of target analytes in diluted serum samples using surface plasmon resonance immunosensor. Appl. Biochem. Biotechnol. 2018, 187, 1272–1284. [Google Scholar] [CrossRef]
- Ermini, M.L.; Song, X.C.; Špringer, T.; Homola, J. Peptide functionalization of gold nanoparticles for the detection of Carcinoembryonic antigen in blood plasma via SPR-based biosensor. Front. Chem. 2019, 7, 40. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Li, N.; Wang, Y.; Liu, Y.; Xu, Y.; Wei, S.; Wu, J.; Jia, G.; Fang, X.; Chen, F.; et al. A 2D transition metal carbide MXene-based SPR biosensor for ultrasensitive carcinoembryonic antigen detection. Biosens. Bioelectron. 2019, 144, 111697. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Han, R.; Su, J.; Chen, H.; Li, D. Multi-marker diagnosis method for early Hepatocellular Carcinoma based on surface plasmon resonance. Clin. Chim. Acta 2020, 502, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Sun, H.; Gao, R.; Zhang, F.; Zhu, A.; Chen, L.; Wang, Y. Facile SERS-active chip (PS@Ag/SiO2/Ag) for the determination of HCC biomarker. Sens. Actuators B Chem. 2018, 272, 34–42. [Google Scholar] [CrossRef]
- Szymańska, B.; Lukaszewski, Z.; Hermanowicz-Szamatowicz, K.; Ewa, G. A biosensor for determination of the circulating biomarker CA125/MUC16 by surface plasmon resonance imaging. Talanta 2020, 206, 120187. [Google Scholar] [CrossRef] [PubMed]
- Chiu, N.-F.; Yang, H.-T. High-sensitivity detection of the lung cancer biomarker CYFRA21-1 in serum samples using a Carboxyl-MoS2 functional film for SPR-based immunosensors. Front. Bioeng. Biotechnol. 2020, 8, 234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, L.; Pagneux, Q.; Larroulet, I.; Serrano, A.Y.; Pesquera, A.; Zurutuza, A.; Mandler, D.; Boukherroub, R.; Szunerits, S. Label-free femtomolar cancer biomarker detection in human serum using graphene-coated surface plasmon resonance chips. Biosens. Bioelectron. 2017, 89, 606–611. [Google Scholar] [CrossRef] [PubMed]
- Shui, B.; Tao, D.; Florea, A.; Cheng, J.; Zhao, Q.; Gu, Y.; Li, W.; Jaffrezic-Renault, N.; Mei, Y.; Guo, Z.; et al. Biosensors for Alzheimer’s disease biomarker detection: A review. Biochimie 2018, 147, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zhao, Z.; Cheng, P.; He, Z.; Cheng, Z.; Peng, J.; Wang, H.; Wang, C.; Yang, Y.; Hu, Z.; et al. Antibody-mimetic peptoid nanosheet for label-free serum-based diagnosis of Alzheimer’s disease. Adv. Mater. 2017, 29, 1700057. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Wark, A.W.; Lee, H.J. Femtomolar detection of tau proteins in undiluted plasma using surface plasmon resonance. Anal. Chem. 2016, 88, 7793–7799. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Huang, N.-T.; Chung, M.-T.; Cornell, T.T.; Kurabayashi, K. Label-free cytokine micro- and nano-biosensing towards personalized medicine of systemic inflammatory disorders. Adv. Drug Deliv. Rev. 2015, 95, 90–103. [Google Scholar] [CrossRef] [Green Version]
- Faridi, A.; Yang, W.; Kelly, H.G.; Wang, C.; Faridi, P.; Purcell, A.W.; Davis, T.P.; Chen, P.; Kent, S.J.; Ke, P.C.; et al. Differential roles of plasma protein corona on immune cell association and cytokine secretion of Oligomeric and Fibrillar beta-amyloid. Biomacromolecules 2019, 20, 4208–4217. [Google Scholar] [CrossRef] [PubMed]
- Riedel, T.; Surman, F.; Hageneder, S.; Pop-Georgievski, O.; Noehammer, C.; Hofner, M.; Brynda, E.; Rodriguez-Emmenegger, C.; Dostálek, J. Hepatitis B plasmonic biosensor for the analysis of clinical serum samples. Biosens. Bioelectron. 2016, 85, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Sikarwar, B.; Singh, V.V.; Sharma, P.K.; Kumar, A.; Thavaselvam, D.; Boopathi, M.; Singh, B.; Jaiswal, Y.K. DNA-probe-target interaction based detection of Brucella melitensis by using surface plasmon resonance. Biosens. Bioelectron. 2017, 87, 964–969. [Google Scholar] [CrossRef]
- Campuzano, S.; Yáñez-Sedeño, P.; Pingarrón, J.M.; Campuzano, S. Electrochemical bioaffinity sensors for salivary biomarkers detection. TrAC Trends Anal. Chem. 2017, 86, 14–24. [Google Scholar] [CrossRef]
- Ilea, A.; Andrei, V.; Feurdean, C.N.; Băbțan, A.-M.; Petrescu, N.; Câmpian, R.-S.; Boșca, B.A.; Ciui, B.; Tertis, M.; Săndulescu, R.; et al. Saliva, a magic biofluid available for multilevel assessment and a mirror of general health—A systematic review. Biosensors 2019, 9, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skottrup, P.; López, R.; Ksiazek, M.; Højrup, P.; Baelum, V.; Potempa, J.; Kaczmarek, J.Z. An IgY-based immunoassay to evaluate the biomarker potential of the Tannerella forsythia virulence factor karilysin in human saliva. J. Immunol. Methods 2019, 469, 26–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minagawa, H.; Onodera, K.; Fujita, H.; Sakamoto, T.; Akitomi, J.; Kaneko, N.; Shiratori, I.; Kuwahara, M.; Horii, K.; Waga, I.; et al. Selection, characterization and application of artificial DNA Aptamer containing appended bases with sub-Nanomolar affinity for a salivary biomarker. Sci. Rep. 2017, 7, 42716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jo, S.; Lee, W.; Park, J.; Kim, W.; Kim, W.; Lee, G.; Lee, H.-J.; Hong, J.; Park, J. Localized surface plasmon resonance aptasensor for the highly sensitive direct detection of cortisol in human saliva. Sens. Actuators B Chem. 2020, 304, 127424. [Google Scholar] [CrossRef]
- Riedel, T.; Hageneder, S.; Surman, F.; Pop-Georgievski, O.; Noehammer, C.; Hofner, M.; Brynda, E.; Rodriguez-Emmenegger, C.; Dostálek, J. Plasmonic hepatitis B biosensor for the analysis of clinical saliva. Anal. Chem. 2017, 89, 2972–2977. [Google Scholar] [CrossRef] [PubMed]
- Mohseni, S.; Moghadam, T.T.; Dabirmanesh, B.; Jabbari, S.; Khajeh, K. Development of a label-free SPR sensor for detection of matrixmetalloproteinase-9 by antibody immobilization on carboxymethyldextran chip. Biosens. Bioelectron. 2016, 81, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Peungthum, P.; Sudprasert, K.; Amarit, R.; Somboonkaew, A.; Sutapun, B.; Vongsakulyanon, A.; Seedacoon, W.; Kitpoka, P.; Kunakorn, M.; Srikhirin, T.; et al. Surface plasmon resonance imaging for ABH antigen detection on red blood cells and in saliva: Secretor status-related ABO subgroup identification. Analyst 2017, 142, 1471–1481. [Google Scholar] [CrossRef] [PubMed]
- Nolen, B.M.; Lokshin, A. The advancement of biomarker-based diagnostic tools for ovarian, breast, and pancreatic cancer through the use of urine as an analytical Biofluid. Int. J. Biol. Markers 2011, 26, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Ji, W.; Chu, S.; Qian, S.; Wang, F.; Masson, J.-F.; Han, X.; Peng, W. Fiber-optic surface plasmon resonance glucose sensor enhanced with phenylboronic acid modified Au nanoparticles. Biosens. Bioelectron. 2018, 117, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Esentürk, M.K.; Akgönüllü, S.; Yılmaz, F.; Denizli, A. Molecularly imprinted based surface plasmon resonance nanosensors for microalbumin detection. J. Biomater. Sci. Polym. Ed. 2019, 30, 646–661. [Google Scholar] [CrossRef] [PubMed]
- Yeung, W.K.; Chen, H.-Y.; Sun, J.-J.; Hsieh, T.-H.; Mousavi, M.Z.; Chen, H.-H.; Lee, K.-L.; Lin, H.; Wei, P.-K.; Cheng, J.-Y.; et al. Multiplex label-free detection of urinary miRNA biomarker by transmission surface plasmon resonance. Analyst 2018, 143, 4715–4722. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Chen, Y.; Shen, D.; Cui, X.; Zhang, C.; Yang, H.; Zhong, W.; Eremin, S.A.; Fang, Y.; Zhao, S.; et al. Development of a surface plasmon resonance immunosensor and ELISA for 3-nitrotyrosine in human urine. Talanta 2019, 195, 655–661. [Google Scholar] [CrossRef] [PubMed]
- Peláez, E.C.; Estevez, M.-C.; Domínguez, R.; Sousa, C.; Cebolla, A.; Lechuga, L.M. A compact SPR biosensor device for the rapid and efficient monitoring of gluten-free diet directly in human urine. Anal. Bioanal. Chem. 2020, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Pathak, A.; Gupta, B.D. Ultra-selective fiber optic SPR platform for the sensing of dopamine in synthetic cerebrospinal fluid incorporating permselective nafion membrane and surface imprinted MWCNTs-PPy matrix. Biosens. Bioelectron. 2019, 133, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Prashar, A. Shed Tears for Diagnostics; Springer: Singapore, 2019; ISBN 9789811371684. [Google Scholar]
- Culver, H.R.; Wechsler, M.E.; Peppas, N.A. Label-free detection of tear biomarkers using hydrogel-coated gold Nanoshells in a localized surface Plasmon resonance-based biosensor. ACS Nano 2018, 12, 9342–9354. [Google Scholar] [CrossRef] [PubMed]
Biofluid Type of Biomarker | Detection Format (Instrument Configuration/Biological Receptor) | Antifouling Strategy/Sample Dilution | Detection Range/LOD | Reference |
---|---|---|---|---|
Blood (serum, plasma) | ||||
Nucleic acids | ||||
MicroRNA | SPR (gold nanoparticles) | DNA tetrahedron probes/ 100% serum, 100% plasma, 9.85 × 108 red cells/mL, 5% whole blood and cell lysate) | 0.8 fM (miRNA-429, random miRNA) | [40] |
SPR (near-dispersionless microfluidic system) | Copolymer brushes: zwitterionic carboxybetaine and chains of OEG-SAMs/ Plasma healthy volunteers | 0.6 nM (miRNA16) | [59] | |
SPRi (orthogonal signal amplification) | CYTOP fluoropolymer/ 10%–40% diluted spiked human serum | 3.46–10.5 fM (cancer and healthy 40% diluted serum); 0.56 fM (10% diluted serum) (miRNA15a) | [60] | |
SERS (Ag/Au nanospheres-based probes) | Target-catalyzed hairpin assembly/ 10% real human serum samples | 0.306 fM/1 fM to 10 nM (miR-133a) | [61] | |
Circulating tumor DNA | LSPR (gold nanorods) | Spiked healthy patient serum | 2 ng mL−1 | [62] |
Circulating tumor cells | SPR (grating coupled fluorescence imaging/antibody imprinting) | BSA 2% blocking/ Mouse blood diluted (1:100) | N/A | [65] |
LSPR (enhanced electrochemistry, gold nanostars, aptamers) | Glassy carbon electrode | 5 to 10 cells/mL | [66] | |
Exosomes | SPRi (AuNPs/antibody) | Incubation in 1% (w/v) BSA/ Plasma healthy volunteers | 104 particles/μL | [68] |
SPRi (array of antibodies) | Carboxylated PEGs/ Plasma (5 healthy volunteers) | N/A (increased the signal response from 5% to 20%) | [69] | |
Cancer-Related Proteins | ||||
| SPR (fiber optic, nanopatterned enhancement/antibody) | Diluted serum samples 1:13/ 8 patients’ serum samples | 0.1 pg mL−1 | [71] |
SPR (direct detection/antibody) | Serum samples diluted serially to 1:10, 1:100, 1:1000 and 1:10,000 times (rabbit serum samples) | N/A (protein content in serum samples) | [72] | |
| SPR (Biofunctional gold nanoparticles, sandwich assay/antibodies) | Plasma diluted to 30% with PBS/BSA. | N/A | [73] |
SPR (carbon nanotube (MWCNTs)-polydopamine (PDA)-Ag nanoparticles (AgNPs), sandwich assay/polyclonal antibody) | Carbide nanosheets of Ti3C2-MXene/ 5 cancer patient’s serum samples | 0.07 fM | [74] | |
| SPR sandwich assay, direct detection/antibody) | Serum spiked samples | Concentration range 25–400 ng mL−1 | [75] |
SERS (antibody) | Diluted blood serum (1:250)/ 3 patient samples | 0.078 ng mL−1 ng/mL (AFP-L3) | [76] | |
| SPRi (cystamine linker/antibody) | Diluted Serum/ 9 endometriosis samples | 2.2–150 U/mL | [77] |
| SPR (carboxyl-functionalized molybdenum disulfide nanocomposites/antibody) | Different spiked ratios of spiked serum samples (16.6%–0%) | 0.05 pg mL−1 (6.25%) | [78] |
| SPR (graphene-on-metal interfaces/folic acid receptors) | Immersion of folic receptors in mixtures of human serum and bovine serum albumin (BSA) with a volume ratio (1:1). | 10–800 fM | [79] |
Alzheimer biomarkers | ||||
| SPRi (peptoid nanosheet/antibody-mimetic) | Dilution ratios (1:2000 to 1:64,000) | 1–10,000 pM | [81] |
| SPR (Sandwich assay/aptamer-antibody) | Alkanethiol mixtures and PEG molecules/ Spiked undiluted plasma | 50 fM (Tau-381) | [82] |
Inflammation biomarkers | ||||
| SPRi (citrate-stabilized Fe3O4@Au core/shell nanoparticles (NPs)/sandwich antibody–antigen-antibody) | Iron oxide/gold core/shell nanomaterial/ 10% diluted spiked serum | 10 pM–100 nM (IL-6) 8 pM–75 nM (IL-8) [miRNA-21: 50 fM–2 pM miRNA-155: 25 fM–4 pM] | [28] |
Infectious agents | ||||
| SPR (antigen HBsAg) | Copolymer poly[(N-(2-hydro-xypropyl) methacrylamide)-co-(carboxybetaine methacrylamide)] brush/ Volumetric ratio 1:10, 8 healthy donors | 0.0002 to <1 IUmL−1 | [85] |
| SPR (4-mercaptobenzoic acid (4-MBA)/DNA probes) | Real serum samples 1:6400 dilution, 10 donors | 15.3–54.9 pM (DNA probes of IS711 gene) | [86] |
Saliva | ||||
Cortisol | LSPR (gold nanoparticles of different sizes/aptamer) | Centrifuged and filtered real saliva samples | 0.01 nM | [91] |
Hepatitis B | SPR (amplified fluorescence/hepatitis B surface antigen) | Brushes of poly[(N-(2-hydroxypropyl) methacrylamide)-co-(carboxybetaine methacrylamide)]/ Clinical saliva samples | 0.01 to >1 IU/mL (anti-HBs) | [92] |
Metalloproteinase-9 | SPR (immunosensor/antibody) | Carboxymethyldextran hydrogel/ Filtration and dilution in TRIS buffer, periodontitis samples | 8 pg mL−1 (0.087 pM) | [93] |
ABH antigens | SPRi (multiplex format, sandwich assay anti-A, anti-B and anti-H antibodies) | Carboxymethyldextran, 64 real saliva samples/ Centrifugation, boiling, freezing | N/A precision at 0.06%–4.9% CV. | [94] |
Urine | ||||
Glucose | SPR fiber optic (phenylboronic-acid-modified Au nanoparticles) | Spiked urinary samples | 2.8 mM | [96] |
Human serum albumin | SPR (gold nanoparticles) | Ethylene glycol dimethacrylate and N-methacryloyl-l-leucine/ Spiked urine samples | 1.9 pM | [97] |
MicroRNA | t-SPR (transmission surface plasmon resonance, capped gold (CG) nanoslit multiplex target microRNA, microfluidic polymethylmethacrylate) | Spiked healthy volunteers samples | 30 fM (monitoring probes (I, II, III and R) | [98] |
3-Nitrotyrosine | SPR (immunosensor, indirect competitive immunoassay/3NT-OVA conjugates) | Artificial urine, spiked human urine samples | 0.12 μg mL−1 | [99] |
Gluten immunogenic peptid (33-mer α2-gliadin) | SPR (indirect competitive assay/gluten immunogenic peptid) | BSA 10 mg mL−1 2 min blocking/ 21 urine samples collected from 2 groups of donors | 1.6–4.0 ng mL−1 | [100] |
Cerebrospinal Fluid | ||||
Dopamine | SPR (multiwalled carbon nanotubes/electrostatic interactions) | Polypyrrole polymer imprinting dopamine cation exchange polymer, nafion/ Spiked artificial CSF | 18.9 pM | [101] |
Synovial Fluid | ||||
Interleukins | SPRi (multiplex format/antibody sandwich cascade) | Spiked equine and human patient samples | 2 fM (IL-1β and IL-6) | [26] |
Tears | ||||
Lysozyme and lactoferrin | LSPR (silica gold nanoshells/electrostatic attraction) | Poly(N isopropylacrylamide-co-methacrylic acid) (PNM) hydrogels/ Diluted pooled human tears in either HBS or PBS (1/10). Healthy vs. dry eye patients | N/A | [103] |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mauriz, E. Low-Fouling Substrates for Plasmonic Sensing of Circulating Biomarkers in Biological Fluids. Biosensors 2020, 10, 63. https://doi.org/10.3390/bios10060063
Mauriz E. Low-Fouling Substrates for Plasmonic Sensing of Circulating Biomarkers in Biological Fluids. Biosensors. 2020; 10(6):63. https://doi.org/10.3390/bios10060063
Chicago/Turabian StyleMauriz, Elba. 2020. "Low-Fouling Substrates for Plasmonic Sensing of Circulating Biomarkers in Biological Fluids" Biosensors 10, no. 6: 63. https://doi.org/10.3390/bios10060063
APA StyleMauriz, E. (2020). Low-Fouling Substrates for Plasmonic Sensing of Circulating Biomarkers in Biological Fluids. Biosensors, 10(6), 63. https://doi.org/10.3390/bios10060063