An Array of MOX Sensors and ANNs to Assess Grated Parmigiano Reggiano Cheese Packs’ Compliance with CFPR Guidelines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Under Analysis
2.2. S3 Analysis
2.3. Data Analysis
3. S3 Analysis: Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mancini, M.C.; Menozzi, D.; Donati, M.; Biasini, B.; Veneziani, M.; Arfini, F. Producers’ and Consumers’ Perception of the Sustainability of Short Food Supply Chains: The Case of Parmigiano Reggiano PDO. Sustainability 2019, 11, 721. [Google Scholar] [CrossRef] [Green Version]
- Boatto, V.; Rossetto, L.; Bordignon, P.; Arboretti, R.; Salmaso, L. Cheese perception in the North American market: Empirical evidence for domestic vs. imported parmesan. Br. Food J. 2016, 118, 1747–1768. [Google Scholar] [CrossRef]
- Zannoni, M. Evolution of the sensory characteristics of Parmigiano-Reggiano cheese to the present day. Food Qual. Prefer. 2010, 21, 901–905. [Google Scholar] [CrossRef]
- Council Regulation (EC) EUR-Lex. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:C:2009:087:0014:0019:EN:PDF (accessed on 9 January 2020).
- Popping, B.; De Dominicis, E.; Dante, M.; Nocetti, M. Identification of the Geographic Origin of Parmigiano Reggiano (P.D.O.) Cheeses Deploying Non-Targeted Mass Spectrometry and Chemometrics. Foods 2017, 6, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbatangelo, M.; Núñez-Carmona, E.; Sberveglieri, V.; Zappa, D.; Comini, E.; Sberveglieri, G. Application of a Novel S3 Nanowire Gas Sensor Device in Parallel with GC-MS for the Identification of Rind Percentage of Grated Parmigiano Reggiano. Sensors 2018, 18, 1617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estensione della Denominazione di Origine del Formaggio «Parmigiano Reggiano» alla Tipologia «Grattugiato». Gazzetta Ufficiale, 1991; Volume 83. Available online: https://www.parmigiano-reggiano.it/consorzio/disciplinare_produzione/tipologia_grattugiato.aspx (accessed on 9 January 2020).
- Gu, D.; Liu, W.; Yan, Y.; Wei, W.; Gan, J.; Lu, Y.; Jiang, Z.; Wang, X.; Xu, C. A novel method for rapid quantitative evaluating formaldehyde in squid based on electronic nose. LWT 2019, 101, 382–388. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, H.; Shen, W.; Jian, J. Wearable electronic nose for human skin odor identification: A preliminary study. Sens. Actuators B 2019, 285, 395–405. [Google Scholar] [CrossRef]
- Manzoli, A.; Steffens, C.; Paschoalin, R.T.; Graboski, A.M.; De Mello Brandao, H.; Campos de Carvalho, B.; Bellini, J.L.; de Paula Herrmann, P.S., Jr. Volatile compounds monitoring as indicative of female cattle fertile period using electronic nose. Sens. Actuators B 2019, 282, 609–616. [Google Scholar] [CrossRef]
- Zhu, D.; Ren, X.; Wei, L.; Cao, X.; Ge, Y.; Liu, H.; Li, J. Collaborative analysis on difference of apple fruits flavor using electronic nose and electronic tongue. Sci. Hortic. Amst. 2020, 260, 108879. [Google Scholar] [CrossRef]
- Mahmodi, K.; Mostafei, M.; Mirzaee-Ghaleh, E. Detection and classification of diesel-biodiesel blends by LDA, QDA and SVM approaches using an electronic nose. Fuel 2019, 258, 116114. [Google Scholar] [CrossRef]
- Ezhilan, M.; Nesakumar, N.; Babu, K.J.; Srinandan, C.S.; Rayappan, J.B.B. Freshness Assessment of Broccoli using Electronic Nose. Measurements 2019, 145, 735–743. [Google Scholar] [CrossRef]
- Kalit, M.T.; Markovic, K.; Kalit, S.; Vahcic, N.; Havranek, J. Application of electronic nose and electronic tongue in the dairy industry. Mljekarstvo 2014, 64, 228–244. [Google Scholar] [CrossRef] [Green Version]
- Magan, N.; Pavlou, A.; Chrysanthakis, I. Milk-sense: A volatile sensing system recognises spoilage bacteria and yeasts in milk. Sens. Actuators B 2001, 71, 28–34. [Google Scholar] [CrossRef]
- Labreche, S.; Bazzo, S.; Cade, S.; Chanie, E. Shelf life determination by electronic nose: Application to milk. Sens. Actuators B 2005, 106, 19–206. [Google Scholar] [CrossRef]
- Wang, B.; Xu, S.; Sun, D.W. Application of electronic nose to the identification of different milk flavorings. Food Res. Int. 2010, 43, 255–262. [Google Scholar] [CrossRef]
- Caputo, A.R.; Morone, G.; Di Napoli, M.A.; Rufrano, D.; Sabia, E.; Paladino, F.; Sepe, L.; Claps, S. Effect of destoned olive cake on the aromatic profile of cows’ milk and dairy products: Comparison of two techniques for the headspace aroma profile analysis. Ital. J. Agron. 2015, 10, 15–20. [Google Scholar] [CrossRef]
- Costa, C.; Taiti, C.; Strano, M.C.; Morone, G.; Antonucci, F.; Mancuo, S.; Claps, S.; Pallottino, F.; Sepe, L.; Bazihizina, N.; et al. Multivariate Approaches to Electronic Nose and PTR-TOF-MS Technologies in Agro-Food Products. In Electronic Noses and Tongues in Food Science; Rodriguez-Mendez, M.L., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 73–82. ISBN 978-0-12-800243-8. [Google Scholar]
- Jha, S.N.; Jaiswal, P.; Growal, M.K.; Gupta, M.; Bhardwaj, R. Detection of Adulterants and Contaminants in Liquid Foods A Review. Crit. Rev. Food Sci. 2015, 56, 1662–1684. [Google Scholar] [CrossRef]
- Khattab, A.R.; Guirguis, H.A.; Tawfik, S.M.; Farag, M.A. Cheese ripening: A review on modern technologies towards flavor enhancement, process acceleration and improved quality assessment. Trends Food Sci. Technol. 2019, 88, 343–360. [Google Scholar] [CrossRef]
- Gursoy, O.; Somervuo, P.; Alatossava, T. Preliminary study of ion mobility based electronic nose GD-1 for discrimination of hard cheeses. J. Food Eng. 2009, 92, 202–207. [Google Scholar] [CrossRef]
- Cevoli, C.; Cerretani, L.; Gori, A.; Caboni, M.F.; Gallina Toschi, T.; Fabbri, A. Classification of Pecorino cheeses using electronic nose combined with artificial neural network and comparison with GC-MS analysis of volatile compounds. Food Chem. 2011, 129, 1315–1319. [Google Scholar] [CrossRef]
- Pais, V.F.; Oliveira, J.A.B.P.; Gomes, M.T.S.R. An Electronic Nose Based on Coated Piezoelectric Quartz Crystals to Certify Ewes’ Cheese and to Discriminate between Cheese Varieties. Sensors 2012, 12, 1422–1436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valente, N.I.P.; Rudnitskaya, A.; Oliveira, J.A.B.P.; Gaspar, E.M.M.; Gomes, M.T.S.R. Cheeses Made from Raw and Pasteurized Cow’s Milk Analysed by an Electronic Nose and an Electronic Tongue. Sensors 2018, 18, 2415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Núñez-Carmona, E.; Abbatangelo, M.; Zottele, I.; Piccoli, P.; Tamanini, A.; Comini, E.; Sberveglieri, G.; Sberveglieri, V. Nanomaterial gas sensors for online monitoring system of fruit jams. Foods 2019, 8, 632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Núñez-Carmona, E.; Abbatangelo, M.; Zappa, D.; Comini, E.; Sberveglieri, G.; Sberveglieri, V. Nanostructured MOS Sensor for the Detection, Follow up, and Threshold Pursuing of Campylobacter Jejuni Development in Milk Samples. Sensors 2020, 20, 2009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbatangelo, M.; Núñez-Carmona, E.; Duina, G.; Sberveglieri, V. Multidisciplinary Approach to characterizing the fingerprint of Italian EVoO. Molecules 2019, 24, 1457. [Google Scholar] [CrossRef] [Green Version]
- Comini, E.; Faglia, G.; Sberveglieri, G.; Pan, Z.; Wang, Z.L. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 2002, 81, 1869–1871. [Google Scholar] [CrossRef]
- Comini, E. Metal oxide nano-crystals for gas sensing. Anal. Chim. Acta 2006, 568, 28–40. [Google Scholar] [CrossRef]
- Yu, C.; Hao, Q.; Saha, S.; Shi, L. Integration of metal oxide nanobelts with microsystems for nerve agent detection. App. Phys. Lett. 2005, 86, 1–3. [Google Scholar] [CrossRef]
- Sberveglieri, G.; Concina, I.; Comini, E.; Falasconi, M.; Ferroni, M.; Sberveglieri, V. Synthesis and integration of tin oxide nanowires into an electronic nose. Vacuum 2012, 86, 532–535. [Google Scholar] [CrossRef]
- Wagner, R.S.; Ellis, W.C. Vapor-Liquid-Solid Mechanism of Single Crystal Growth. Appl. Phys. Lett. 1964, 4, 89–90. [Google Scholar] [CrossRef]
- Keppel, G.; Wickens, T.D. Design and Analysis: A Researcher’s Handbook, 4th ed.; Pearson Education Inc.: New York, NY, USA, 2004; pp. 111–130. [Google Scholar]
- Chambers, J.M.; Cleveland, W.S.; Kleiner, B.; Tukey, P.A. Comparing Data Distributions. In Graphical Methods for Data Analysis; Wadsworth International Group: Belmont, CA, USA, 1983; pp. 60–63. ISBN 0-87150-413-8. [Google Scholar]
- Tosi, F.; Sandri, S.; Tedeschi, G.; Malacarne, M.; Fossa, E. Variazioni di composizione e proprietà fisico-chimiche del Parmigiano Reggiano durante la maturazione e in differenti zone della forma. Sci. Tec. Latt. Casearia 2008, 59, 507–528. [Google Scholar]
- Nanni, M.; Coppola, R.; Iorizzo, M.; Sorrentino, A.; Sorrentino, E.; Grazia, L. La microflora lattica nella maturazione del formaggio Parmigiano Reggiano. Sci. Tec. Latt. Casearia 1997, 48, 211–216. [Google Scholar]
Seasoning | N° of Replicas | Rind Working Process | N° of Replicas | Rind Percentage | N° of Replicas |
---|---|---|---|---|---|
12 months | 211 | WR | 105 | ≤18% | 23 |
19–26% | 21 | ||||
>26% | 61 | ||||
SR | 92 | ≤18% | 26 | ||
19–26% | 24 | ||||
>26% | 42 | ||||
24 months | 241 | WR | 103 | ≤18% | 36 |
19–26% | 26 | ||||
>26% | 41 | ||||
SR | 126 | ≤18% | 38 | ||
19–26% | 23 | ||||
>26% | 65 |
Material (Type) | Composition | Morphology | Operating Temperature (°C) |
---|---|---|---|
SnO2Au (n) | SnO2 functionalized with Au clusters | RGTO | 400 °C |
SnO2 (n) | SnO2 | RGTO | 300 °C |
SnO2 (n) | SnO2 | RGTO | 400 °C |
SnO2Au (n) | SnO2 grown with Au and functionalized with gold clusters | Nanowire | 350 °C |
SnO2 (n) | SnO2 grown with Au | Nanowire | 350 °C |
CuO (p) | CuO | Nanowire | 400 °C |
Sensor | Feature Selected in Step 1 | Feature Selected in Step 2 | Feature Selected in Step 3 |
---|---|---|---|
RGTO SnO2 (300 °C) | - | Min value 1st derivative Area up to min value | Min value 1st derivative |
Nanowire SnO2Au | ΔR/R0 Area up to min value Total area Fall time | ΔR/R0 Min value 1st derivative Area up to min value Total area | ΔR/R0 Min value 1st derivative Area up to min value |
Nanowire SnO2 | ΔR/R0 Area up to min value Total area Fall time | Area up to min value | ΔR/R0 Area up to min value Fall time |
CuO | ΔR/R0 Area up to the max value Total area Rise time | Max value 1st derivative | ΔR/R0 Max value 1st derivative Area up to the max value Total area |
TGS2611 | ΔR/R0 | ΔR/R0 Area up to min value | Total area Fall time |
TGS2602 | ΔR/R0 Area up to min value Total area Fall time | Area up to min value Fall time | ΔR/R0 |
RGTO SnO2 (400 °C) | ΔR/R0 Area up to min value Total area Fall time | Fall time | ΔR/R0 Area up to min value Total area |
RGTO SnO2Au | Min value 1st derivative | Min value 1st derivative | ΔR/R0 Area up to min value Total area |
Step 1 | Classification Rate | Step 2 | Classification Rate | Step 3 | Classification Rate |
---|---|---|---|---|---|
Seasoning | 98.66% (100%) | 12 months working process | 98.55% (100%) | 12 months WR rind percentage | 88.24% (63.8%) |
12 months SR rind percentage | 100% (96.1%) | ||||
24 months working process | 91.14% (100%) | 24 months WR rind percentage | 96.97% (58.8%) | ||
24 months SR rind percentage | 100% (100%) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbatangelo, M.; Núñez-Carmona, E.; Sberveglieri, V.; Zappa, D.; Comini, E.; Sberveglieri, G. An Array of MOX Sensors and ANNs to Assess Grated Parmigiano Reggiano Cheese Packs’ Compliance with CFPR Guidelines. Biosensors 2020, 10, 47. https://doi.org/10.3390/bios10050047
Abbatangelo M, Núñez-Carmona E, Sberveglieri V, Zappa D, Comini E, Sberveglieri G. An Array of MOX Sensors and ANNs to Assess Grated Parmigiano Reggiano Cheese Packs’ Compliance with CFPR Guidelines. Biosensors. 2020; 10(5):47. https://doi.org/10.3390/bios10050047
Chicago/Turabian StyleAbbatangelo, Marco, Estefanía Núñez-Carmona, Veronica Sberveglieri, Dario Zappa, Elisabetta Comini, and Giorgio Sberveglieri. 2020. "An Array of MOX Sensors and ANNs to Assess Grated Parmigiano Reggiano Cheese Packs’ Compliance with CFPR Guidelines" Biosensors 10, no. 5: 47. https://doi.org/10.3390/bios10050047
APA StyleAbbatangelo, M., Núñez-Carmona, E., Sberveglieri, V., Zappa, D., Comini, E., & Sberveglieri, G. (2020). An Array of MOX Sensors and ANNs to Assess Grated Parmigiano Reggiano Cheese Packs’ Compliance with CFPR Guidelines. Biosensors, 10(5), 47. https://doi.org/10.3390/bios10050047