Flexible and Printed Electrochemical Immunosensor Coated with Oxygen Plasma Treated SWCNTs for Histamine Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Sensor Fabrication and Oxygen Plasma Treatment
2.3. Synthesis, Spray Deposition, and OP Treatment of SWCNTs
2.4. Immunosensor Development
2.5. Electrical and Mechanical Characterization
2.6. Preparation of Fish Samples
3. Results and Discussion
3.1. Surface Characterization and Electrochemical Properties of Histamine Immunosensor
3.2. Histamine Immunosensor Performance
3.3. Selectivity and Reproducibility of Histamine Immunosensor
3.4. Flexibility, Regeneration, and Time Stability of Histamine Immunosensor
3.5. Histamine Detection in Fish Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schirone, M.; Visciano, P.; Tofalo, R.; Suzzi, G. Editorial: Biological hazards in food. Front. Microbiol. 2017, 7, 2154. [Google Scholar] [CrossRef] [Green Version]
- Costa, M.P.; Rodrigues, B.L.; Frasao, B.S.; Conte, C.A., Jr. Chapter 2—Biogenic Amines as Food Quality Index and Chemical Risk for Human Consumption. Food Qual. Balanc. Heal. Dis. 2018, 75–108. [Google Scholar] [CrossRef]
- Ruiz-Capillas, C.; Herrero, A.M. Impact of biogenic amines on food quality and safety. Foods 2019, 8, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Triki, M.; Herrero, A.; Jiménez-Colmenero, F.; Ruiz-Capillas, C. Quality Assessment of Fresh Meat from Several Species Based on Free Amino Acid and Biogenic Amine Contents during Chilled Storage. Foods 2018, 7, 132. [Google Scholar] [CrossRef] [PubMed]
- Al Bulushi, I.; Poole, S.; Deeth, H.C.; Dykes, G.A. Biogenic amines in fish: Roles in intoxication, spoilage, and nitrosamine formation-A review. Crit. Rev. Food Sci. Nutr. 2009, 49, 369–377. [Google Scholar] [CrossRef]
- De la Torre, C.A.L.; Conte, C.A., Jr. Detection of Biogenic Amines: Quality and Toxicity Indicators in Food of Animal Origin. Food Control Biosecurity 2018, 225–257. [Google Scholar] [CrossRef]
- Kivirand, K.; Rinken, T. Biosensors for Biogenic Amines: The Present State of Art Mini-Review. Anal. Lett. 2011, 44, 2821–2833. [Google Scholar] [CrossRef]
- Fernandes, J.O.; Judas, I.C.; Oliveira, M.B.; Ferreira, I.M.P.L.V.; Ferreira, M.A. A GC-MS method for quantitation of histamine and other biogenic amines in beer. Chromatographia 2001, 53, 327–331. [Google Scholar] [CrossRef]
- Jinadasa, B.K.K.K.; Jayasinghe, G.D.T.M.; Ahmad, S.B.N. Validation of high-performance liquid chromatography (HPLC) method for quantitative analysis of histamine in fish and fishery products. Cogent Chem. 2016, 2, 1–8. [Google Scholar] [CrossRef]
- De la Torre, C.A.L.; Conte, C.A., Jr. Chromatographic methods for biogenic amines determination in foods of animal origin. Braz. J. Vet. Res. Anim. Sci. 2013, 50, 430–446. [Google Scholar]
- Jastrzebska, A.; Kurzawa, M.; Piasta, A.; Szłyk, E. Determination of Histamine in Some Foods by Isotachophoretic Method with Simple Sample Preparation. Food Anal. Methods 2012, 5, 1079–1087. [Google Scholar] [CrossRef]
- Luo, L.; Xu, Z.L.; Yang, J.Y.; Xiao, Z.L.; Li, Y.J.; Beier, R.C.; Sun, Y.M.; Lei, H.T.; Wang, H.; Shen, Y.D. Synthesis of novel haptens and development of an enzyme-linked immunosorbent assay for quantification of histamine in foods. J. Agric. Food Chem. 2014, 62, 12299–12308. [Google Scholar] [CrossRef] [PubMed]
- Pérez, S.; Bartrolí, J.; Fàbregas, E. Amperometric biosensor for the determination of histamine in fish samples. Food Chem. 2013, 141, 4066–4072. [Google Scholar] [CrossRef] [PubMed]
- Apetrei, I.M.; Apetrei, C. Amperometric biosensor based on diamine oxidase/platinum nanoparticles/graphene/chitosan modified screen-printed carbon electrode for histamine detection. Sensors 2016, 16, 422. [Google Scholar] [CrossRef] [Green Version]
- Telsnig, D.; Kalcher, K.; Leitner, A.; Ortner, A. Design of an Amperometric Biosensor for the Determination of Biogenic Amines Using Screen Printed Carbon Working Electrodes. Electroanalysis 2013, 25, 47–50. [Google Scholar] [CrossRef]
- Ricci, F.; Volpe, G.; Micheli, L.; Palleschi, G. A review on novel developments and applications of immunosensors in food analysis. Anal. Chim. Acta 2007, 605, 111–129. [Google Scholar] [CrossRef]
- Parker, C.O.; Tothill, I.E. Development of an electrochemical immunosensor for aflatoxin M1 in milk with focus on matrix interference. Biosens. Bioelectron. 2009, 24, 2452–2457. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.X.; Yang, J.Y.; Luo, L.; Zhang, Y.F.; Mao, C.; Sun, Y.M.; Lei, H.T.; Shen, Y.D.; Beier, R.C.; Xu, Z.L. Portable amperometric immunosensor for histamine detection using Prussian blue-chitosan-gold nanoparticle nanocomposite films. Biosens. Bioelectron. 2017, 98, 305–309. [Google Scholar] [CrossRef] [Green Version]
- Abera, B.D.; Falco, A.; Ibba, P.; Cantarella, G.; Petti, L.; Lugli, P. Development of Flexible Dispense-Printed Electrochemical Immunosensor for Aflatoxin M1 Detection in Milk. Sensors (Basel) 2019, 19, 3912. [Google Scholar] [CrossRef] [Green Version]
- Shkodra, B.; Douaki, A.; Abera, B.D.; Ibba, P.; Avancini, E.; Cantarella, G.; Petti, L.; Lugli, P. A PEDOT:PSS/SWCNT-Coated Screen Printed Immunosensor for Histamine Detection in Food Samples. Accepted for Publication in FoodCas 2020 Proceeding. 2020. [Google Scholar]
- Zaporotskova, I.V.; Boroznina, N.P.; Parkhomenko, Y.N.; Kozhitov, L.V. Carbon nanotubes: Sensor properties. A review. Mod. Electron. Mater. 2016, 2, 95–105. [Google Scholar] [CrossRef]
- Sireesha, M.; Babu, V.J.; Kiran, A.S.K.; Ramakrishna, S. A review on carbon nanotubes in biosensor devices and their applications in medicine. Nanocomposites 2018, 4, 36–57. [Google Scholar] [CrossRef]
- Falco, A.; Cinà, L.; Scarpa, G.; Lugli, P.; Abdellah, A. Fully-sprayed and flexible organic photodiodes with transparent carbon nanotube electrodes. ACS Appl. Mater. Interfaces 2014, 6, 10593–10601. [Google Scholar] [CrossRef] [PubMed]
- Chetty, R.; Maniam, K.K.; Schuhmann, W.; Muhler, M. Oxygen-plasma-functionalized carbon nanotubes as supports for platinum-ruthenium catalysts applied in electrochemical methanol oxidation. Chempluschem 2015, 80, 130–135. [Google Scholar] [CrossRef]
- Sophocleous, M.; Atkinson, J.K. A review of screen-printed silver/silver chloride (Ag/AgCl) reference electrodes potentially suitable for environmental potentiometric sensors. Sens. Actuators A Phys. 2017, 267, 106–120. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.C.; Chang, K.S.; Yuan, C.J. Enhancement of electrochemical properties of screen-printed carbon electrodes by oxygen plasma treatment. Electrochim. Acta 2009, 54, 4937–4943. [Google Scholar] [CrossRef]
- Abdelhalim, A.; Abdellah, A.; Scarpa, G.; Lugli, P. Fabrication of carbon nanotube thin films on flexible substrates by spray deposition and transfer printing. Carbon 2013, 61, 72–79. [Google Scholar] [CrossRef]
- Ham, S.W.; Hong, H.P.; Kim, J.H.; Min, S.J.; Min, N.K. Effect of Oxygen Plasma Treatment on Carbon Nanotube-Based Sensors. J. Nanosci. Nanotechnol. 2014, 14, 8476–8481. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, J.; Chen, X. Competitive electrochemical immunosensor for the detection of histamine based on horseradish peroxidase initiated deposition of insulating film. J. Electroanal. Chem. 2015, 736, 88–92. [Google Scholar] [CrossRef]
- Lim, C.S.; Krishnan, G.; Sam, C.K.; Ng, C.C. On optimizing the blocking step of indirect enzyme-linked immunosorbent assay for Epstein-Barr virus serology. Clin. Chim. Acta 2013, 415, 158–161. [Google Scholar] [CrossRef]
- Thompson, R.; Creavin, A.; Connell, M.O.; Connor, O.; Clarke, P. Optimization of the enzyme-linked lectin assay for enhanced glycoprotein and glycoconjugate analysis. In Irish Separation Science Cluster; Dublin City University: Dublin, Ireland, 2011. [Google Scholar]
- Bally, R.W.; Gribnau, T.C.J. Some Aspects of the Chromogen 3, 3′, 5, 5′-Tetramethylbenzidine as Hydrogen Donor in a Horseradish Peroxidase Assay. Clin. Chem. Lab. Med. 1989, 27, 791–796. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, U.T.; Inan, D. Quantification of histamine in various fish samples using square wave stripping voltammetric method. J. Food Sci. Technol. 2015, 52, 6671–6678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Kim, H.J.; Lee, H.R.; Song, J.H.; Yi, S.N.; Ha, D.H. Oxygen plasma effects on the electrical conductance of single-walled carbon nanotube bundles. J. Phys. D. Appl. Phys. 2010, 43, 305402. [Google Scholar] [CrossRef]
- Kandimalla, V.B.; Neeta, N.S.; Karanth, N.G.; Thakur, M.S.; Roshini, K.R.; Rani, B.E.A.; Pasha, A.; Karanth, N.G.K. Regeneration of ethyl parathion antibodies for repeated use in immunosensor: A study on dissociation of antigens from antibodies. Biosens. Bioelectron. 2004, 20, 903–906. [Google Scholar] [CrossRef] [PubMed]
Amount of Histamine Added (ng/mL) | 0 | 0.5 | 1 | 5 | 50 |
---|---|---|---|---|---|
Amount of histamine detected | - | 0.491 ± 0.032 | 1.047 ± 0.036 | 5.061 ± 0.039 | 48.0 ± 0.085 |
Recovery % | - | 98.0 ± 3.2 | 104.7 ± 3.6 | 101.2 ± 3.9 | 96.0 ± 8.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shkodra, B.; Demelash Abera, B.; Cantarella, G.; Douaki, A.; Avancini, E.; Petti, L.; Lugli, P. Flexible and Printed Electrochemical Immunosensor Coated with Oxygen Plasma Treated SWCNTs for Histamine Detection. Biosensors 2020, 10, 35. https://doi.org/10.3390/bios10040035
Shkodra B, Demelash Abera B, Cantarella G, Douaki A, Avancini E, Petti L, Lugli P. Flexible and Printed Electrochemical Immunosensor Coated with Oxygen Plasma Treated SWCNTs for Histamine Detection. Biosensors. 2020; 10(4):35. https://doi.org/10.3390/bios10040035
Chicago/Turabian StyleShkodra, Bajramshahe, Biresaw Demelash Abera, Giuseppe Cantarella, Ali Douaki, Enrico Avancini, Luisa Petti, and Paolo Lugli. 2020. "Flexible and Printed Electrochemical Immunosensor Coated with Oxygen Plasma Treated SWCNTs for Histamine Detection" Biosensors 10, no. 4: 35. https://doi.org/10.3390/bios10040035
APA StyleShkodra, B., Demelash Abera, B., Cantarella, G., Douaki, A., Avancini, E., Petti, L., & Lugli, P. (2020). Flexible and Printed Electrochemical Immunosensor Coated with Oxygen Plasma Treated SWCNTs for Histamine Detection. Biosensors, 10(4), 35. https://doi.org/10.3390/bios10040035