Interdigitated Sensor Optimization for Blood Sample Analysis
Abstract
:1. Introduction
2. Theoretical Considerations
2.1. Sensor Structure and Cell Factor
2.2. Double Layer Impedance
2.3. Sample Impedance
3. Sensor Optimization
4. Sensor Realization
4.1. Sensor Manufacturing
4.2. Reference Measurements
5. Blood Characterization
5.1. Experimental Setup
- (a)
- Biofluid samples placed directly on the sensor (Figure 9).
- (b)
- A microscope to observe the position of the volume of liquid.
- (c)
- A thermometer to measure the ambient temperature.
- (d)
- A micropipette (Socorex Micropipette Acura 825)
- (e)
- HF2TA current amplifier (manufactured by Zurich Instrument),
- (f)
- HF2IS impedance spectroscope for the frequency range from 0.7 μHz to 50 MHz.
- (g)
- A computer for observing and processing measurement data using LabVIEW® application.
5.2. Sample Preparation
- The tube was shaken slightly for 1 min before sampling with a micropipette.
- A 2 µL sample was obtained with an adjustable micropipette and deposited into the well (Figure 9). This volume was chosen to ensure that all the sensor cavities were full. As described in Section 2.1, only the first 100 µm of thickness of the sample in contact with the IDT was really due to the small penetration depth of the IDT sensors, ensuring that measurements will not be impaired by round-shaped droplets, the sample surface in contact with the air or cavity walls, or the sample rising above the cavity.
- The impedance spectrum acquisition started 10 s after sample deposition. The impedance measurement was then performed within several seconds at 1 V sinus amplitude.
- The room temperature was maintained at 25 ± 1 °C during the measurement campaign.
5.3. Results
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vikas, A.; Pundir, C.S. Biosensors: Future analytical tools. Sens. Transducers J. 2007, 76, 935–936. [Google Scholar]
- Yoon, J.; Shin, M.; Lee, T.; Choi, J.-W. Highly sensitive biosensors based on biomolecules and functional nanomaterials depending on the types of nanomaterials: A perspective review. Materials 2020, 13, 299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, A.P. Biosensors: Sense and sensibility. Chem. Soc. Rev. 2013, 21, 3184–3196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sang, S.; Zhang, W.; Zhao, Y. Review on the Design Art of Biosensors. State of the Art in Biosensors—General Aspects; Rinken, T., Ed.; IntechOpen: London, UK, 2013; Available online: https://www.intechopen.com/books/state-of-the-art-in-biosensors-general-aspects/review-on-the-design-art-of-biosensors (accessed on 15 December 2020). [CrossRef] [Green Version]
- Ahmed, S.; Shaikh, N.; Pathak, N.; Sonawane, A.; Pandey, V.; Maratkar, S. An overview of sensitivity and selectivity of biosensors for environmental applications. In Tools, Techniques and Protocols for Monitoring Environmental Contaminants; Elsevier: Amsterdam, The Netherlands, 2019; Chapter 3; pp. 53–73. [Google Scholar]
- Chuanrui, C.; Yue, G.; Peining, C.; Huisheng, P. Recent advances of tissue-interfaced chemical biosensors. J. Mater. Chem. B 2020, 8, 3371–3381. [Google Scholar]
- RIgreja, R.; Dias, C.J. Analytical evaluation of the interdigital electrodes capacitance for a multi-layered structure. Sens. Actuators A Phys. 2004, 112, 291–301. [Google Scholar] [CrossRef]
- Moraes, M.L.; Maki, R.M.; Paulovich, F.V.; Rodrigues Filho, U.P.; De Oliveira MC, F.; Riul, A.; De Souza, N.C.; Ferreira, M.; Gomes, H.L.; Oliveira, O.N. Strategies to optimize biosensors based on impedance spectroscopy to detect phytic acid using layer-by-layer films. Anal. Chem. 2010, 82, 3239–3246. [Google Scholar] [CrossRef]
- Radhakrishnan, R.; Suni, I.; Bever, C.S.; Hammock, B.D. Impedance biosensors: Applications to sustainability and remaining technical challenges. ACS Sustain. Chem. Eng. 2014, 2, 1649–1655. [Google Scholar] [CrossRef]
- Song, S.; Xu, H.; Fan, C. Potential diagnostic applications of biosensors: Current and future directions. Int. J. Nanomed. 2006, 1, 433–440. [Google Scholar] [CrossRef] [Green Version]
- Katz, E.; Willner, I. Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: Routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors. Electroanalysis 2003, 15, 913–947. [Google Scholar] [CrossRef]
- Gabriel, C.; Gabriel, S.; Corthout, E. The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol. 1996, 41, 2231–2249. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.; Cha, J.J.; Seo, S.; Yun, J.; Woo Kim, H.; Park, C.; Lee, J.H. Ex vivo characterization of age-associated impedance changes of single vascular endothelial cells using micro electrical impedance spectroscopy with a cell trap. Biomicrofluidics 2016, 10, 014114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Claudel, J.; Alves De Araujo, A.L.; Nadi, M.; Kourtiche, D. Lab-on-a-chip device for yeast cell characterization in low-conductivity media combining cytometry and bio-impedance. Sensors 2019, 19, 3366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves de Araujo, A.L.; Claudel, J.; Kourtiche, D.; Nadi, M. Use of an insulation layer on the connection tracks of a biosensor with coplanar electrodes to increase the normalized impedance variation. Biosensors 2019, 9, 108. [Google Scholar] [CrossRef] [Green Version]
- Ertl, P.; Heer, R. Interdigitated impedance sensors for analysis of biological cells in microfluidic biochips. EI Elektrotechnik Inf. 2009, 126, 47–50. [Google Scholar] [CrossRef]
- Posseckardt, J.; Schirmer, C.; Kick, A.; Rebatschek, K.; Lamz, T.; Mertig, M. Monitoring of saccharomyces cerevisiae viability by non-Faradaic impedance spectroscopy using interdigitated screen-printed platinum electrodes. Sens. Actuators B Chem. 2018, 255, 3417–3424. [Google Scholar] [CrossRef]
- Wang, L.; Veselinovic, M.; Yang, L.; Geiss, B.J.; Dandy, D.S.; Chen, T. A sensitive DNA capacitive biosensor using interdigitated electrodes. Biosens. Bioelectron. 2017, 87, 646–653. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, M.; Claudel, J.; Kourtiche, D.; Nadi, M. Geometric parameters optimization of planar interdigitated electrodes for bioimpedance spectroscopy. J. Electr. Bioimpedance 2013, 4, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Ngo, T.T.; Bourjilat, A.; Claudel, J.; Kourtiche, D.; Nadi, M. Design and realization of a planar interdigital microsensor for biological medium characterization. In Next Generation Sensors and Systems; Springer: Cham, Switzerland, 2016; pp. 23–54. [Google Scholar]
- Starzyk, F. Parametrisation of interdigit comb capacitor for dielectric impedance spectroscopy. Arch. Mater. Sci. Eng. 2008, 34, 31–34. [Google Scholar]
- Kidner, N.J.; Homrighaus, Z.J.; Mason, T.O.; Garboczi, E.J. Modeling interdigital electrode structures for the dielectric characterization of electroceramic thin films. Thin Solid Film. 2006, 496, 539–545. [Google Scholar] [CrossRef]
- Olthuis, W.; Streekstra, W.; Bergveld, P. Theoretical and experimental determination of cell constants of planar-interdigitated electrolyte conductivity sensors. Sens. Actuators B Chem. 1995, 25, 252–256. [Google Scholar] [CrossRef] [Green Version]
- Steendijk, P.; Mur, G.; Van Der Velde, E.T.; Baan, J. The four-electrode resistivity technique in anisotropic media: Theoretical analysis and application on myocardial tissue in vivo. IEEE Trans. Bio Med. Eng. 1993, 40, 1138–1148. [Google Scholar] [CrossRef] [PubMed]
Sensor Number | N | L (µm) | W (µm) | S (µm) | Theoretical Kcell (m−1) | α Ratio |
---|---|---|---|---|---|---|
1 | 40 | 2000 | 30 | 20 | 21.8 | 0.6 |
2 | 40 | 2000 | 15 | 35 | 35.8 | 0.3 |
3 | 40 | 2000 | 40 | 10 | 15.1 | 0.8 |
Sensor Number | Theoretical Kcell (m−1) | α Ratio | 84 µS/cm | 100 µS/cm | 1413 µS/cm | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
fc,L (kHz) | Kcell | Kcell Error (%) | fc,L (kHz) | Kcell | Kcell Error (%) | fc,L (kHz) | Kcell | Kcell Error (%) | |||
1 | 21.8 | 0.6 | 75.6 | 22.3 | 2.3 | 85 | 22.01 | 0.96 | 433 | 22.65 | 3.9 |
2 | 35.8 | 0.3 | 170 | 35.49 | 0.87 | 486 | 34.99 | 2.26 | 1960 | 35.55 | 0.7 |
3 | 15.1 | 0.8 | 135 | 16.83 | 11.48 | 305 | 16.08 | 6.49 | 2400 | 17 | 12.57 |
Sensor Number | N | L (µm) | W (µm) | S (µm) | flow (kHz) | Measured Kcell (m−1) | α | Rsol (Ω) | σblood (S/m) |
---|---|---|---|---|---|---|---|---|---|
1 | 40 | 2000 | 30 | 20 | 215 | 22.32 | 0.6 | 32.35 | 0.69 |
2 | 40 | 2000 | 15 | 35 | 358 | 35.834 | 0.3 | 40.26 | 0.89 |
3 | 40 | 2000 | 40 | 10 | 614 | 16.64 | 0.8 | 38.70 | 0.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Claudel, J.; Ngo, T.-T.; Kourtiche, D.; Nadi, M. Interdigitated Sensor Optimization for Blood Sample Analysis. Biosensors 2020, 10, 208. https://doi.org/10.3390/bios10120208
Claudel J, Ngo T-T, Kourtiche D, Nadi M. Interdigitated Sensor Optimization for Blood Sample Analysis. Biosensors. 2020; 10(12):208. https://doi.org/10.3390/bios10120208
Chicago/Turabian StyleClaudel, Julien, Thanh-Tuan Ngo, Djilali Kourtiche, and Mustapha Nadi. 2020. "Interdigitated Sensor Optimization for Blood Sample Analysis" Biosensors 10, no. 12: 208. https://doi.org/10.3390/bios10120208
APA StyleClaudel, J., Ngo, T. -T., Kourtiche, D., & Nadi, M. (2020). Interdigitated Sensor Optimization for Blood Sample Analysis. Biosensors, 10(12), 208. https://doi.org/10.3390/bios10120208