Surface Modification Techniques for Endothelial Cell Seeding in PDMS Microfluidic Devices
Abstract
:1. Introduction
2. Fabrication of PDMS-Based Microfluidic Chips
3. Surface Treatment for Endothelial Cells (ECs) Culture in PDMS Microfluidic Devices
3.1. Plasma Treatment
3.2. Coating with Extracellular Matrix (ECM) Proteins
3.2.1. Collagen
3.2.2. Gelatin
3.2.3. Fibronectin
3.2.4. Other Biopolymers
3.3. Chemical Treatment
3.3.1. Coating with Silica-Titania
3.3.2. (3-Aminopropyl)triethoxysilane (APTES)
3.3.3. Polydopamine (PDA)
3.3.4. Poly (Ethylene Glycol) (PEG)
3.4. Charged Molecules
3.5. Surface Roughness
3.6. Combination Treatment
4. Conclusions and Perspective
Author Contributions
Funding
Conflicts of Interest
Abbreviations
APTES | (3-Aminopropyl)triethoxysilane |
EC | Endothelial cells |
ECM | Extracellular matrix |
HUVECs | Human umbilical vein endothelial cells |
MTES | methyltriethoxysilane |
PDA | Polydopamine |
PDMS | Polydimethylsiloxane |
PEG | Poly (ethylene glycol) |
TEOS | Tetraethylorthosilane |
TISP | Titanium isopropoxide |
VSMCs | Vascular smooth muscle cells |
WCA | water contact angle |
References
- Paguirigan, A.L.; Beebe, D.J. Microfluidics meet cell biology: Bridging the gap by validation and application of microscale techniques for cell biological assays. BioEssays 2008, 30, 811–821. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Valadez, A.V.; Zuo, P.; Nie, Z. Microfluidic 3D cell culture: Potential application for tissue-based bioassays. Bioanalysis 2012, 4, 1509–1525. [Google Scholar] [CrossRef] [Green Version]
- Chiang, H.-J.; Yeh, S.-L.; Peng, C.-C.; Liao, W.-H.; Tung, Y.-C. Polydimethylsiloxane-polycarbonate Microfluidic Devices for Cell Migration Studies under Perpendicular Chemical and Oxygen Gradients. J. Vis. Exp. 2017, 2017, e55292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, C.Y.; Goral, V.N.; DeRosa, M.E.; Huang, T.J.; Yuen, P.K. A polystyrene-based microfluidic device with three-dimensional interconnected microporous walls for perfusion cell culture. Biomicrofluidics 2014, 8, 046505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trinh, K.T.L.; Thai, D.A.; Chae, W.R.; Lee, N.Y. Rapid Fabrication of Poly(methyl methacrylate) Devices for Lab-on-a-Chip Applications Using Acetic Acid and UV Treatment. ACS Omega 2020, 5, 17396–17404. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.-W.; Cheng, J.-Y.; Young, T.-H. Elucidating in vitro cell-cell interaction using a microfluidic coculture system. Biomed. Microdevices 2006, 8, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Jena, R.K.; Yue, C.Y. Cyclic olefin copolymer based microfluidic devices for biochip applications: Ultraviolet surface grafting using 2-methacryloyloxyethyl phosphorylcholine. Biomicrofluidics 2012, 6, 012822–1282212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabés-Alsina, M.; Morató, R.; Ymbern, O.; Rodríguez-Vázquez, L.; Talló-Parra, O.; Alonso-Chamarro, J.; Puyol, M.; López-Béjar, M. Rapid Prototyping of a Cyclic Olefin Copolymer Microfluidic Device for Automated Oocyte Culturing. SLAS Technol. Transl. Life Sci. Innov. 2017, 22, 507–517. [Google Scholar]
- Junkin, M.; Kaestli, A.J.; Cheng, Z.; Jordi, C.; Albayrak, C.; Hoffmann, A.; Tay, S. High-Content Quantification of Single-Cell Immune Dynamics. Cell Rep. 2016, 15, 411–422. [Google Scholar] [CrossRef] [Green Version]
- Kellogg, R.A.; Tay, S. Noise Facilitates Transcriptional Control under Dynamic Inputs. Cell 2015, 160, 381–392. [Google Scholar] [CrossRef] [Green Version]
- Mehl, B.T.; Martin, R.S. Integrating 3D cell culture of PC12 cells with microchip-based electrochemical detection. Anal. Methods 2019, 11, 1064–1072. [Google Scholar] [CrossRef] [PubMed]
- Van Der Meer, A.D.; Orlova, V.V.; Dijke, P.T.; Berg, A.V.D.; Mummery, C.L. Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfluidic device. Lab. Chip 2013, 13, 3562–3568. [Google Scholar] [CrossRef] [PubMed]
- Torino, S.; Corrado, B.; Iodice, M.; Coppola, G. PDMS-Based Microfluidic Devices for Cell Culture. Inventions 2018, 3, 65. [Google Scholar] [CrossRef] [Green Version]
- Gökaltun, A.; Kang, Y.B.; Yarmush, M.L.; Usta, O.B.; Asatekin, A. Simple Surface Modification of Poly(dimethylsiloxane) via Surface Segregating Smart Polymers for Biomicrofluidics. Sci. Rep. 2019, 9, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanyeri, M.; Tay, S. Viable cell culture in PDMS-based microfluidic devices. Methods Cell Biol. 2018, 148, 3–33. [Google Scholar] [CrossRef]
- Otto, O.; Rosendahl, P.; Mietke, A.; Golfier, S.; Herold, C.; Klaue, D.; Girardo, S.; Pagliara, S.; Ekpenyong, A.; Jacobi, A.; et al. Real-time deformability cytometry: On-the-fly cell mechanical phenotyping. Nat. Methods 2015, 12, 199–202. [Google Scholar] [CrossRef]
- Sia, S.K.; Whitesides, G.M. Microfluidic devices fabricated in Poly(dimethylsiloxane) for biological studies. Electrophoresis 2003, 24, 3563–3576. [Google Scholar] [CrossRef]
- Fuard, D.; Tzvetkova-Chevolleau, T.; Decossas, S.; Tracqui, P.; Schiavone, P. Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility. Microelectron. Eng. 2008, 85, 1289–1293. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.N.; Jiang, X.; Ryan, A.D.; Whitesides, G.M. Compatibility of Mammalian Cells on Surfaces of Poly(dimethylsiloxane). Langmuir 2004, 20, 11684–11691. [Google Scholar] [CrossRef]
- Jastrzębska, E.; Zuchowska, A.; Flis, S.; Sokolowska, P.; Bulka, M.; Dybko, A.; Brzozka, Z. Biological characterization of the modified poly(dimethylsiloxane) surfaces based on cell attachment and toxicity assays. Biomicrofluidics 2018, 12, 044105. [Google Scholar] [CrossRef]
- Toepke, M.W.; Beebe, D.J. PDMS absorption of small molecules and consequences in microfluidic applications. Lab. Chip 2006, 6, 1484–1486. [Google Scholar] [CrossRef] [PubMed]
- Yeo, L.Y.; Chang, H.-C.; Chan, P.P.Y.; Friend, J.R. Microfluidic Devices for Bioapplications. Small 2011, 7, 12–48. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Huang, Y.; Zhang, X.; Qin, H. Electrohydrodynamic inkjet printing of Polydimethylsiloxane (PDMS). Procedia Manuf. 2020, 48, 90–94. [Google Scholar] [CrossRef]
- Coppola, S.; Nasti, G.; Todino, M.; Olivieri, F.; Vespini, V.; Ferraro, P. Direct Writing of Microfluidic Footpaths by Pyro-EHD Printing. ACS Appl. Mater. Interfaces 2017, 9, 16488–16494. [Google Scholar] [CrossRef] [PubMed]
- Gale, B.K.; Jafek, A.; Lambert, C.J.; Goenner, B.L.; Moghimifam, H.; Nze, U.C.; Kamarapu, S.K. A Review of Current Methods in Microfluidic Device Fabrication and Future Commercialization Prospects. Inventions 2018, 3, 60. [Google Scholar] [CrossRef] [Green Version]
- Qin, D.; Xia, Y.; Whitesides, G.M. Soft lithography for micro- and nanoscale patterning. Nat. Protoc. 2010, 5, 491–502. [Google Scholar] [CrossRef] [Green Version]
- Temiz, Y.; Lovchik, R.D.; Kaigala, G.V.; Delamarche, E. Lab-on-a-chip devices: How to close and plug the lab? Microelectron. Eng. 2015, 132, 156–175. [Google Scholar] [CrossRef]
- Su, W.; Cook, B.S.; Fang, Y.; Tentzeris, M.M. Fully inkjet-printed microfluidics: A solution to low-cost rapid three-dimensional microfluidics fabrication with numerous electrical and sensing applications. Sci. Rep. 2016, 6, 35111. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.Y.; Zheng, W.F.; Takayama, S.; Chapman, R.G.; Kane, R.S.; Whitesides, G.M. Chapter Ninteen - Micro-Scale Patterning of Cells and Their Environment. In Principles of Tissue Engineering, 3rd ed.; Lanza, R., Langer, R., Vacanti, J., Eds.; Academic Press: Burlington, VT, USA, 2007; pp. 265–278. [Google Scholar]
- AlZahid, Y.A.; Mostaghimi, P.; Gerami, A.; Singh, A.; Privat, K.; Amirian, T.; Armstrong, R.T. Functionalisation of Polydimethylsiloxane (PDMS)- Microfluidic Devices coated with Rock Minerals. Sci. Rep. 2018, 8, 1–15. [Google Scholar] [CrossRef]
- Gokaltun, A.; Yarmush, M.L.; Asatekin, A.; Usta, O.B. Recent advances in nonbiofouling PDMS surface modification strategies applicable to microfluidic technology. Technology 2017, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Gezer, P.G.; Brodsky, S.; Hsiao, A.; Liu, G.L.; Kokini, J.L. Modification of the hydrophilic/hydrophobic characteristic of zein film surfaces by contact with oxygen plasma treated PDMS and oleic acid content. Colloids Surf. B Biointerfaces 2015, 135, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Kühlbach, C.; Da Luz, S.; Baganz, F.; Hass, V.C.; Mueller, M.M. A Microfluidic System for the Investigation of Tumor Cell Extravasation. Bioengineering 2018, 5, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.-C.; Yuan, C.-Y.; Ding, S.-J. Effect of polydimethylsiloxane surfaces silanized with different nitrogen-containing groups on the adhesion progress of epithelial cells. Surf. Coat. Technol. 2011, 205, 3182–3189. [Google Scholar] [CrossRef]
- Siddique, A.; Meckel, T.; Stark, R.W.; Narayan, S. Improved cell adhesion under shear stress in PDMS microfluidic devices. Colloids Surf. B Biointerfaces 2017, 150, 456–464. [Google Scholar] [CrossRef]
- Kadziński, L.; Prokopowicz, M.; Jakóbkiewicz-Banecka, J.; Gabig, M.; Łukasiak, J.; Banecki, B. Effect of Silicone on the Collagen Fibrillogenesis and Stability. J. Pharm. Sci. 2015, 104, 1275–1281. [Google Scholar] [CrossRef] [Green Version]
- Zuchowska, A.; Kwiatkowski, P.; Jastrzębska, E.; Chudy, M.; Dybko, A.; Brzózka, Z. Adhesion of MRC-5 and A549 cells on poly(dimethylsiloxane) surface modified by proteins. Electrophoresis 2015, 37, 536–544. [Google Scholar] [CrossRef]
- Chumbimuni-Torres, K.Y.; Coronado, R.E.; Mfuh, A.M.; Castro-Guerrero, C.; Silva, M.F.; Negrete, G.R.; Bizios, R.; Garcia, C.D. Adsorption of proteins to thin-films of PDMS and its effect on the adhesion of human endothelial cells. RSC Adv. 2011, 1, 706–714. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Kingston, B.R.; Chan, W.C.W. Transcribing In Vivo Blood Vessel Networks into In Vitro Perfusable Microfluidic Devices. Adv. Mater. Technol. 2020, 5, 2000103. [Google Scholar] [CrossRef]
- Zanotelli, M.R.; Ardalani, H.; Zhang, J.; Hou, Z.; Nguyen, E.H.; Swanson, S.; Nguyen, B.K.; Bolin, J.; Elwell, A.; Bischel, L.L.; et al. Stable engineered vascular networks from human induced pluripotent stem cell-derived endothelial cells cultured in synthetic hydrogels. Acta Biomater. 2016, 35, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Nishikawa, M.; Yamamoto, T.; Kojima, N.; Kikuo, K.; Fujii, T.; Sakai, Y. Stable immobilization of rat hepatocytes as hemispheroids onto collagen-conjugated poly-dimethylsiloxane (PDMS) surfaces: Importance of direct oxygenation through PDMS for both formation and function. Biotechnol. Bioeng. 2008, 99, 1472–1481. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, L.; Zhao, Y.; Ke, M.; Li, B.; Chen, L.; Cai, S. A perforated microhole-based microfluidic device for improving sprouting angiogenesis in vitro. Biomicrofluidics 2017, 11, 054111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sivarapatna, A.; Ghaedi, M.; Xiao, Y.; Han, E.; Aryal, B.; Zhou, J.; Fernandez-Hernando, C.; Qyang, Y.; Hirschi, K.K.; Niklason, L.E. Engineered Microvasculature in PDMS Networks Using Endothelial Cells Derived from Human Induced Pluripotent Stem Cells. Cell Transplant. 2017, 26, 1365–1379. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Reid, L.; Huang, Y.; Uhl, C.G.; He, R.; Zhou, C.; Liu, Y. Bi-layer blood vessel mimicking microfluidic platform for antitumor drug screening based on co-culturing 3D tumor spheroids and endothelial layers. Biomicrofluidics 2019, 13, 044108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nichol, J.W.; Koshy, S.T.; Bae, H.; Hwang, C.M.; Yamanlar, S.; Khademhosseini, A. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 2010, 31, 5536–5544. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.-Y.; Jin, Z.-H.; Gan, B.-W.; Lv, S.-W.; Xie, M.; Huang, W.-H. Engineering interconnected 3D vascular networks in hydrogels using molded sodium alginate lattice as the sacrificial template. Lab. Chip 2014, 14, 2709–2716. [Google Scholar] [CrossRef]
- Wang, X.-Y.; Fillafer, C.; Pichl, C.; Deinhammer, S.; Hofer-Warbinek, R.; Wirth, M.; Gabor, F. A multichannel acoustically driven microfluidic chip to study particle-cell interactions. Biomicrofluidics 2013, 7, 044127. [Google Scholar] [CrossRef] [Green Version]
- Cornelissen, C.G.; Dietrich, M.; Gromann, K.; Frese, J.; Krüger, S.; Sachweh, J.S.; Jockenhoevel, S. Fibronectin coating of oxygenator membranes enhances endothelial cell attachment. Biomed. Eng. Online 2013, 12, 7. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.; Chuah, Y.J.; Ang, W.T.; Zheng, N.; Wang, D.-A. Optimization of a polydopamine (PD)-based coating method and polydimethylsiloxane (PDMS) substrates for improved mouse embryonic stem cell (ESC) pluripotency maintenance and cardiac differentiation. Biomater. Sci. 2017, 5, 1156–1173. [Google Scholar] [CrossRef]
- McCain, M.L.; Agarwal, A.; Nesmith, H.W.; Nesmith, A.P.; Parker, K.K. Micromolded gelatin hydrogels for extended culture of engineered cardiac tissues. Biomaterials 2014, 35, 5462–5471. [Google Scholar] [CrossRef] [Green Version]
- Esch, M.B.; Post, D.J.; Shuler, M.L.; Stokol, T. Characterization of In Vitro Endothelial Linings Grown Within Microfluidic Channels. Tissue Eng. Part. A 2011, 17, 2965–2971. [Google Scholar] [CrossRef] [Green Version]
- Chuah, Y.J.; Kuddannaya, S.; Lee, M.H.A.; Zhang, Y.; Kang, Y. The effects of poly(dimethylsiloxane) surface silanization on the mesenchymal stem cell fate. Biomater. Sci. 2015, 3, 383–390. [Google Scholar] [CrossRef]
- Spuul, P.; Chi, P.-Y.; Billottet, C.; Chou, C.-F.; Génot, E. Microfluidic devices for the study of actin cytoskeleton in constricted environments: Evidence for podosome formation in endothelial cells exposed to a confined slit. Methods 2016, 94, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Van Engeland, N.C.A.; Pollet, A.M.A.O.; Toonder, J.M.J.D.; Bouten, C.V.C.; Stassen, O.M.J.A.; Sahlgren, C.M. A biomimetic microfluidic model to study signalling between endothelial and vascular smooth muscle cells under hemodynamic conditions. Lab. Chip 2018, 18, 1607–1620. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Chen, S.; Ratner, B.D.; Sage, E.H.; Jiang, S. Capillary Differentiation of Endothelial Cells on Microgrooved Surfaces. J. Phys. Chem. C 2007, 111, 14602–14606. [Google Scholar] [CrossRef]
- Hong, Y.; Koh, I.; Park, K.; Kim, P. On-Chip Fabrication of a Cell-Derived Extracellular Matrix Sheet. ACS Biomater. Sci. Eng. 2017, 3, 3546–3552. [Google Scholar] [CrossRef]
- Chung, S.H.; Min, J. Morphological investigations of cells that adhered to the irregular patterned polydimethylsiloxane (PDMS) surface without reagents. Ultramicroscopy 2009, 109, 861–867. [Google Scholar] [CrossRef] [PubMed]
- Nourmohammadi, J.; Hajibabaei, T.; Amoabediny, G.; Jafari, S.H.; Salehi-Nik, N. Aminosilane Layer Formation Inside the PDMS Tubes Improves Wettability and Cytocompatibility of Human Endothelial Cells. Trends Biomater. Artif. Organs 2015, 29, 123–131. [Google Scholar]
- Zargar, R.; Nourmohammadi, J.; Amoabediny, G. Preparation, characterization, and silanization of 3D microporous PDMS structure with properly sized pores for endothelial cell culture. Biotechnol. Appl. Biochem. 2015, 63, 190–199. [Google Scholar] [CrossRef]
- Booth, R.; Noh, S.; Kim, H. A multiple-channel, multiple-assay platform for characterization of full-range shear stress effects on vascular endothelial cells. Lab. Chip 2014, 14, 1880–1890. [Google Scholar] [CrossRef] [Green Version]
- Perikamana, S.K.M.; Shin, Y.M.; Lee, J.K.; Bin Lee, Y.; Heo, Y.; Ahmad, T.; Park, S.Y.; Shin, J.; Park, K.M.; Jung, H.S.; et al. Graded functionalization of biomaterial surfaces using mussel-inspired adhesive coating of polydopamine. Colloids Surf. B Biointerfaces 2017, 159, 546–556. [Google Scholar] [CrossRef]
- Park, S.E.; Georgescu, A.; Oh, J.M.; Kwon, K.W.; Huh, D. Polydopamine-Based Interfacial Engineering of Extracellular Matrix Hydrogels for the Construction and Long-Term Maintenance of Living Three-Dimensional Tissues. ACS Appl. Mater. Interfaces 2019, 11, 23919–23925. [Google Scholar] [CrossRef] [PubMed]
- Khetani, S.; Yong, K.W.; Kollath, V.O.; Eastick, E.; Azarmanesh, M.; Karan, K.; Sen, A.; Sanati-Nezhad, A. Engineering Shelf-Stable Coating for Microfluidic Organ-on-a-Chip Using Bioinspired Catecholamine Polymers. ACS Appl. Mater. Interfaces 2020, 12, 6910–6923. [Google Scholar] [CrossRef] [PubMed]
- Mikhail, A.S.; Ranger, J.J.; Liu, L.; Longenecker, R.; Thompson, D.B.; Sheardown, H.D.; Brook, M.A. Rapid and Efficient Assembly of Functional Silicone Surfaces Protected by PEG: Cell Adhesion to Peptide-Modified PDMS. J. Biomater. Sci. Polym. Ed. 2010, 21, 821–842. [Google Scholar] [CrossRef] [PubMed]
- Van Duinen, V.; Trietsch, S.J.; Joore, J.; Vulto, P.; Hankemeier, T. Microfluidic 3D cell culture: From tools to tissue models. Curr. Opin. Biotechnol. 2015, 35, 118–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiddes, L.K.; Raz, N.; Srigunapalan, S.; Tumarkan, E.; Simmons, C.A.; Wheeler, A.R.; Kumacheva, E. A circular cross-section PDMS microfluidics system for replication of cardiovascular flow conditions. Biomaterials 2010, 31, 3459–3464. [Google Scholar] [CrossRef]
- Aymerich, M.; Gómez-Varela, A.I.; Castro, A.I.; Flores-Arias, M.T. Study of Different Sol-Gel Coatings to Enhance the Lifetime of PDMS Devices: Evaluation of Their Biocompatibility. Materials 2016, 9, 728. [Google Scholar] [CrossRef]
- Gray, K.M.; Stroka, K.M. Vascular endothelial cell mechanosensing: New insights gained from biomimetic microfluidic models. Semin. Cell Dev. Biol. 2017, 71, 106–117. [Google Scholar] [CrossRef]
- Mata, A.; Fleischman, A.J.; Roy, S. Characterization of Polydimethylsiloxane (PDMS) Properties for Biomedical Micro/Nanosystems. Biomed. Microdevices 2005, 7, 281–293. [Google Scholar] [CrossRef]
- Rolland, J.P.; Van Dam, R.M.; Schorzman, D.A.; Quake, S.R.; DeSimone, J.M.; Van Dam, M. Solvent-Resistant Photocurable “Liquid Teflon” for Microfluidic Device Fabrication. J. Am. Chem. Soc. 2004, 126, 2322–2323. [Google Scholar] [CrossRef]
- Zhou, J.; Yan, H.; Ren, K.; Dai, W.; Wu, H. Convenient Method for Modifying Poly(dimethylsiloxane) with Poly(ethylene glycol) in Microfluidics. Anal. Chem. 2009, 81, 6627–6632. [Google Scholar] [CrossRef]
- Bodas, D.; Khan-Malek, C. Hydrophilization and hydrophobic recovery of PDMS by oxygen plasma and chemical treatment—An SEM investigation. Sens. Actuators B Chem. 2007, 123, 368–373. [Google Scholar] [CrossRef]
- Wong, I.; Ho, C.-M. Surface molecular property modifications for poly(dimethylsiloxane) (PDMS) based microfluidic devices. Microfluid. Nanofluid. 2009, 7, 291–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rozario, T.; Desimone, D.W. The extracellular matrix in development and morphogenesis: A dynamic view. Dev. Biol. 2010, 341, 126–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Choi, D.S.; Nguyen, Y.H.; Chang, J.; Qin, L. Studying Cancer Stem Cell Dynamics on PDMS Surfaces for Microfluidics Device Design. Sci. Rep. 2013, 3, 2332. [Google Scholar] [CrossRef] [Green Version]
- Lee, N.W.; Choi, N.; Sung, J.H. A microfluidic chip with gravity-induced unidirectional flow for perfusion cell culture. Biotechnol. Prog. 2018, 35, e2701. [Google Scholar] [CrossRef] [Green Version]
- Polacheck, W.J.; Li, R.; Uzel, S.G.M.; Kamm, R.D. Microfluidic platforms for mechanobiology. Lab. Chip 2013, 13, 2252–2267. [Google Scholar] [CrossRef] [Green Version]
- Razafiarison, T.; Holenstein, C.N.; Stauber, T.; Jovic, M.; Vertudes, E.; Loparic, M.; Kawecki, M.; Bernard, L.; Silvan, U.; Snedeker, J.G. Biomaterial surface energy-driven ligand assembly strongly regulates stem cell mechanosensitivity and fate on very soft substrates. Proc. Natl. Acad. Sci. USA 2018, 115, 4631–4636. [Google Scholar] [CrossRef] [Green Version]
- Young, E.W.K.; Wheeler, A.R.; Simmons, C.A. Matrix-dependent adhesion of vascular and valvular endothelial cells in microfluidic channels. Lab. Chip 2007, 7, 1759–1766. [Google Scholar] [CrossRef]
- Kuddannaya, S.; Chuah, Y.J.; Lee, M.H.A.; Menon, N.V.; Kang, Y.; Zhang, Y. Surface Chemical Modification of Poly(dimethylsiloxane) for the Enhanced Adhesion and Proliferation of Mesenchymal Stem Cells. ACS Appl. Mater. Interfaces 2013, 5, 9777–9784. [Google Scholar] [CrossRef]
- Palchesko, R.N.; Zhang, L.; Sun, Y.; Feinberg, A.W. Development of Polydimethylsiloxane Substrates with Tunable Elastic Modulus to Study Cell Mechanobiology in Muscle and Nerve. PLoS ONE 2012, 7, e51499. [Google Scholar] [CrossRef] [Green Version]
- Hellmann, A.; Klein, S.; Hesselmann, F.; Djeljadini, S.; Schmitz-Rode, T.; Jockenhoevel, S.; Cornelissen, C.G.; Thiebes, A.L. EndOxy: Mid-term stability and shear stress resistance of endothelial cells on PDMS gas exchange membranes. Artif. Organs 2020, 44, 419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gehlen, D.B.; Novaes, L.C.D.L.; Long, W.; Ruff, A.J.; Jakob, F.; Haraszti, T.; Chandorkar, Y.; Yang, L.; Van Rijn, P.; Schwaneberg, U.; et al. Rapid and Robust Coating Method to Render Polydimethylsiloxane Surfaces Cell-Adhesive. ACS Appl. Mater. Interfaces 2019, 11, 41091–41099. [Google Scholar] [CrossRef] [PubMed]
- Kanitthamniyom, P.; Zhang, Y. Application of polydopamine in biomedical microfluidic devices. Microfluid. Nanofluid. 2018, 22, 24. [Google Scholar] [CrossRef]
- Ranjan, A.; Webster, T.J. Increased endothelial cell adhesion and elongation on micron-patterned nano-rough poly(dimethylsiloxane) films. Nanotechnology 2009, 20, 305102. [Google Scholar] [CrossRef] [PubMed]
- Dalsin, J.L.; Hu, B.-H.; Lee, B.P.; Messersmith, P.B. Mussel Adhesive Protein Mimetic Polymers for the Preparation of Nonfouling Surfaces. J. Am. Chem. Soc. 2003, 125, 4253–4258. [Google Scholar] [CrossRef] [PubMed]
- Leivo, J.; Virjula, S.; Vanhatupa, S.; Kartasalo, K.; Kreutzer, J.; Miettinen, S.; Kallio, P. A durable and biocompatible ascorbic acid-based covalent coating method of polydimethylsiloxane for dynamic cell culture. J. R. Soc. Interface 2017, 14, 20170318. [Google Scholar] [CrossRef] [Green Version]
- Sfriso, R.; Rieben, R. 3D Cell-Culture Models for the Assessment of Anticoagulant and Anti-Inflammatory Properties of Endothelial Cells. In Methods in Molecular Biology; Springer Science and Business Media LLC.: Berlin, Germany, 2020; Volume 2110, pp. 83–97. [Google Scholar]
Method | Hydrophilicity of PDMS | Type of Cell Used | Adhesion of Cells | Flow Conditions | Pros | Cons | References |
---|---|---|---|---|---|---|---|
Plasma Treatment | Increases as WCA decreases by approximately 30° | Human primary pulmonary arterial endothelial cells | 100% confluency was achieved after 3 days on plasma treated PDMS surface | Confluency was equivalent in both static and flow condition | Relatively inexpensive Easy to perform. Time efficient. | The hydrophilicity of the oxygen plasma treated PDMS surface is temporary and gradual hydrophobic recovery is shown over time. It is not suitable for long term cell adhesion. | [32,33,34] |
Collagen | Type I Collagen increases the hydrophilicity to the greatest extent among extracellular matrix (ECM)proteins | Human umbilical vein endothelial cells (HUVECs) | Both cell lines were able to attach and proliferate after initial seeding | Stable under static conditions for a few days | Good adsorption of collagen onto PDMS among ECM proteins Good modulation of ECs morphology Increases the hydrophilicity of PDMS to one of the greatest extents amongst reagents Exhibits good adhesion of ECs | Cell detachment occurs after a few days due to the formation of cell clusters Type IV Collagen is a poor reagent for seeding EC Might not be stable under high flow rates as ECs begin to detach at flow rates above 10 μL/min | [35,36,37,38,39,40,41,42,43] |
Endothelial cells derived from Human induced pluripotent stem cells (iPSC-ECs) | More cell activity than HUVEC under flow conditions of 10 μL/min | ||||||
Human dermal microvascular endothelial cells | Confluent layer formed | Not specified | |||||
HUVECs | Good adhesion as confluency achieved after an hour | Cells were stable at flow rates of 5–10 μL/min | |||||
Gelatin | Increases the hydrophilicity by increasing the surface roughness | Sheep Carotid Arterial endothelial cells | Poor adhesion of endothelial cells (ECs) as compared to other ECM proteins | Cells were adherent when exposed to the shear stress of 1 dyne/cm2 | Able to maintain the activity of cells for the longest duration | Cell aggregation A high tendency for cells to dissociate from PDMS | [44,45,46,47,48,49,50] |
HUVECs, | Good adhesion | ||||||
Fibronectin | Hydrophilicity increases significantly | Sheep Carotid Arterial ECs | Good adhesion | Adhesion lasts for a few days without exposure to flow. | Second among the ECM proteins in seeding ECs The highest rate of reagent adsorption onto PDMS | Fibronectin is an ECM protein that can lead to cell dissociation | [19,38,48,51,52,53,54,55] |
HeLa ECs | Better than gelatin in terms of adhesion | ||||||
Human aortic ECs | Unable to reach confluency | ||||||
HUVECs | The same extent of adhesion as oxygen-fibronectin | Stable to flow rates at 7.5 mL/min | |||||
Bovine Aortic ECs | The same extent of adhesion as oxygen-fibronectin | 95% detachment after 2 weeks under static flow | |||||
Laminin | Increases but not as much as ECM protein. | HUVECs | Poor adhesion of ECs as compared to ECM protein. | Stable under flow at 5 dyne/cm2 | Good adhesion | Spreading of cells over laminin-modified surface is slow. Might change the cell morphology. | [56] |
APTES ((3-aminopropyl) triethoxysilane) | Increases as WCA decreases by approximately 70° | HUVECs | Cells proliferated with the increase in incubation time | Good stability and adhesion under shear stress (0.5 mm/s) | Chemical treatment is not prone to degradation Forms amine groups, which is suitable for HUVECs adhesion | Weaker increase in hydrophilicity as compared to ECM proteins | [57,58,59,60] |
Vascular ECs | Cell adhesion observed | ||||||
PDA (Polydopamine) | Increases as WCA decreases by 50% | Vascular ECs Human cerebral microvascular ECs | Improved adhesion and proliferation for both cell lines | Poorer response when exposed to flow compared to fibronectin | Significant increase in hydrophilicity Non-toxic to cells Long term stability for cell culture | Effect of PDA on cells is poorly understood Seldom used in ECs seeding | [49,52,61,62,63] |
PEG (Poly (ethylene glycol)) | Increases as WCA decreases by approximately 57° | HUVECs | Adhesion was similar to non-modified PDMS. | Poor cell adhesion under flow | Stable for long term culture when used to encapsulate cells | Poor adhesion when used as a coating reagent | [40,64,65] |
(iPSC-ECs) | When encapsulated with PEG, cells were stable for at least 2 weeks | ||||||
Silica-Titanium | Increases but less than ECM proteins | HUVECs | Good adhesion of cells | Not specified | Does not degrade easily as ECM proteins | Certain combinations of silica-titanium could present a hostile environment for cells | [66,67] |
Oxygen Plasma + Fibronectin | Increases as WCA decreases by approximately 80° | HUAECs | The same extent of adhesion as fibronectin Confluency reached | Stable adhesion at physiological flow rate (0.5 mm/s) | Increases the hydrophilicity of PDMS to a huge extent | Cell dissociation in long term cell culture | [19,37] |
PEG + RGDS (Arg–Gly–Asp–Ser) peptides | Increases | HUVECs | 87% of cells coverage observed | Stable at low flow rates of 0.3 µL/min | Good adhesion of cells Cells increase with increasing RGDS density | The combination is not commonly used as ECM proteins | [64,68] |
TEOS (tetraethylorthosilane) + Fibronectin | Increases | Primary Pulmonary Artery ECs | Adhesion of cells was achieved | Stable under low flow rates of 0.1 mL/h | Good adhesion of cells | The detachment of cells might occur at high flow rates | [66] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akther, F.; Yakob, S.B.; Nguyen, N.-T.; Ta, H.T. Surface Modification Techniques for Endothelial Cell Seeding in PDMS Microfluidic Devices. Biosensors 2020, 10, 182. https://doi.org/10.3390/bios10110182
Akther F, Yakob SB, Nguyen N-T, Ta HT. Surface Modification Techniques for Endothelial Cell Seeding in PDMS Microfluidic Devices. Biosensors. 2020; 10(11):182. https://doi.org/10.3390/bios10110182
Chicago/Turabian StyleAkther, Fahima, Shazwani Binte Yakob, Nam-Trung Nguyen, and Hang T. Ta. 2020. "Surface Modification Techniques for Endothelial Cell Seeding in PDMS Microfluidic Devices" Biosensors 10, no. 11: 182. https://doi.org/10.3390/bios10110182