Charge Storage Properties of Nanostructured Poly (3,4–ethylenedioxythiophene) Electrodes Revealed by Advanced Electrogravimetry
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Snook, G.A.; Kao, P.; Best, A.S. Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 2011, 196, 1–12. [Google Scholar] [CrossRef]
- Wang, K.; Wu, H.P.; Meng, Y.N.; Wei, Z.X. Conducting polymer nanowire arrays for high performance supercapacitors. Small 2014, 10, 14–31. [Google Scholar] [CrossRef]
- Wang, G.P.; Zhang, L.; Zhang, J.J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41, 797–828. [Google Scholar] [CrossRef] [PubMed]
- Sadki, S.; Schottland, P.; Brodie, N.; Sabouraud, G. The mechanisms of pyrrole electropolymerization. Chem. Soc. Rev. 2000, 29, 283–293. [Google Scholar] [CrossRef]
- Li, L.; Chen, L.; Qian, W.; Xie, F.; Dong, C. Directly grown multiwall carbon nanotube and hydrothermal MnO2 composite for high-performance supercapacitor electrodes. Nanomaterials 2019, 9, 703. [Google Scholar] [CrossRef]
- Julien, C.M.; Mauger, A. Nanostructured MnO2 as electrode materials for energy storage. Nanomaterials 2017, 7, 396. [Google Scholar] [CrossRef]
- Zhang, R.; Engholm, M. Recent progress on the fabrication and properties of silver nanowire-based transparent electrodes. Nanomaterials 2018, 8, 628. [Google Scholar] [CrossRef]
- Shi, Y.; Peng, L.L.; Ding, Y.; Zhao, Y.; Yu, G.H. Nanostructured conductive polymers for advanced energy storage. Chem. Soc. Rev. 2015, 44, 6684–6696. [Google Scholar] [CrossRef]
- Malinauskas, A.; Malinauskiene, J.; Ramanavicius, A. Conducting polymer-based nanostructurized materials: Electrochemical aspects. Nanotechnology 2005, 16, R51–R62. [Google Scholar] [CrossRef]
- Ghosh, S.; Maiyalagan, T.; Basu, R.N. Nanostructured conducting polymers for energy applications: Towards a sustainable platform. Nanoscale 2016, 8, 6921–6947. [Google Scholar] [CrossRef]
- Debiemme-Chouvy, C. Template-free one-step electrochemical formation of polypyrrole nanowire array. Electrochem. Commun. 2009, 11, 298–301. [Google Scholar] [CrossRef]
- Yin, Z.G.; Zheng, Q.D. Controlled synthesis and energy applications of one-dimensional conducting polymer nanostructures: An overview. Adv. Energy Mater. 2012, 2, 179–218. [Google Scholar] [CrossRef]
- Wan, M.X. A template-free method towards conducting polymer nanostructures. Adv. Mater. 2008, 20, 2926–2932. [Google Scholar] [CrossRef]
- Wang, K.; Huang, J.; Wei, Z. Conducting polyaniline nanowire arrays for high performance supercapacitors. J. Phys. Chem. C 2010, 114, 8062–8067. [Google Scholar] [CrossRef]
- Ni, D.; Chen, Y.X.; Song, H.J.; Liu, C.C.; Yang, X.W.; Cai, K.F. Free-standing and highly conductive PEDOT nanowire films for high-performance all-solid-state supercapacitors. J. Mater. Chem. A 2019, 7, 1323–1333. [Google Scholar] [CrossRef]
- He, S.J.; Hu, X.W.; Chen, S.L.; Hu, H.; Hanif, M.; Hou, H.Q. Needle-like polyaniline nanowires on graphite nanofibers: Hierarchical micro/nano-architecture for high performance supercapacitors. J. Mater. Chem. 2012, 22, 5114–5120. [Google Scholar] [CrossRef]
- Huang, J.Y.; Wang, K.; Wei, Z.X. Conducting polymer nanowire arrays with enhanced electrochemical performance. J. Mater. Chem. 2010, 20, 1117–1121. [Google Scholar] [CrossRef]
- Liu, R.; Il Cho, S.; Lee, S.B. Poly(3,4-ethylenedioxythiophene) nanotubes as electrode materials for a high-powered supercapacitor. Nanotechnology 2008, 19. [Google Scholar] [CrossRef]
- Cho, S.I.; Lee, S.B. Fast electrochemistry of conductive polymer nanotubes: Synthesis, mechanism, and application. Acc. Chem. Res. 2008, 41, 699–707. [Google Scholar] [CrossRef]
- Le, T.; Bidan, G.; Gentile, P.; Billon, F.; Debiemme-Chouvy, C.; Perrot, H.; Sel, O.; Aradilla, D. Understanding the energy storage mechanisms of poly(3,4-ethylenedioxythiophene)-coated silicon nanowires by electrochemical quartz crystal microbalance. Mater. Lett. 2019, 240, 59–61. [Google Scholar] [CrossRef]
- Ni, D.; Song, H.J.; Chen, Y.X.; Cai, K.F. Free-standing highly conducting PEDOT films for flexible thermoelectric generator. Energy 2019, 170, 53–61. [Google Scholar] [CrossRef]
- Debiemme-Chouvy, C.; Fakhry, A.; Pillier, F. Electrosynthesis of polypyrrole nano/micro structures using an electrogenerated oriented polypyrrole nanowire array as framework. Electrochim. Acta 2018, 268, 66–72. [Google Scholar] [CrossRef]
- Fakhry, A.; Cachet, H.; Debiemme-Chouvy, C. Mechanism of formation of templateless electrogenerated polypyrrole nanostructures. Electrochim. Acta 2015, 179, 297–303. [Google Scholar] [CrossRef]
- Liu, J.; Lin, Y.H.; Liang, L.; Voigt, J.A.; Huber, D.L.; Tian, Z.R.; Coker, E.; McKenzie, B.; McDermott, M.J. Templateless assembly of molecularly aligned conductive polymer nanowires: A new approach for oriented nanostructures. Chem. Eur. J. 2003, 9, 604–611. [Google Scholar] [CrossRef] [PubMed]
- Zang, J.; Li, C.M.; Bao, S.-J.; Cui, X.; Bao, Q.; Sun, C.Q. Template-free electrochemical synthesis of superhydrophilic polypyrrole nanofiber network. Macromolecules 2008, 41, 7053–7057. [Google Scholar] [CrossRef]
- Debiemme-Chouvy, C. One-step electrochemical synthesis of a very thin overoxidized polypyrrole film. Electrochem. Solid State Lett. 2007, 10, E24–E26. [Google Scholar] [CrossRef]
- Fakhry, A.; Pillier, F.; Debiemme-Chouvy, C. Templateless electrogeneration of polypyrrole nanostructures: Impact of the anionic composition and pH of the monomer solution. J. Mater. Chem. A 2014, 2, 9859–9865. [Google Scholar] [CrossRef][Green Version]
- Lin, Z.F.; Taberna, P.L.; Simon, P. Advanced analytical techniques to characterize materials for electrochemical capacitors. Curr. Opin. Electrochem. 2018, 9, 18–25. [Google Scholar] [CrossRef]
- Levi, M.D.; Daikhin, L.; Aurbach, D.; Presser, V. Quartz crystal microbalance with dissipation monitoring (EQCM-D) for in-situ studies of electrodes for supercapacitors and batteries: A mini-review. Electrochem. Commun. 2016, 67, 16–21. [Google Scholar] [CrossRef]
- Gabrielli, C.; Garcia-Jareno, J.J.; Keddam, M.; Perrot, H.; Vicente, F. Ac-electrogravimetry study of electroactive thin films. I. Application to Prussian Blue. J. Phys. Chem. B 2002, 106, 3182–3191. [Google Scholar] [CrossRef]
- Gabrielli, C.; Garcia-Jareno, J.J.; Keddam, M.; Perrot, H.; Vicente, F. Ac-electrogravimetry study of electroactive thin films. II. Application to polypyrrole. J. Phys. Chem. B 2002, 106, 3192–3201. [Google Scholar] [CrossRef]
- Arias, C.R.; Debiemme-Chouvy, C.; Gabrielli, C.; Laberty-Robert, C.; Pailleret, A.; Perrot, H.; Sel, O. New insights into pseudocapacitive charge-storage mechanisms in Li-birnessite type MnO2 monitored by fast quartz crystal microbalance methods. J. Phys. Chem. C 2014, 118, 26551–26559. [Google Scholar] [CrossRef]
- Goubaa, H.; Escobar-Teran, F.; Ressam, I.; Gao, W.L.; El Kadib, A.; Lucas, I.T.; Raihane, M.; Lahcini, M.; Perrot, H.; Sel, O. Dynamic resolution of ion transfer in electrochemically reduced graphene oxides revealed by electrogravimetric impedance. J. Phys. Chem. C 2017, 121, 9370–9380. [Google Scholar] [CrossRef]
- Gao, W.; Debiemme-Chouvy, C.; Lahcini, M.; Perrot, H.; Sel, O. Tuning charge storage properties of supercapacitive electrodes evidenced by in situ gravimetric and viscoelastic explorations. Anal. Chem. 2019. [Google Scholar] [CrossRef] [PubMed]
- Torrisi, V.; Ruffino, F.; Isgro, G.; Crupi, I.; Li Destri, G.; Grimaldi, M.G.; Marletta, G. Polymer/metal hybrid multilayers modified Schottky devices. Appl. Phys. Lett. 2013, 103. [Google Scholar] [CrossRef]
- Yu, J.C.; Jang, J.I.; Lee, B.R.; Lee, G.-W.; Han, J.T.; Song, M.H. Highly efficient polymer-based optoelectronic devices using PEDOT: PSS and a GO composite layer as a hole transport layer. ACS Appl. Mater. Interfaces 2014, 6, 2067–2073. [Google Scholar] [CrossRef] [PubMed]
- Aradilla, D.; Estrany, F.; Azambuja, D.S.; Casas, M.T.; Puiggali, J.; Ferreira, C.A.; Aleman, C. Conducting poly(3,4-ethylenedioxythiophene)-montmorillonite exfoliated nanocomposites. Eur. Polym. J. 2010, 46, 977–983. [Google Scholar] [CrossRef]
- Bizet, K.; Gabrielli, C.; Perrot, H. Immunodetection by quartz crystal microbalance. Appl. Biochem. Biotechnol. 2000, 89, 139. [Google Scholar] [CrossRef]
- Escobar-Teran, F.; Perrot, H.; Sel, O. Ion dynamics at the single wall carbon nanotube based composite electrode/electrolyte interface: influence of the cation size and the electrolyte pH. J. Phys. Chem. C 2019. [Google Scholar] [CrossRef]
- Shpigel, N.; Levi, M.D.; Sigalov, S.; Girshevitz, O.; Aurbach, D.; Daikhin, L.; Jackel, N.; Presser, V. Non-invasive in situ dynamic monitoring of elastic properties of composite battery electrodes by EQCM-D. Angew. Chem. Int. Ed. 2015, 54, 12353–12356. [Google Scholar] [CrossRef]
- Levi, M.D.; Shpigel, N.; Sigalov, S.; Dargel, V.; Daikhin, L.; Aurbach, D. In situ porous structure characterization of electrodes for energy storage and conversion by EQCM-D: A Review. Electrochim. Acta 2017, 232, 271–284. [Google Scholar] [CrossRef]
- Shpigel, N.; Lukatskaya, M.R.; Sigalov, S.; Ren, C.E.; Nayak, P.; Levi, M.D.; Daikhin, L.; Aurbach, D.; Gogotsi, Y. In situ monitoring of gravimetric and viscoelastic changes in 2D intercalation electrodes. ACS Energy Lett. 2017, 2, 1407–1415. [Google Scholar] [CrossRef]
- Al-Mashat, L.; Debiemme-Chouvy, C.; Borensztajn, S.; Wlodarski, W. Electropolymerized polypyrrole nanowires for hydrogen gas sensing. J. Phys. Chem. C 2012, 116, 13388–13394. [Google Scholar] [CrossRef]
- Bhat, D.K.; Kumar, M.S. N and p doped poly(3,4-ethylenedioxythiophene) electrode materials for symmetric redox supercapacitors. J. Mater. Sci. 2007, 42, 8158–8162. [Google Scholar] [CrossRef]
- Carlberg, J.C.; Inganas, O. Poly(3,4-ethylenedioxythiophene) as electrode material in electrochemical capacitors. J. Electrochem. Soc. 1997, 144, L61–L64. [Google Scholar] [CrossRef]
- Aradilla, D.; Bidan, G.; Gentile, P.; Weathers, P.; Thissandier, F.; Ruiz, V.; Gomez-Romero, P.; Schubert, T.J.S.; Sahin, H.; Sadki, S. Novel hybrid micro-supercapacitor based on conducting polymer coated silicon nanowires for electrochemical energy storage. RSC Adv. 2014, 4, 26462–26467. [Google Scholar] [CrossRef]
- Niu, L.; Kvarnstrom, C.; Ivaska, A. Mixed ion transfer in redox processes of poly(3,4-ethylenedioxythlophene). J. Electroanal. Chem. 2004, 569, 151–160. [Google Scholar] [CrossRef]
- Shi, W.; Yao, Q.; Qu, S.; Chen, H.; Zhang, T.; Chen, L. Micron-thick highly conductive PEDOT films synthesized via self-inhibited polymerization: Roles of anions. NPG Asia Mater. 2017, 9, e405. [Google Scholar] [CrossRef]
- Robert Hillman, A.; Daisley, S.J.; Bruckenstein, S. Solvent effects on the electrochemical p-doping of PEDOT. Phys. Chem. Chem. Phys. 2007, 9, 2379–2388. [Google Scholar] [CrossRef]
- Wang, J.P.; Wu, C.J.; Wu, P.Q.; Li, X.; Zhang, M.; Zhu, J.B. Polypyrrole capacitance characteristics with different doping ions and thicknesses. Phys. Chem. Chem. Phys. 2017, 19, 21165–21173. [Google Scholar] [CrossRef]
- Agrisuelas, J.; Gabrielli, C.; Garcia-Jareno, J.J.; Perrot, H.; Sel, O.; Vicente, F. Electrochemically induced free solvent transfer in thin poly(3,4-ethylenedioxythiophene) films. Electrochim. Acta 2015, 164, 21–30. [Google Scholar] [CrossRef]
Configuration | Fluid Viscosity (mPa.s) | Fluid Density (kg.m−3) | Resonant Frequency (MHz) | Peak Width (Hz) | R (Ω) | Quality Factor |
---|---|---|---|---|---|---|
PEDOT NW in air | 0.0184 | 1.17 | 8.983 (±10 Hz) | 922 (±18) | 67 (±1) | 9734 (±195) |
PEDOT NW in ACN | 0.34 | 786 | 8.980 (±10 Hz) | 4002 (±80) | 273 (±5) | 2243 (±45) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lé, T.; Aradilla, D.; Bidan, G.; Billon, F.; Debiemme-Chouvy, C.; Perrot, H.; Sel, O. Charge Storage Properties of Nanostructured Poly (3,4–ethylenedioxythiophene) Electrodes Revealed by Advanced Electrogravimetry. Nanomaterials 2019, 9, 962. https://doi.org/10.3390/nano9070962
Lé T, Aradilla D, Bidan G, Billon F, Debiemme-Chouvy C, Perrot H, Sel O. Charge Storage Properties of Nanostructured Poly (3,4–ethylenedioxythiophene) Electrodes Revealed by Advanced Electrogravimetry. Nanomaterials. 2019; 9(7):962. https://doi.org/10.3390/nano9070962
Chicago/Turabian StyleLé, Tao, David Aradilla, Gérard Bidan, Florence Billon, Catherine Debiemme-Chouvy, Hubert Perrot, and Ozlem Sel. 2019. "Charge Storage Properties of Nanostructured Poly (3,4–ethylenedioxythiophene) Electrodes Revealed by Advanced Electrogravimetry" Nanomaterials 9, no. 7: 962. https://doi.org/10.3390/nano9070962
APA StyleLé, T., Aradilla, D., Bidan, G., Billon, F., Debiemme-Chouvy, C., Perrot, H., & Sel, O. (2019). Charge Storage Properties of Nanostructured Poly (3,4–ethylenedioxythiophene) Electrodes Revealed by Advanced Electrogravimetry. Nanomaterials, 9(7), 962. https://doi.org/10.3390/nano9070962