Next Article in Journal
Controlled Growth of LDH Films with Enhanced Photocatalytic Activity in a Mixed Wastewater Treatment
Previous Article in Journal
Electrospinning of Cellulose Nanocrystal-Filled Poly (Vinyl Alcohol) Solutions: Material Property Assessment
Open AccessArticle

Enzymatic Formation of Polyaniline, Polypyrrole, and Polythiophene Nanoparticles with Embedded Glucose Oxidase

1
NanoTechnas – Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
2
Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania
3
Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
4
Division of Materials Science and Electronics, State Scientific Research Institute Center for Physical Sciences and Technology, Savanorių ave. 231, LT-02300 Vilnius, Lithuania
*
Author to whom correspondence should be addressed.
Nanomaterials 2019, 9(5), 806; https://doi.org/10.3390/nano9050806
Received: 13 May 2019 / Revised: 23 May 2019 / Accepted: 24 May 2019 / Published: 27 May 2019
Polyaniline (PANI), polypyrrole (Ppy), and polythiophene (PTh) composite nanoparticles with embedded glucose oxidase (GOx) were formed by enzymatic polymerization of corresponding monomers (aniline, pyrrole, and thiophene). The influence of monomers concentration, the pH of solution, and the ratio of enzyme/substrate on the formation of PANI/GOx, Ppy/GOx, and PTh/GOx composite nanoparticles were spectrophotometrically investigated. The highest formation rate of PANI-, Ppy-, and PTh-based nanoparticles with embedded GOx was observed in the sodium acetate buffer solution, pH 6.0. The increase of optical absorbance at λmax = 440 nm, λmax = 460 nm, and λmax = 450 nm was exploited for the monitoring of PANI/GOx, Ppy/GOx and PTh/GOx formation, respectively. It was determined that the highest polymerization rate of PANI/GOx, Ppy/GOx, and PTh/GOx composite nanoparticles was achieved in solution containing 0.75 mg mL−1 of GOx and 0.05 mol L−1 of glucose. The influence of the enzymatic polymerization duration on the formation of PANI/GOx and Ppy/GOx composite nanoparticles was spectrophotometrically investigated. The most optimal duration for the enzymatic synthesis of PANI/GOx and Ppy/GOx composite nanoparticles was in the range of 48–96 h. It was determined that the diameter of formed PANI/GOx and Ppy/GOx composite nanoparticles depends on the duration of polymerization using dynamic light scattering technique (DLS), and it was in the range of 41–167 nm and 65–122 nm, when polymerization lasted from 16 to 120 h. View Full-Text
Keywords: glucose oxidase; polyaniline; polypyrrole; polythiophene; nanoparticles; polymerization; spectrophotometry glucose oxidase; polyaniline; polypyrrole; polythiophene; nanoparticles; polymerization; spectrophotometry
Show Figures

Graphical abstract

MDPI and ACS Style

German, N.; Popov, A.; Ramanaviciene, A.; Ramanavicius, A. Enzymatic Formation of Polyaniline, Polypyrrole, and Polythiophene Nanoparticles with Embedded Glucose Oxidase. Nanomaterials 2019, 9, 806.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop