The Effect of an External Magnetic Field on the Electrochemical Capacitance of Nanoporous Nickel for Energy Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Electrode Preparation
2.3. Electrochemical Measurements and Materials Characterization
3. Results and Discussion
3.1. The Comparasion of Electrochemistry Performances of Different Nanoporous Ni Samples
3.2. The Electrochemical Energy Storage Performance of np-Ni under Different Magnetic Fields
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Li, B.; Zheng, J.; Zhang, H.; Jin, L.; Yang, D.; Lv, H.; Shen, C.; Shellikeri, A.; Zheng, Y.; Gong, R.; et al. Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors. Adv. Mater. 2018, 30, 1705670. [Google Scholar] [CrossRef]
- Li, X.; Zhi, L. Graphene hybridization for energy storage applications. Chem. Soc. Rev. 2018, 47, 3189–3216. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Fang, Z.; Yue, Z.; Yan, C.; Yu, G. Holey 2D nanomaterials for electrochemical energy storage. Adv. Energy Mater. 2017, 8, 1702179. [Google Scholar] [CrossRef]
- Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854. [Google Scholar] [CrossRef]
- Zeng, Y.; Yu, M.; Meng, Y.; Fang, P.; Lu, X.; Tong, Y. Iron-based supercapacitor electrodes: advances and challenges. Adv. Energy Mater. 2016, 6, 1601053. [Google Scholar] [CrossRef]
- Wang, Y.H.; Dong, L.Y.; Lai, G.P.; Wei, M.; Jiang, X.B.; Bai, L.Z. Nitrogen-doped hierarchically porous carbons derived from polybenzoxazine for enhanced supercapacitor performance. Nanomaterials 2019, 9, 131. [Google Scholar] [CrossRef]
- Chu, X.; Huang, H.; Zhang, H.; Zhang, H.; Gu, B.; Su, H.; Liu, F.; Han, Y.; Wang, Z.; Chen, N.; et al. Electrochemically building three-dimensional supramolecular polymer hydrogel for flexible solid-state micro-supercapacitors. Electrochim. Acta 2019, 301, 136–144. [Google Scholar] [CrossRef]
- Ma, J.; Liu, W.; Zhang, S.; Ma, Z.; Song, P.; Yang, F.; Wang, X. A thin film flexible supercapacitor based on oblique angle deposited Ni/NiO nanowire arrays. Nanomaterials 2018, 8, 422. [Google Scholar] [CrossRef]
- Zheng, D.; Zhao, F.; Li, Y.; Qin, C.; Zhu, J.; Hu, Q.; Wang, Z.; Inoue, A. Flexible NiO micro-rods/nanoporous Ni/metallic glass electrode with sandwich structure for high performance supercapacitors. Electrochim. Acta 2019, 297, 767–777. [Google Scholar] [CrossRef]
- Zhu, J.; Zhu, M.; Wang, Z.; Hu, Q.; Wang, H.; Wang, Z.; Qin, C. Fabrication and electrochemical properties of sandwich-type nanoporous nickel/nickel oxide composite electrodes. Rare Met. Mater. Eng. 2018, 47, 3872–3879. [Google Scholar]
- Dai, S.; Wu, J.; Zhang, Y.; Yan, X. Effect of alloy composition on morphology, structure, and electrochemical properties of porous nickel. Ionics 2018, 24, 597–603. [Google Scholar] [CrossRef]
- Zhou, C.; Du, H.; Li, H.; Qian, W.; Liu, T. Electrode based on nanoporous (Co-Ni)@(CoO, NiO) nanocomposites with ultrahigh capacitance after activation. J. Alloy. Compd. 2019, 778, 239–246. [Google Scholar] [CrossRef]
- Lee, K.U.; Byun, J.Y.; Shin, H.J.; Kim, S.H. A high-performance supercapacitor based on polyaniline-nanoporous gold. J. Alloy. Compd. 2019, 779, 74–80. [Google Scholar] [CrossRef]
- Swiatkowska-Warkocka, Z.; Pyatenko, A.; Shimizu, Y.; Perzanowski, M.; Zarzycki, A.; Jany, B.R.; Marszalek, M. Tailoring of magnetic properties of NiO/Ni composite particles fabricated by pulsed laser irradiation. Nanomaterials 2018, 8, 790. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Sun, X.; Jiandong, P.; Lollar, C.; Qin, J.S.; Perry, Z.; Joseph, E.; Wang, X.; Fang, Y.; Bosch, M.; et al. PCN-250 under pressure: sequential phase transformation and the implications for MOF densification. Joule 2017, 1, 806–815. [Google Scholar] [CrossRef]
- Zhang, H.; An, C.; Yuan, A.; Deng, Q.; Ning, J. A non-conventional way to modulate the capacitive process on carbon cloth by mechanical stretching. Electrochem. Commun. 2018, 89, 43–47. [Google Scholar] [CrossRef]
- Tao, Z.; He, Z.; Zhang, G.; Lu, Y.; Lin, C.; Chen, Y.; Guo, H. Effect of low magnetic fields on the morphology and electrochemical properties of MnO2 films on nickel foams. J. Alloy. Compd. 2015, 644, 186–192. [Google Scholar]
- Lu, Y.; Zhu, T.; Zhang, G.; He, Z.; Lin, C.; Chen, Y.; Guo, H. Influence of magnetic fields on the morphology and pseudocapacitive properties of NiO on nickel foam. RSC Adv. 2015, 5, 99745–99753. [Google Scholar] [CrossRef]
- Muralidharan, N.; Brock, C.N.; Cohn, A.P.; Schauben, D.; Carter, R.E.; Oakes, L.; Walker, D.G.; Pint, C.L. Tunable mechanochemistry of lithium battery electrodes. ACS Nano 2017, 11, 6243–6251. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Zhang, T.; Lu, X.; Wang, W.; Qu, J.; Li, X. Controlled synthesis of 3D and 1D nickel nanostructures using an external magnetic field assisted solution-phase approach. J. Phys. Chem. C 2007, 111, 12663–12668. [Google Scholar] [CrossRef]
- Zhu, J.H.; Chen, M.J.; Wei, H.G.; Yerra, N.; Haldolaarachchige, N.; Luo, Z.P.; Young, D.P.; Ho, T.C.; Wei, S.Y.; Guo, Z.H. Magnetocapacitance in magnetic microtubular carbon nanocomposites under external magnetic field. Nano Energy 2014, 6, 180–192. [Google Scholar] [CrossRef]
- Dai, P.; Yan, T.; Hu, L.; Pang, Z.; Bao, Z.; Wu, M.; Li, G.; Fang, J.; Peng, Z. Phase engineering of cobalt hydroxides by magnetic fields for enhanced supercapacitor performance. J. Mater. Chem. A 2017, 5, 19203–19209. [Google Scholar] [CrossRef]
- Hu, J.; Shao, J.; Li, W.; Zhou, X. Magnetic-field-assisted hydrothermal synthesis of 2 × 2 tunnels of MnO2 nanostructures with enhanced supercapacitor performance. Crystengcomm 2014, 16, 9987–9991. [Google Scholar]
- Zeng, Z.; Liu, Y.; Zhang, W.; Chevva, H.; Wei, J. Improved supercapacitor performance of MnO2-electrospun carbon nanofibers electrodes by mT magnetic field. J. Power Sources 2017, 358, 22–28. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, M.; Qu, H.; Luo, Z.; Guo, Z. Magnetic field induced capacitance enhancement in graphene and magnetic graphene nanocomposites. Energy Environ. Sci. 2012, 6, 194–204. [Google Scholar] [CrossRef]
- Bund, A.; Koehler, S.; Kuehnlein, H.H.; Plieth, W. Magnetic field effects in electrochemical reactions. Electrochim. Acta 2003, 49, 147–152. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z.; Yang, M.; Deng, Q. The effect of external magnetic field on dealloying process of Ni-Al alloy in alkaline solution. Phys. Chem. Chem. Phys. 2017, 19, 18167–18171. [Google Scholar] [CrossRef]
- Huang, L.; Chen, D.; Ding, Y.; Feng, S.; Wang, Z.L.; Liu, M. Nickel-cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 2013, 13, 3135–3139. [Google Scholar] [CrossRef]
- Yuan, C.; Li, J.; Hou, L.; Zhang, X.; Shen, L.; Lou, X.W. Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv. Funct. Mater. 2012, 22, 4592–4597. [Google Scholar] [CrossRef]
- Xu, M.; Zhao, D.D.; Bao, S.J.; Li, H.L. Mesoporous amorphous MnO2 as electrode material for supercapacitor. J. Solid State Electrochem. 2007, 11, 1101–1107. [Google Scholar] [CrossRef]
- An, C.; Wang, Y.; Huang, Y.; Xu, Y.; Jiao, L.; Yuan, H. Porous NiCo2O4 nanostructures for high performance supercapacitors via a microemulsion technique. Nano Energy 2014, 10, 125–134. [Google Scholar] [CrossRef]
- Zheng, D.; Li, M.; Li, Y.; Qin, C.; Wang, Y.; Wang, Z. A Ni(OH)2 nanopetals network for high-performance supercapacitors synthesized by immersing Ni nanofoam in water. Beilstein J. Nanotechnol. 2019, 10, 281–293. [Google Scholar] [CrossRef] [PubMed]
- Kannan, V.; Kim, H.J.; Park, H.C.; Kim, H.S. Single-step direct hydrothermal growth of NiMoO4 nanostructured thin film on stainless steel for supercapacitor electrodes. Nanomaterials 2018, 8, 563. [Google Scholar] [CrossRef]
- Subramanian, V.; Hongwei, Z.; Robert, V.; Ajayan, P.M.; Bingqing, W. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J. Phys. Chem. B 2005, 109, 20207–20214. [Google Scholar] [CrossRef] [PubMed]
- An, C.; Liu, G.; Wang, Y.; Li, L.; Qiu, F.; Xu, Y.; Xu, C.; Ying, W.; Jiao, L.; Yuan, H. Porous nickel cobaltite nanorods: desired morphology inherited from coordination precursors and improved supercapacitive properties. RSC Adv. 2013, 3, 15382–15388. [Google Scholar] [CrossRef]
- Sun, P.; Yi, H.; Peng, T.Q.; Jing, Y.T.; Wang, R.J.; Wang, H.W.; Wang, X.F. Ultrathin MnO2 nanoflakes deposited on carbon nanotube networks for symmetrical supercapacitors with enhanced performance. J. Power Sources 2017, 341, 27–35. [Google Scholar] [CrossRef]
- Wang, G.; Xu, H.; Lu, L.; Zhao, H. Magnetization-induced double-layer capacitance enhancement in active carbon/Fe3O4 nanocomposites. J. Energy Chem. 2014, 23, 809–815. [Google Scholar] [CrossRef]
- Shang, C.Q.; Dong, S.M.; Wang, S.; Xiao, D.D.; Han, P.X.; Wang, X.G.; Gu, L.; Cui, G.L. Coaxial NixCo2x(OH)6x/TiN nanotube arrays as supercapacitor electrodes. ACS Nano 2013, 7, 5430–5436. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Q.; Xia, X.H.; Tu, J.P.; Mai, Y.J.; Shi, S.J.; Wang, X.L.; Gu, C.D. Self-assembled synthesis of hierarchically porous NiO film and its application for electrochemical capacitors. J. Power Sources 2012, 199, 413–417. [Google Scholar] [CrossRef]
- Lu, X.F.; Wang, A.L.; Xu, H.; He, X.J.; Tong, Y.X.; Li, G.R. High-performance supercapacitors based on MnO2 tube-in-tube arrays. J. Mater. Chem. A 2015, 3, 16560–16566. [Google Scholar] [CrossRef]
- Legeai, S.; Chatelut, M.; Vittori, O.; Chopart, J.P.; Aaboubi, O. Magnetic field influence on mass transport phenomena. Electrochim. Acta 2004, 50, 51–57. [Google Scholar] [CrossRef]
- Mohan, S.; Saravanan, G.; Bund, A. Role of magnetic forces in pulse electrochemical deposition of Ni-nanoAl2O3 composites. Electrochim. Acta 2012, 64, 94–99. [Google Scholar] [CrossRef]
B (mT) | Simulated Internal Resistance (Ohm) | ||
---|---|---|---|
- | Rs | Rct | Rleak |
0 | 1.62 | 1.96 | 20.70 |
300 | 1.44 | 1.80 | 21.52 |
500 | 1.03 | 1.66 | 23.10 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Han, Z.; Deng, Q. The Effect of an External Magnetic Field on the Electrochemical Capacitance of Nanoporous Nickel for Energy Storage. Nanomaterials 2019, 9, 694. https://doi.org/10.3390/nano9050694
Zhang H, Han Z, Deng Q. The Effect of an External Magnetic Field on the Electrochemical Capacitance of Nanoporous Nickel for Energy Storage. Nanomaterials. 2019; 9(5):694. https://doi.org/10.3390/nano9050694
Chicago/Turabian StyleZhang, Haixia, Zhifei Han, and Qibo Deng. 2019. "The Effect of an External Magnetic Field on the Electrochemical Capacitance of Nanoporous Nickel for Energy Storage" Nanomaterials 9, no. 5: 694. https://doi.org/10.3390/nano9050694
APA StyleZhang, H., Han, Z., & Deng, Q. (2019). The Effect of an External Magnetic Field on the Electrochemical Capacitance of Nanoporous Nickel for Energy Storage. Nanomaterials, 9(5), 694. https://doi.org/10.3390/nano9050694