Nonlinear Optical Response of Graphene Oxide Langmuir-Blodgett Film as Saturable Absorbers
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of GO SAs
2.3. Characterization of GO SAs
2.4. Laser Cavity
3. Results and Discussion
3.1. Characterization of LB-GO SAs Film
3.2. Nonlinear Optical Characteristics of LB-GO SA
3.3. LB-GO Q-Switched Laser
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Goldsmith, B.R.; Mitala, J.J.; Josue, J.; Castro, A.; Lerner, M.B.; Bayburt, T.H.; Khamis, S.M.; Jones, R.A.; Brand, J.G.; Sligar, S.G.; et al. Biomimetic chemical sensors using nanoelectronic readout of olfactory receptor proteins. ACS Nano 2017, 5, 5408–5416. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Wang, Z.L. Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics. Nat. Rev. Mater. 2016, 24, 23–24. [Google Scholar] [CrossRef]
- Nie, W.J.; Zhang, Y.X.; Yu, H.H.; Li, R.; He, R.Y.; Dong, N.N.; Wang, J.; Hübner, R.; Böttger, R.; Zhou, S.Q.; et al. Plasmonic nanoparticles embedded in single crystals synthesized by gold ion implantation for enhanced optical nonlinearity and efficient Q-switched lasing. Nanoscale 2018, 10, 4228–4236. [Google Scholar] [CrossRef] [PubMed]
- Seh, Z.W.; Kibsgaard, J.; Dickens, C.F.; Chorkendorff, I.; Nørskov, J.K.; Jaramillo, T.F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998. [Google Scholar] [CrossRef]
- Christensen, B.T.R.; Henriksen, M.R.; Schaffer, S.A.; Westergaard, P.G.; Tieri, D.; Ye, J.; Holland, M.J.; Thomsen, J.W. Nonlinear spectroscopy of Sr atoms in an optical cavity for laser stabilization. Phys. Rev. A 2015, 92, 053820. [Google Scholar] [CrossRef]
- Luu, T.T.; Garg, M.; Kruchinin, S.Y.; Moulet, A.; Hassan, M.T.; Goulielmakis, E. Extreme ultraviolet high-harmonic spectroscopy of solids. Nature 2015, 521, 498–502. [Google Scholar] [CrossRef] [PubMed]
- Ahmadivand, A.; Semmlinger, M.; Dong, L.L.; Gerislioglu, B.; Nordlander, P.; Halas, N.J. Toroidal Dipole-Enhanced Third Harmonic Generation of Deep Ultraviolet Light Using Plasmonic Meta-atoms. Nano Lett. 2019, 19, 605–611. [Google Scholar] [CrossRef]
- Chen, Z.D.; Wang, H.Y.; Wang, Y.G.; Lv, R.D.; Yang, X.Y.; Wang, J.; Li, L.; Ren, W. Improved optical damage threshold graphene Oxide/SiO2 absorber fabricated by sol-gel technique for mode-locked erbium-doped fiber Lasers. Carbon 2019, 144, 737–744. [Google Scholar] [CrossRef]
- Kim, J.; Kim, K.S.; Ryu, S.Y.; Kim, S. Degradation of optical properties of a film-type single-wall carbon nanotubes saturable absorber (SWNT-SA) with an Er-doped all-fiber laser. Opt. Express 2012, 20, 12966–12974. [Google Scholar]
- Lv, R.D.; Chen, Z.D.; Liu, S.C.; Wang, J.; Li, Y.F.; Wang, Y.G.; Wang, Y.S. Optical properties and applications of molybdenum disulfide/SiO2 saturable absorber fabricated by sol-del technique. Opt. Express 2019, 27, 6348–6356. [Google Scholar] [CrossRef]
- Song, S.J.; Shin, Y.C.; Lee, H.U.; Kim, B.; Han, D.W.; Lim, D. Dose-and Time-Dependent Cytotoxicity of Layered Black Phosphorus in Fibroblastic Cells. Nanomaterials 2018, 8, 408. [Google Scholar] [CrossRef]
- Jiang, G.; Miao, L.; Yi, J.; Huang, B.; Peng, W.; Zou, Y.; Huang, H.; Hu, W.; Zhao, C.; Wen, S. Ultrafast pulse generation from erbium-doped fifiber laser modulated by hybrid organic-inorganic halide perovskites. Appl. Phys. Lett. 2017, 110, 842. [Google Scholar] [CrossRef]
- Jhon, Y.I.; Koo, J.; Anasori, B.; Seo, M.; Lee, J.H.; Gogotsi, Y.; Jhon, Y.M. Metallic MXene Saturable Absorber for Femtosecond Mode-Locked Lasers. Adv. Mater. 2017, 29, 1702496. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Lv, R.D.; Wang, J.; Chen, Z.D.; Wang, H.Z.; Liu, S.C.; Ren, W.; Liu, W.J.; Wang, Y.G. Optical Nonlinearity of ZrS2 and Applications in Fiber Laser. Nanomaterials 2019, 9, 315. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.G.; Chen, H.R.; Wen, X.M.; Hsieh, W.F.; Tang, J. A highly efficient graphene oxide absorber for Q-switched Nd:GdVO4 lasers. Nanotechnology 2011, 22, 455203. [Google Scholar] [CrossRef][Green Version]
- Sirota, M.; Galun, E.; Sashchiuk, A.; Krupkin, V.; Glushko, A.; Lifshitz, E. IV-VI semiconductor nanocrystals for passive Q-switching of eye-safe laser. Proc. SPIE Int. Soc. Opt. Eng. 2003, 4970, 53–60. [Google Scholar]
- Luo, Z.Q.; Zhou, M.; Weng, J.; Huang, G.M.; Xu, H.Y.; Ye, C.C.; Cai, Z.P. Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser. Opt. Lett. 2010, 35, 3709–3711. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.T.; Chen, Y.; Zhao, C.J.; Zhang, H.; Wen, S.C. Switchable Dual-Wavelength Synchronously Q-Switched Erbium-Doped Fiber Laser Based on Graphene Saturable Absorber. IEEE Photonics J. 2012, 4, 869–876. [Google Scholar] [CrossRef]
- Li, L.; Jiang, S.Z.; Wang, Y.G.; Duan, L.N.; Mao, D.; Li, Z.; Man, B.Y.; Si, J.H. WS2/fluorine mica (FM) saturable absorbers for all-normal-dispersion mode-locked fiber laser. Opt. Express 2015, 23, 28698–28706. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, Y.G.; Gu, Y.Z.; Li, L.; Wang, J.; Yang, X.G.; Chen, Z.D. Titanium Dioxide Langmuir–Blodgett Film Saturable Absorber for Passively Q-switched Nd:GdVO4 Laser. IEEE Photonics J. 2019, 11, 1501110. [Google Scholar] [CrossRef]
- Deng, S.; Berry, V. Wrinkled, rippled and crumpled graphene: An overview of formation mechanism, electronic properties, and applications. Mater. Today 2016, 19, 197–212. [Google Scholar] [CrossRef]
- Luo, E.; Heun, S.; Kennedy, M.; Wollschläger, J.; Henzler, M. Surface roughness and conductivity of thin Ag films. Phys. Rev. B Condens. Matter Mater. Phys. 1994, 49, 4858. [Google Scholar] [CrossRef]
- Chen, S.; Li, Q.; Zhang, Q.; Qu, Y.; Ji, H.; Ruoff, R.S.; Cai, W. Thermal conductivity measurements of suspended graphene with and without wrinkles by micro-Raman mapping. Nanotechnology 2012, 23, 365701. [Google Scholar] [CrossRef]
- Silverberg, G.J.; Mcclelland, A.A.; Griesse-Nascimento, S.; Girabawe, C.; Kadow, J.P.; Mahadevan, L.; Vecitis, C.D. Controlling the Roughness of Langmuir-Blodgett Monolayers. J. Phys. Chem. B 2017, 121, 5078–5085. [Google Scholar] [CrossRef] [PubMed]
- Kong, B.S.; Geng, J.; Jung, H.T. Layer-by-layer assembly of graphene and gold nanoparticles by vacuum filtration and spontaneous reduction of gold ions. Chem. Commun. 2009, 16, 2174–2176. [Google Scholar] [CrossRef]
- Arco, L.G.D.; Zhang, Y.; Schlenker, C.W.; Ru, K.; Thompson, M.E.; Zhou, C.W. Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics. ACS Nano 2010, 4, 2865–2873. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, G.; Hedhili, M.N.; Zhang, H.G.; Wang, P. Three-dimensional assemblies of graphene prepared by a novel chemical reduction-induced self-assembly method. Nanoscale 2012, 4, 7038–7045. [Google Scholar] [CrossRef]
- Langmuir, I. The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc. 1917, 39, 1848–1906. [Google Scholar] [CrossRef]
- Blodgett, K.B. Films Built by Depositing Successive Monomolecular Layers on a Solid Surface. J. Am. Chem. Soc. 1935, 57, 1007–1022. [Google Scholar] [CrossRef]
- Mishra, R.; Nirala, N.R.; Pandey, R.K.; Ojha, R.P.; Prakash, R. Homogenous dispersion of MoS2 nanosheets in polyindole matrix at air-water interface assisted by Langmuir technique. Langmuir 2017, 33, 13572–13580. [Google Scholar] [CrossRef]
- Tao, A.; Kim, F.; Hess, C.; Goldberger, J.; He, R.; Sun, Y.; Xia, Y.; Yang, P. Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett. 2003, 3, 1229–1233. [Google Scholar] [CrossRef]
- Zheng, Q.; Lin, X.H.; Yousefi, N.; Yeung, K.K.; Li, Z.; Kim, J.K. Transparent conductive films consisting of ultralarge graphene sheets produced by Langmuir-Blodgett assembly. ACS Nano 2011, 5, 6039–6051. [Google Scholar] [CrossRef]
- Azad, I.; Ram, M.K.; Goswami, D.Y.; Stefanakos, E. Fabrication and characterization of ZnO Langmuir–Blodgett film and its use in metal–insulator–metal tunnel diode. Langmuir 2016, 32, 8307–8314. [Google Scholar] [CrossRef]
- Bonaccorso, F.; Sun, Z. Solution processing of graphene, topological insulators and other 2d crystals for ultrafast photonics. Opt. Mater. Express 2014, 4, 63–78. [Google Scholar] [CrossRef]
- Wang, K.; Wang, J.; Fan, J.; Lotya, M.; O’Neill, A.; Fox, D.; Feng, Y.; Zhang, X.; Jiang, B.; Zhao, Q.; et al. Ultrafast Saturable Absorption of Two-Dimensional MoS2 Nanosheets. ACS Nano 2013, 7, 9260–9267. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.B.; Miao, L.L.; Guo, Z.N.; Qi, X.; Zhao, C.J.; Zhang, H.; Wen, S.C.; Tang, D.Y.; Fan, D.Y. Broadband nonlinear optical response in multi-layer black phosphorus: An emerging infrared and mid-infrared optical material. Opt. Express 2015, 23, 11183–11194. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Xing, C.; Huang, W.; Fan, T.; Li, Z.; Zhao, J.; Xiang, Y.; Guo, Z.; Li, J.; Yang, Z.; et al. Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquid-Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability. Adv. Funct. Mater. 2018, 28, 1705833. [Google Scholar] [CrossRef]
- Pandey, R.K.; Upadhyay, C.; Prakash, R. Pressure dependent surface morphology and Raman studies of semicrystalline poly (indole-5-carboxylic acid) by the Langmuir–Blodgett technique. RSC Adv. 2013, 3, 15712–15718. [Google Scholar] [CrossRef]
- Mishra, R.; Pandey, R.K.; Upadhyay, C.; Prakash, R. Self-Assembly of Solution-Processable Polyindole via Langmuir-Blodgett Technique: An Insight to Layer-Dependent Charge Transport and Electronic Parameters. ChemistrySelect 2017, 2, 6009–6015. [Google Scholar] [CrossRef]
- Kostiuk, D.; Bodik, M.; Siffalovic, P.; Matej, J.; Halahovets, Y.; Hodas, M.; Pelach, M.; Hulman, M.; Spitalsky, Z.; Omastova, M.; et al. Reliable determination of the few-layer graphene oxide thickness using Raman spectroscopy. J. Raman Spectrosc. 2016, 47, 391–394. [Google Scholar] [CrossRef]
- Sun, Y.J.; Tu, C.Y.; You, Z.Y.; Liao, J.H.; Wang, Y.Q.; Xu, J.L. One-dimensional Bi2Te3 nanowire based broadband saturable absorber for passively Q-switched Yb-doped and Er-doped solid state lasers. Opt. Mater. Express 2018, 8, 165–174. [Google Scholar] [CrossRef]
- Hu, M.T.; Liu, J.H.; Tian, J.R.; Dou, Z.Y.; Song, Y.R. Generation of Q-switched pulse by Bi2Se3 topological insulator in Yb:KGW laser. Laser Phys. Lett. 2014, 11, 115806. [Google Scholar] [CrossRef]
- Li, X.; Xu, J.; Wu, Y.; He, J.; Hao, X. Large energy laser pulses with high repetition rate by graphene Q-switched solid-state laser. Opt. Express 2011, 19, 9950–9955. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Chen, X.; Zhang, H.; Hu, X.; Wang, Z.; Wang, J.; Zhuang, S.; Jiang, M. Large energy pulse generation modulated by graphene epitaxially grown on silicon carbide. ACS Nano 2010, 4, 7582–7586. [Google Scholar] [CrossRef] [PubMed]
- Lou, F.; Zhao, R.; He, J.; Jia, Z.; Su, X.; Wang, Z.; Hou, J.; Zhang, B. Nanosecond-pulsed, dual-wavelength, passively Q-switched ytterbium-doped bulk laser based on few-layer MoS2 saturable absorber. Photonics Res. 2015, 3, A25–A29. [Google Scholar] [CrossRef]
- Xu, B.; Cheng, Y.J.; Wang, Y.; Huang, Y.Z.; Peng, J.; Luo, Z.Q.; Xu, H.Y.; Cai, Z.P.; Weng, J.; Moncorgé, R. Passively Q-switched Nd:YAlO3 nanosecond laser using MoS2 as saturable absorber. Opt. Express 2014, 22, 28934–28940. [Google Scholar] [CrossRef]
- Men, S.J.; Liu, Z.J.; Zhang, X.Y.; Wang, Q.P.; Shen, H.B.; Bai, F.; Gao, L.; Xu, X.G.; Wei, R.S.; Chen, X.F. A graphene passively Q-switched Nd:YAG ceramic laser at 1123 nm. Laser Phys. Lett. 2013, 10, 035803. [Google Scholar] [CrossRef]








| SA Type | Laser Type | Η (%) | Λ (nm) | Τ (ns) | P (W) | E (µJ) | Frep (kHz) | Ref. |
|---|---|---|---|---|---|---|---|---|
| Bi2Te3 | Yb:GAB | 24.7 | 1064 | 303 | 0.213 | 1.2 | 178.2 | [41] |
| Bi2Te3 | Yb:KGW | 8.8 | 1041 | 1600 | 0.439 | 2.64 | 166.7 | [42] |
| Graphene | Nd:GdVO4 | 37 | 1063 | 105 | 2.3 | 3.2 | 704 | [43] |
| Graphene | Nd:YAG | - | 1064 | 161 | 0.105 | 0.159 | 660 | [44] |
| MoS2 | Yb:LGGG | 24 | 1025.2 | 182 | 0.6 | 1.8 | 333 | [45] |
| MoS2 | Nd:YAlO3 | 38.4 | 1079.5 | 227 | 0.26 | 1.11 | 232.5 | [46] |
| GO | Nd:GdVO4 | 17 | 1064 | 104 | 1.22 | 2 | 600 | [15] |
| Graphene | Nd:YAG | 7.8 | 1123 | 875.7 | 0.332 | - | 46.8 | [47] |
| GO-22 | Nd:YAG | 40.7 | 1064 | 202 | 1.03 | 0.89 | 1160 | Our work |
| GO-38 | Nd:YAG | 43.7 | 1064 | 156 | 1.313 | 1.04 | 1256 | Our work |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Wang, Y.; Wang, T.; Li, G.; Lou, R.; Cheng, G.; Bai, J. Nonlinear Optical Response of Graphene Oxide Langmuir-Blodgett Film as Saturable Absorbers. Nanomaterials 2019, 9, 640. https://doi.org/10.3390/nano9040640
Wang J, Wang Y, Wang T, Li G, Lou R, Cheng G, Bai J. Nonlinear Optical Response of Graphene Oxide Langmuir-Blodgett Film as Saturable Absorbers. Nanomaterials. 2019; 9(4):640. https://doi.org/10.3390/nano9040640
Chicago/Turabian StyleWang, Jiang, Yonggang Wang, Taijin Wang, Guangying Li, Rui Lou, Guanghua Cheng, and Jing Bai. 2019. "Nonlinear Optical Response of Graphene Oxide Langmuir-Blodgett Film as Saturable Absorbers" Nanomaterials 9, no. 4: 640. https://doi.org/10.3390/nano9040640
APA StyleWang, J., Wang, Y., Wang, T., Li, G., Lou, R., Cheng, G., & Bai, J. (2019). Nonlinear Optical Response of Graphene Oxide Langmuir-Blodgett Film as Saturable Absorbers. Nanomaterials, 9(4), 640. https://doi.org/10.3390/nano9040640

