Next Article in Journal
Thermal Reduction of Graphene Oxide Mitigates Its In Vivo Genotoxicity Toward Xenopus laevis Tadpoles
Previous Article in Journal
Rheological Tunability of Perovskite Precursor Solutions: From Spin Coating to Inkjet Printing Process
Article Menu
Issue 4 (April) cover image

Export Article

Open AccessArticle
Nanomaterials 2019, 9(4), 583;

TiO2 Nanostructures for Photoelectrocatalytic Degradation of Acetaminophen

Ingeniería Electroquímica y Corrosión (IEC), Departamento de Ingeniería Química y Nuclear, ETSI Industriales, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
Authors to whom correspondence should be addressed.
Received: 8 March 2019 / Revised: 29 March 2019 / Accepted: 2 April 2019 / Published: 9 April 2019
PDF [1766 KB, uploaded 9 April 2019]


Advanced oxidation processes driven by renewable energy sources are gaining attention in degrading organic pollutants in waste waters in an efficient and sustainable way. The present work is focused on a study of TiO2 nanotubes as photocatalysts for photoelectrocatalytic (PEC) degradation of acetaminophen (AMP) at different pH (3, 7, and 9). In particular, different TiO2 photocatalysts were synthetized by stirring the electrode at different Reynolds numbers (Res) during electrochemical anodization. The morphology of the photocatalysts and their crystalline structure were evaluated by field emission scanning electron microscopy (FESEM) and Raman confocal laser microscopy (RCLM). These analyses revealed that anatase TiO2 nanotubes were obtained after anodization. In addition, photocurrent densities versus potential curves were performed in order to characterize the electrochemical properties of the photocatalysts. These results showed that increasing the Re during anodization led to an enhancement in the obtained photocurrents, since under hydrodynamic conditions part of the initiation layer formed over the tubes was removed. PEC degradation of acetaminophen was followed by ultraviolet-visible absorbance measurements and chemical oxygen demand tests. As drug mineralization was the most important issue, total organic carbon measurements were also carried out. The statistical significance analysis established that acetaminophen PEC degradation improved as hydrodynamic conditions linearly increased in the studied range (Re from 0 to 600). Additionally, acetaminophen conversion had a quadratic behavior with respect to the reaction pH, where the maximum conversion value was reached at pH 3. However, in this case, the diversity of the byproducts increased due to a different PEC degradation mechanism. View Full-Text
Keywords: acetaminophen; photoelectrodegradation; pH; nanostructures; titanium dioxide; anodization acetaminophen; photoelectrodegradation; pH; nanostructures; titanium dioxide; anodization

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material


Share & Cite This Article

MDPI and ACS Style

Borràs-Ferrís, J.; Sánchez-Tovar, R.; Blasco-Tamarit, E.; Muñoz-Portero, M.J.; Fernández-Domene, R.M.; García-Antón, J. TiO2 Nanostructures for Photoelectrocatalytic Degradation of Acetaminophen. Nanomaterials 2019, 9, 583.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Nanomaterials EISSN 2079-4991 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top