Ecotoxicological Assessment of Thermally- and Hydrogen-Reduced Graphene Oxide/TiO2 Photocatalytic Nanocomposites Using the Zebrafish Embryo Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of Photocatalytic Nanocomposites
2.3. Zebrafish Embryos’ Culture
2.4. Acute Toxicity (Acutoxicity) Assays
2.5. Zebrafish Embryo Imaging
2.6. Cardiotoxicity Assay
2.7. Locomotion (Neuromuscular Toxicity) Assay
2.8. Hatching Rate Assay
2.9. Haemoglobin Staining
2.10. Statistical Analysis
3. Results and Discussion
3.1. General Acutoxicity Assessment (Median Lethal Concentration (LC50), No Observed Effect Concentration (NOEC), and Lowest Observed Effect Concentration (LOEC))
3.2. Quantitative Assessment of Specific Teratogenic Phenotype Exerted by Thermally-Reduced Graphene Oxide/TiO2 Semiconductor Photocatalyst (RGOTi) and Hydrogen-Reduced Graphene Oxide/TiO2 Semiconductor Photocatalyst (H2RGOTi)
3.3. Assessment of RGOTi and H2RGOTi Potential Cardiotoxicity by Heart Rate Quantitation
3.4. Assessment of RGOTi and H2RGOTi Potential Toxicity on Neuromuscular Activity by Locomotion (Tail Coiling) Assay
3.5. Assessment of RGOTi and H2RGOTi Potential Toxicity on Hematopoietic Activity Using O-Dianisidine Staining
3.6. Hatching Rate
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wu, Z.; Cong, Y.; Zhou, M.; Ye, Q.; Tan, T. Removal of phenolic compound by electroassisted advanced process for wastewater purification. Korean J. Chem. Eng. 2002, 19, 866–870. [Google Scholar] [CrossRef]
- Ortiz-Gomez, A.; Serrano-Rosales, B.; Salaices, M.; de Lasa, H. Photocatalytic oxidation of phenol: Reaction network, kinetic modelling, and parameter estimation. Ind. Eng. Chem. Res. 2007, 46, 7394–7409. [Google Scholar] [CrossRef]
- Tian, M.; Wu, G.; Adams, B.; Wen, J.; Chen, A. Kinetics of photoelectrocatalytic degradation of nitrophenols on nanostructured TiO2 electrodes. J. Phys. Chem. C 2008, 112, 825–831. [Google Scholar] [CrossRef]
- Yang, J.; Dai, J.; Chen, C.; Zhao, J. Effects of hydroxyl radicals and oxygen species on the 4-chlorophenol degradation by photoelectrocatalytic reactions with TiO2-film electrodes. J. Photochem. Photobiol. A 2009, 208, 66–77. [Google Scholar] [CrossRef]
- Pera-Titus, M.; García-Molina, V.; Baños, M.A.; Giménez, J.; Esplugas, S. Degradation of chlorophenols by means of advanced oxidation processes: A general review. Appl. Catal. B 2004, 47, 219–256. [Google Scholar] [CrossRef]
- Tan, T.K.; Khiew, P.S.; Chiu, W.S.; Radiman, S.; Abd-Shukor, R.; Huang, N.M.; Lim, H.N. Photodegradation of Phenol Red in the Presence of ZnO Nanoparticles. Int. J. Chem. Mol. Nucl. Mater. Metall. Eng. 2011, 5, 613–618. [Google Scholar]
- Akbal, F.; Nur Onar, A. Photocatalytic Degradation of Phenol. Environ. Monit. Assess. 2003, 83, 295–302. [Google Scholar] [CrossRef]
- Wei, Z.; Liang, F.; Liu, Y.; Luo, W.; Wang, J.; Yao, W.; Zhu, Y. Photoelectrocatalytic degradation of phenol-containing wastewater by TiO2/g-C3N4 hybrid heterostructure thin film. Appl. Catal. B Environ. 2017, 201, 600–606. [Google Scholar] [CrossRef]
- Palmisano, G.; Augugliaro, V.; Pagliarob, M.; Palmisano, L. Photocatalysis: A promising route for 21st century organic chemistry. Chem. Commun. 2007, 3425–3437. [Google Scholar] [CrossRef]
- Abdel Aal, A.; Mahmoud, S.; Aboul-Gheit, A. Sol–Gel and thermally evaporated nanostructured thin ZnO films for photocatalytic degradation of trichlorophenol. Nanoscale Res. Lett. 2009, 4, 627–634. [Google Scholar] [CrossRef]
- Rojas, M.R.; Leung, C.; Whitley, D.; Zhu, Y.; Arnold, R.G.; Sáez, A.E. Advanced oxidation of trace organics in water by hydrogen peroxide solar photolysis. Ind. Eng. Chem. Res. 2011, 50, 12479–12487. [Google Scholar] [CrossRef]
- Al-Kandari, H.; Abdullah, A.M.; Al-Kandari, S.; Mohamed, A.M. Effect of the graphene oxide reduction method on the photocatalytic and electrocatalytic activities of reduced graphene oxide/TiO2 composite. RSC Adv. 2015, 5, 71988–71998. [Google Scholar] [CrossRef]
- Liu, L.; Liu, H.; Zhao, Y.-P.; Wang, Y.; Duan, Y.; Gao, G.; Ge, M.; Chen, W. Directed Synthesis of Hierarchical Nanostructured TiO2 Catalysts and their Morphology-Dependent Photocatalysis for Phenol Degradation. Environ. Sci. Technol. 2008, 42, 2342–2348. [Google Scholar] [CrossRef] [PubMed]
- Nagaveni, K.; Sivalingam, G.; Hegde, M.S.; Madras, G. Photocatalytic degradation of organic compounds over combustion-synthesized nano-TiO2. Environ. Sci. Technol. 2004, 38, 1600–1604. [Google Scholar] [CrossRef]
- Di Paola, A.; Cufalo, G.; Addamo, M.; Bellardita, M.; Campostrini, R.; Ischia, M.; Ceccato, R.; Palmisano, L. Photocatalytic activity of nanocrystalline TiO2 (brookite, rutile and brookite-based) powders prepared by thermohydrolysis of TiCl4 in aqueous chloride solutions. Colloids Surf. A 2008, 317, 366–376. [Google Scholar] [CrossRef]
- Wang, W.; Silva, C.G.; Faria, J.L. Photocatalytic degradation of Chromotrope 2R using nanocrystalline TiO2/activated-carbon composite catalysts. Appl. Catal. B Environ. 2007, 70, 470–478. [Google Scholar] [CrossRef]
- Al-Kandari, H.; Abdullah, A.M.; Al-Kandari, S.; Mohamed, A.M. Synergistic Effect of O3 and H2O2 on the Visible Photocatalytic Degradation of Phenolic Compounds Using TiO2/Reduced Graphene Oxide Nanocomposite. Sci. Adv. Mater. 2017, 9, 739–746. [Google Scholar] [CrossRef]
- Fu, D.; Han, G.; Liu, F.; Xiao, Y.; Wang, H.; Liu, R.; Liu, C. Visible-light enhancement of methylene blue photodegradation by graphitic carbon nitride-titania composites. Mater. Sci. Semicond. Process. 2014, 27, 966–974. [Google Scholar] [CrossRef]
- Al-Kandari, H.; Abdullah, A.M.; Ahmad, Y.H.; Al-Kandari, S.; AlQaradawi, S.Y.; Mohamed, A.M. An efficient eco advanced oxidation process for phenol mineralization using a 2D/3D nanocomposite photocatalyst and visible light irradiations. Sci. Rep. 2017, 7, 9898. [Google Scholar] [CrossRef]
- Al-Kandari, H.; Abdullah, A.M.; Mohamed, A.M.; Al-Kandari, S. Enhanced photocatalytic degradation of a phenolic compounds’ mixture using a highly efficient TiO2/reduced graphene oxide nanocomposite. J. Mater. Sci. 2016, 51, 8331–8345. [Google Scholar] [CrossRef]
- Abdullah, A.M.; Al-Thani, N.J.; Tawbi, K.; Al-Kandari, H. Carbon/nitrogen-doped TiO2: New synthesis route, characterization and application for phenol degradation. Arab. J. Chem. 2016, 9, 229–237. [Google Scholar] [CrossRef]
- Lu, X.; Wang, Q.; Cui, D. Preparation and photocatalytic properties of g-C3N4/TiO2 hybrid composite. J. Mater. Sci. Technol. 2010, 26, 925–930. [Google Scholar] [CrossRef]
- Luo, L.-J.; Zhang, X.-J.; Ma, F.-J.; Zhang, A.L.; Bian, L.-C.; Pan, X.-J.; Jiang, F.-Z. Photocatalytic degradation of bisphenol A by TiO2-reduced graphene oxide nanocomposites. React. Kinet. Mech. Catal. 2015, 114, 311–322. [Google Scholar] [CrossRef]
- Bhanvase, B.A.; Shende, T.P.; Sonawane, S.H. A review on graphene—TiO2 and doped graphene–TiO2 nanocomposite photocatalyst for water and wastewater treatment. Environ. Technol. Rev. 2017, 6, 1–14. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, S.; Huo, X.; Xia, R.; Muhire, E.; Gao, M. Facile preparation of a TiO2 quantum dot/graphitic carbon nitride heterojunction with highly efficient photocatalytic activity. Nanotechnology 2018, 29, 205702. [Google Scholar] [CrossRef]
- Al-Kandari, H.; Abdullah, A.M.; Mohamed, A.M.; Al-Kandari, S. Photocatalysis of TiO2-Supported Graphene Oxide and its Reduced form towards Phenol degradation. ECS Trans. 2015, 64, 1–12. [Google Scholar] [CrossRef]
- Choi, J.S.; Kim, R.O.; Yoon, S.; Kim, W.K. Developmental Toxicity of Zinc Oxide Nanoparticles to Zebrafish (Danio rerio): A Transcriptomic Analysis. PLOS ONE 2016, 11, e0160763. [Google Scholar] [CrossRef]
- Kteeba, S.M.; El-Adawi, H.I.; El-Rayis, O.A.; El-Ghobashy, A.E.; Schuld, J.L.; Svoboda, K.R.; Guo, L. Zinc oxide nanoparticle toxicity in embryonic zebrafish: Mitigation with different natural organic matter. Environ. Pollut. 2017, 230, 1125–1140. [Google Scholar] [CrossRef]
- Bai, W.; Zhang, Z.; Tian, W.; He, X.; Ma, Y.; Zhao, Y.; Chai, Z. Toxicity of zinc oxide nanoparticles to zebrafish embryo: A physicochemical study of toxicity mechanism. J. Nanopart. Res. 2010, 12, 1645–1654. [Google Scholar] [CrossRef]
- Younes, N.; Salem, R.; Al-Asmakh, M.; Altamash, T.; Pintus, G.; Khraisheh, M.; Nasrallah, G.K. Toxicity evaluation of selected ionic liquid compounds on embryonic development of Zebrafish. Ecotoxicol. Environ. Saf. 2018, 161, 17–24. [Google Scholar] [CrossRef]
- Nasrallah, G.K.; Al-Asmakh, M.; Rasool, K.; Mahmoud, K.A. Ecotoxicological Assessment of Ti3C2Tx (MXene) Using Zebrafish Embryo Model. Environ. Sci. Nano 2018, 5, 1002–1011. [Google Scholar] [CrossRef]
- Korenbrot, J.I.; Mehta, M.; Tserentsoodol, N.; Postlethwait, J.H.; Rebrik, T.I. EML1 (CNG-Modulin) Controls Light Sensitivity in Darkness and under Continuous Illumination in Zebrafish Retinal Cone Photoreceptors. J. Neurosci. 2013, 33, 17763–17776. [Google Scholar] [CrossRef] [PubMed]
- Rieger, S. Dechorionation of Zebrafish Embryos with Pronase for Metronidazole-Mediated β-Cell Ablation; The Diabetic Complications Consortium: Bethesda, MD, USA, 2013. [Google Scholar]
- Rasool, K.; Nasrallah, G.K.; Younes, N.; Pandey, R.P.; Rasheed, P.A.; Mahmoud, K.A. “Green” ZnO-Interlinked Chitosan Nanoparticles for the Efficient Inhibition of Sulfate-Reducing Bacteria in Inject Seawater. ACS Sustain. Chem. Eng. 2018, 6, 3896–3906. [Google Scholar] [CrossRef]
- Gheyath, K.N.; Yu, Z.; Moustafa, M.Z.; Hesham, M.I.; Areej, A.; Rafael, M.P.; Kholoud, E.A.; Ahmed, A.; Yonghui, D. A systematic investigation of the bio-toxicity of core-shell magnetic mesoporous silica microspheres using zebrafish model. Microporous Mesoporous Mater. 2018, 265, 195–201. [Google Scholar]
- Westerfield, M. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio Rerio); University of Oregon Press: Eugene, OR, USA, 2007. [Google Scholar]
- Lemieux, S.; Lesage, M.; Bergeron, J.; Prud’Homme, D.; Després, J.P. Comparison of two techniques for measurement of visceral adipose tissue cross-sectional areas by computed tomography. Am. J. Hum. Biol. 1999, 11, 61–68. [Google Scholar] [CrossRef]
- Fernández-Murray, J.P.; Prykhozhij, S.V.; Dufay, J.N.; Steele, S.L.; Gaston, D.; Nasrallah, G.K.; Coombs, A.J.; Liwski, R.S.; Fernandez, C.V.; Berman, J.N. Glycine and folate ameliorate models of congenital sideroblastic anemia. PLoS Genet. 2016, 12, e1005783. [Google Scholar] [CrossRef]
- OECD. OECD Guideline for the Testing of Chemicals; OECD: Paris, France, 2012. [Google Scholar]
- Hallare, A.V.; Köhler, H.R.; Triebskorn, R. Developmental toxicity and stress protein responses in zebrafish embryos after exposure to diclofenac and its solvent, DMSO. Chemosphere 2004, 56, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Teh, C.; Sreejith, S.; Zhu, L.; Kwok, A.; Fang, W.; Ma, X.; Nguyen, K.T.; Korzh, V.; Zhao, Y. Functional mesoporous silica nanoparticles for photothermal-controlled drug delivery in vivo. Angew. Chem. Int. Ed. Engl. 2012, 51, 8373–8377. [Google Scholar] [CrossRef]
- McKim, J.M. Evaluation of Tests with Early Life Stages of Fish for Predicting Long-Term Toxicity. J. Fish. Res. Board Can. 1977, 34, 1148–1154. [Google Scholar] [CrossRef]
- Luckenbach, T.; Kilian, M.; Triebskorn, R.; Oberemm, A. Fish early life stage tests as a tool to assess embryotoxic potentials in small streams. J. Aquat. Ecosyst. Stress Recover. 2001, 8, 355–370. [Google Scholar] [CrossRef]
- Eaton, J.G.; McKim, J.M.; Holcombe, G.W. Metal toxicity to embryos and larvae of seven freshwater fish species—i. cadmium. Bull. Environ. Contam. Toxicol. 1978, 19, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Cornet, C.; Calzolari, S.; Miñana-Prieto, R.; Dyballa, S.; van Doornmalen, E.; Rutjes, H.; Savy, T.; D’Amico, D.; Terriente, J. ZeGlobalTox: An Innovative Approach to Address Organ Drug Toxicity Using Zebrafish. Int. J. Mol. Sci. 2017, 18, 864. [Google Scholar] [CrossRef] [PubMed]
- McCollum, C.W.; Ducharme, N.A.; Bondesson, M.; Gustafsson, J.A. Developmental toxicity screening in zebrafish. Birth Defects Res. Part C Embryo Today Rev. 2011, 93, 67–114. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, J.K.; Davis, J.W.; Incardona, J.P.; Stark, J.D.; Anulacion, B.F.; Scholz, N.L. Zebrafish and clean water technology: Assessing soil bioretention as a protective treatment for toxic urban runoff. Sci. Total Environ. 2014, 500–501, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Gundala, H.P. Developmental toxicity of deltamethrin and 3-phenoxybenzoic acid in embryo–larval stages of zebrafish (Danio rerio) AU—Kuder, Reshma Shabnam. Toxicol. Mech. Methods 2018, 28, 415–422. [Google Scholar] [CrossRef]
- Abou-Saleh, H.; Younes, N.; Rasool, K.; Younis, H.M.; Prieto, M.R.; Yassine, M.H.; Mahmoud, A.K.; Pintus, G.; Nasrallah, K.G. Impaired Liver Size and Compromised Neurobehavioral Activity are Elicited by Chitosan Nanoparticles in the Zebrafish Embryo Model. Nanomaterials 2019, 9, 122. [Google Scholar] [CrossRef]
- Zakaria, Z.Z.; Benslimane, F.M.; Nasrallah, G.K.; Shurbaji, S.; Younes, N.N.; Mraiche, F.; Da’as, S.I.; Yalcin, H.C. Using Zebrafish for Investigating the Molecular Mechanisms of Drug-Induced Cardiotoxicity. BioMed Res. Int. 2018, 2018, 1642684. [Google Scholar] [CrossRef]
- Goldman, D.; Hankin, M.; Li, Z.; Dai, X.; Ding, J. Transgenic zebrafish for studying nervous system development and regeneration. Transgenic Res. 2001, 10, 21–33. [Google Scholar] [CrossRef]
- Basnet, R.M.; Guarienti, M.; Memo, M. Zebrafish Embryo as an In Vivo Model for Behavioral and Pharmacological Characterization of Methylxanthine Drugs. Int. J. Mol. Sci. 2017, 18, 596. [Google Scholar] [CrossRef]
- McKeown, K.A.; Downes, G.B.; Hutson, L.D. Modular Laboratory Exercises to Analyze the Development of Zebrafish Motor Behavior. Zebrafish 2009, 6, 179–185. [Google Scholar] [CrossRef]
- Carvalho, P.M.; Felício, M.R.; Santos, N.C.; Gonçalves, S.; Domingues, M.M. Application of Light Scattering Techniques to Nanoparticle Characterization and Development. Front. Chem. 2018, 6, 237. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A.M.; Desmond, D.; Kyzar, E.; Gaikwad, S.; Roth, A.; Riehl, R.; Collins, C.; Monnig, L.; Green, J.; Kalueff, A.V. Perspectives of zebrafish models of epilepsy: What, how and where next? Brain Res. Bull. 2012, 87, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Kalueff, A.V.; Gebhardt, M.; Stewart, A.M.; Cachat, J.M.; Brimmer, M.; Chawla, J.S.; Craddock, C.; Kyzar, E.J.; Roth, A.; Landsman, S.; et al. Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish 2013, 10, 70–86. [Google Scholar] [CrossRef] [PubMed]
- Baraban, S.C.; Taylor, M.R.; Castro, P.A.; Baier, H. Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience 2005, 131, 759–768. [Google Scholar] [CrossRef] [PubMed]
- Abu Bakar, N.; Mohd Sata, N.S.; Ramlan, N.F.; Wan Ibrahim, W.N.; Zulkifli, S.Z.; Che Abdullah, C.A.; Ahmad, S.; Amal, M.N. Evaluation of the neurotoxic effects of chronic embryonic exposure with inorganic mercury on motor and anxiety-like responses in zebrafish (Danio rerio) larvae. Neurotoxicol. Teratol. 2017, 59, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Leet, J.K.; Lindberg, C.D.; Bassett, L.A.; Isales, G.M.; Yozzo, K.L.; Raftery, T.D.; Volz, D.C. High-content screening in zebrafish embryos identifies butafenacil as a potent inducer of anemia. PLOS ONE 2014, 9, e104190. [Google Scholar] [CrossRef] [PubMed]
- Paffett-Lugassy, N.N.; Zon, L.I. Analysis of hematopoietic development in the zebrafish. In Developmental Hematopoiesis; Humana Press: Totowa, NJ, USA, 2005; pp. 171–198. [Google Scholar]
- Gellert, G.; Heinrichsdorff, J. Effect of age on the susceptibility of zebrafish eggs to industrial wastewater. Water Res. 2001, 35, 3754–3757. [Google Scholar] [PubMed]
- Stones, D.H.; Fehr, A.G.J.; Thompson, L.; Rocha, J.; Perez-Soto, N.; Madhavan, V.T.P.; Voelz, K.; Krachler, A.M. Zebrafish (Danio rerio) as a Vertebrate Model Host to Study Colonization, Pathogenesis, and Transmission of Foodborne Escherichia coli O157. mSphere 2017, 2, e00365-17. [Google Scholar] [CrossRef] [PubMed]
- Schoots, A.F.; Meijer, R.C.; Denucé, J.M. Dopaminergic regulation of hatching in fish embryos. Dev. Biol. 1983, 100, 59–63. [Google Scholar] [CrossRef]
- Hagenmaier, H.E. The hatching process in fish embryos. IV. The enzymological properties of a highly purified enzyme (chorionase) from the hatching fluid of the rainbow trout, Salmo gairdneri Rich. Comp. Biochem. Physiol. B 1974, 49, 313–324. [Google Scholar] [CrossRef]
- Harbawi, M. Toxicity Measurement of Imidazolium Ionic Liquids Using Acute Toxicity Test. Procedia Chem. 2014, 9, 40–52. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Kandari, H.; Younes, N.; Al-Jamal, O.; Zakaria, Z.Z.; Najjar, H.; Alserr, F.; Pintus, G.; Al-Asmakh, M.A.; Abdullah, A.M.; Nasrallah, G.K. Ecotoxicological Assessment of Thermally- and Hydrogen-Reduced Graphene Oxide/TiO2 Photocatalytic Nanocomposites Using the Zebrafish Embryo Model. Nanomaterials 2019, 9, 488. https://doi.org/10.3390/nano9040488
Al-Kandari H, Younes N, Al-Jamal O, Zakaria ZZ, Najjar H, Alserr F, Pintus G, Al-Asmakh MA, Abdullah AM, Nasrallah GK. Ecotoxicological Assessment of Thermally- and Hydrogen-Reduced Graphene Oxide/TiO2 Photocatalytic Nanocomposites Using the Zebrafish Embryo Model. Nanomaterials. 2019; 9(4):488. https://doi.org/10.3390/nano9040488
Chicago/Turabian StyleAl-Kandari, Halema, Nadin Younes, Ola Al-Jamal, Zain Z. Zakaria, Huda Najjar, Farah Alserr, Gianfranco Pintus, Maha A. Al-Asmakh, Aboubakr M. Abdullah, and Gheyath K. Nasrallah. 2019. "Ecotoxicological Assessment of Thermally- and Hydrogen-Reduced Graphene Oxide/TiO2 Photocatalytic Nanocomposites Using the Zebrafish Embryo Model" Nanomaterials 9, no. 4: 488. https://doi.org/10.3390/nano9040488
APA StyleAl-Kandari, H., Younes, N., Al-Jamal, O., Zakaria, Z. Z., Najjar, H., Alserr, F., Pintus, G., Al-Asmakh, M. A., Abdullah, A. M., & Nasrallah, G. K. (2019). Ecotoxicological Assessment of Thermally- and Hydrogen-Reduced Graphene Oxide/TiO2 Photocatalytic Nanocomposites Using the Zebrafish Embryo Model. Nanomaterials, 9(4), 488. https://doi.org/10.3390/nano9040488