New Insights about CuO Nanoparticles from Inelastic Neutron Scattering
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Sundaresan, A.; Bhargavi, R.; Rangarajan, N.; Siddesh, U.; Roa, C.N.R. Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys. Rev. B 2006, 74, 161306. [Google Scholar] [CrossRef]
- Feygenson, M.; Teng, X.; Inderhees, S.E.; Yin, Y.; Du, W.; Han, W.; Wen, J.; Xu, Z.; Podlesnyak, A.A.; Niedziela, J.L.; et al. Low-energy magnetic excitations in Co/CoO core/shell nanoparticles. Phys. Rev. B 2011, 83, 174414. [Google Scholar] [CrossRef]
- Rao, G.N.; Yao, Y.D.; Chen, J.W. Evolution of size, morphology, and magnetic properties of CuO nanoparticles by thermal annealing. J. Appl. Phys. 2009, 105, 093901. [Google Scholar]
- Ahmad, T.; Chopra, R.; Ramanujachary, K.V.; Lofland, S.E.; Ganguli, A.K. Canted antiferromagnetism in copper oxide nanoparticles synthesized by the reverse-micellar route. Sol. Stat. Sci. 2005, 7, 891–895. [Google Scholar] [CrossRef]
- Bisht, V.; Rajeev, K.P.; Banerjee, S. Anomalous magnetic behavior of CuO nanoparticles. Sol. Stat. Commun. 2010, 150, 884–887. [Google Scholar] [CrossRef]
- Wesselinowa, J.M. Size and anisotropy effects on magnetic properties of antiferromagnetic nanoparticles. J. Magn. Magn. Mater. 2010, 322, 234–237. [Google Scholar] [CrossRef]
- Rehman, S.; Mumtaz, A.; Hasanain, S.K. Size effects on the magnetic and optical properties of CuO nanoparticles. J. Nanopart. Res. 2011, 13, 2497–2507. [Google Scholar] [CrossRef]
- Gözüak, F.; Köseoğlu, Y.; Baykal, A.; Kavas, H. Synthesis and characterization of CoxZn1−xFe2O4 magnetic nanoparticles via a PEG-assisted route. J. Magn. Magn. Mater. 2009, 321, 2170–2177. [Google Scholar] [CrossRef]
- Almessiere, M.A.; Slimani, Y.; Güngüne, H.; Bayka, A.; Trukhanov, S.V.; Trukhanov, A.V. Manganese/Yttrium co-doped strontium nanohexaferrites: Evaluation of magnetic susceptibility and Mössbauer spectra. Nanomaterials 2019, 9, 24. [Google Scholar] [CrossRef] [PubMed]
- Borzi, R.A.; Stewart, S.J.; Mercader, R.C.; Punte, G.; Garcia, F. Magnetic behavior of nanosized cupric oxide. J. Magn. Magn. Mater. 2001, 226–230, 1513–1515. [Google Scholar] [CrossRef]
- Karthik, K.; Jaya, N.V.; Kanagaraj, M.; Arumugam, S. Temperature-dependent magnetic anomalies of CuO nanoparticles. Sol. Stat. Commun. 2011, 151, 564–568. [Google Scholar] [CrossRef]
- Karlsson, H.L.; Cronholm, P.; Gustafsson, J.; Möller, L. Copper oxide nanoparticles are highly toxic: A comparison between metal oxide nanoparticles and carbon nanotubes. Chem. Res. Toxicol. 2008, 21, 1726–1732. [Google Scholar] [CrossRef] [PubMed]
- Fahmy, B.; Cormier, S.A. Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicol. In Vitro 2009, 23, 1365–1371. [Google Scholar] [CrossRef] [PubMed]
- Rout, L.; Sen, T.K.; Punniyamurthy, T. Efficient CuO-nanoparticle-catalyzed C-S cross-coupling of thiols with iodobenzene. Angew. Chem. Int. Ed. 2007, 46, 5583–5586. [Google Scholar] [CrossRef] [PubMed]
- Babu, S.G.; Karvembu, R. CuO nanoparticles: A simple, effective, ligand free, and reusable heterogeneous catalyst for N-arylation of benzimidazole. Ind. Eng. Chem. Res. 2011, 50, 9594–9600. [Google Scholar] [CrossRef]
- Mahato, T.H.; Singh, B.; Srivastava, A.K.; Prasad, G.K.; Srivastava, A.R.; Ganesan, K.; Vijayaraghavan, R. Effect of calcinations temperature of CuO nanoparticle on the kinetics of decontamination and decontamination products of Sulphur mustard. J. Hazard. Mater. 2011, 192, 1890–1895. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Chen, J.; Feng, Y.-B.; Hong, L.; Chen, Q.-Y.; Wu, L.-F.; Lin, X.-H.; Xia, X.-H. Peroxidase-like activity of water-soluble cupric oxide nanoparticles and its analytical application for detection of hydrogen peroxide and glucose. Analyst 2012, 137, 1706–1712. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S.; Swamy, B.E.K.; Jayadevappa, H. CuO nanoparticle sensor for the electrochemical determination of dopamine. Electrochim. Acta 2012, 61, 78–86. [Google Scholar] [CrossRef]
- Kimura, T.; Sekio, Y.; Nakamura, H.; Siegrist, T.; Ramirez, A.P. Cupric oxide as an induced-multiferroic with high-T-C. Nat. Mater. 2008, 7, 291–294. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.P.P.; Gaw, S.M.; Doig, K.I.; Prabhakaran, D.; Wheeler, E.M.H.; Boothroyd, A.T.; Lloyd Hughes, J. High-temperature electromagnons in the magnetically induced multiferroic cupric oxide driven by intersublattice exchange. Nat. Commun. 2013, 5, 3787. [Google Scholar] [CrossRef] [PubMed]
- Rocquefelte, X.; Schwarz, K.; Blaha, P.; Kumar, S.; van den Brink, J. Room-temperature spin-spiral multiferroicity in high-pressure cupric oxide. Nat. Commun. 2013, 4, 2511. [Google Scholar] [CrossRef] [PubMed]
- Åsbrink, S.; Norrby, L.-J. A refinement of the crystal structure of copper (II) oxide with a discussion of some exceptional esd’s. Acta Cryst. B 1970, 26, 8–15. [Google Scholar] [CrossRef]
- Åsbrink, S.; Waśkowska, A. CuO: X-ray single-crystal structure determination at 196 K and room temperature. J. Phys. Condens. Matter 1991, 3, 8173–8180. [Google Scholar] [CrossRef]
- Brese, N.E.; O’Keefe, M.; Ramakrishna, B.L.; von Dreele, R.B. Low-temperature structures of CuO And AgO and their relationships to those of MgO and PdO. J. Sol. State Chem. 1990, 89, 184–190. [Google Scholar] [CrossRef]
- Yang, B.X.; Thurston, T.R.; Tranquada, J.M.; Shriane, G. Magnetic neutron scattering study of single-crystal cupric oxide. Phys. Rev. B 1989, 39, 4344–4349. [Google Scholar] [CrossRef]
- Zheng, X.G.; Xu, C.N.; Nishikubo, K.; Nishiyama, K.; Higemoto, W.; Moon, W.J.; Tanaka, E.; Otabe, E.S. Finite-size effect on Neel temperature in antiferromagnetic nanoparticles. Phys. Rev. B 2005, 72, 014464. [Google Scholar] [CrossRef]
- Punnoose, A.; Magnone, H.; Seehra, M.S.; Bonevich, J. Bulk to nanoscale magnetism and exchange bias in CuO nanoparticles. Phys. Rev. B 2001, 64, 174420. [Google Scholar] [CrossRef]
- Smith, S.J.; Huang, B.; Liu, S.; Liu, Q.; Olsen, R.E.; Boerio-Goates, J.; Woodfield, B.F. Synthesis of metal oxide nanoparticles via a robust “solvent-deficient” method. Nanoscale 2015, 7, 144–156. [Google Scholar] [CrossRef] [PubMed]
- Spencer, E.C.; Ross, N.L.; Parker, S.F.; Olsen, R.E.; Woodfield, B.F. Inelastic neutron scattering studies of hydrated CuO, ZnO and CeO2 nanoparticles. Chem. Phys. 2013, 427, 66–70. [Google Scholar] [CrossRef]
- Holzwarth, U.; Gibson, N. The Scherrer equation versus the ‘Debye-Scherrer equation’. Nat. Nanotechnol. 2011, 6, 534. [Google Scholar] [CrossRef] [PubMed]
- Trukhanov, S.V.; Lobanovski, L.S.; Bushinsky, M.V.; Fedotova, V.V.; Troyanchuk, I.O.; Trukhanov, A.V.; Ryzhov, V.A.; Szymczak, H.; Szymczak, R.; Baran, M. Study of A-site ordered PrBaMn2O6-δ manganite properties depending on the treatment conditions. J. Phys. Condens. Matter 2005, 17, 6495–6506. [Google Scholar] [CrossRef]
- Granroth, G.E.; Kolesnikov, A.I.; Sherline, T.E.; Clancy, J.P.; Ross, K.A.; Ruff, J.P.C.; Gaulin, B.D.; Nagler, S.E. SEQUOIA: A Newly Operating Chopper Spectrometer at the SNS. J. Phys. Conf. Ser. 2010, 251, 012058. [Google Scholar] [CrossRef]
- Stone, M.B.; Niedziela, J.L.; Abernathy, D.L.; DeBeer-Schmitt, L.; Ehlers, G.; Garlea, O.; Granroth, G.; Graves-Brook, M.; Kolesnikov, A.I.; Podlesnyak, A. A comparison of four direct geometry time-of-flight spectrometers at the Spallation Neutron Source. Rev. Sci. Instrum. 2014, 85, 045113. [Google Scholar] [CrossRef] [PubMed]
- Squires, G.L. Introduction to the Theory of Thermal Neutron Scattering; Cambridge University Press: Cambridge, UK, 1978. [Google Scholar]
- Marshall, W.; Lovesey, S.W. Theory of Thermal Neutron Scattering; Clarendon Press: Oxford, UK, 1971. [Google Scholar]
- Yang, B.X.; Tranquada, J.M.; Shirane, G. Neutron-scattering studies of the magnetic-structure of cupric oxide. Phys. Rev. B 1988, 38, 174–178. [Google Scholar] [CrossRef]
- Johnson, S.L.; de Souza, R.A.; Staub, U.; Beaud, P.; Möhr-Vorobeva, E.; Ingold, G.; Caviezel, A.; Scagnoli, V.; Schlotter, W.F.; Turner, J.J.; et al. Femtosecond dynamics of the collinear-to-spiral antiferromagnetic phase transition in CuO. Phys. Rev. Lett. 2012, 108, 037203. [Google Scholar] [CrossRef] [PubMed]
- Forsyth, J.B.; Brown, P.J.; Waklyn, B.M. Magnetism in cupric oxide. J. Phys. C Solid State Phys. 1988, 21, 2917–2929. [Google Scholar] [CrossRef]
- Brown, P.J.; Chattopadhyay, T.; Forsyth, J.B.; Nunez, V.; Tasset, F. Antiferromagnetism in CuO studied by neutron polarimetry. J. Phys. Condens. Matter 1991, 3, 4281–4287. [Google Scholar] [CrossRef]
- Wang, Z.; Qureshi, N.; Yasin, S.; Mukhin, A.; Ressouche, E.; Zherlitsyn, S.; Skourski, Y.; Geshev, J.; Ivanov, V.; Gospodinov, M.; et al. Magnetoelectric effect and phase transitions in CuO in external magnetic fields. Nat. Commun. 2016, 7, 10295. [Google Scholar] [CrossRef] [PubMed]
- Blundell, S. Magnetism in Condensed Matter; Oxford Master Series in Condensed Matter Physics; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Aïn, M.; Menelle, A.; Wanklyn, B.M.; Bertaut, E.F. Magnetic structure of CuO by neutron diffraction with polarization analysis. J. Phys. Condens. Matter 1992, 4, 5327–5338. [Google Scholar] [CrossRef]
- Aïn, M.; Reichardt, W.; Hennion, B.; Pepy, G.; Wanklyn, B.M. Magnetic excitations in CuO. Physica C 1989, 162–164, 1279–1280. [Google Scholar] [CrossRef]
- Koo, H.-J.; Whangbo, M.-H. Magnetic superstructures of cupric oxide CuO as ordered arrangements of one-dimensional antiferromagnetic chains. Inorg. Chem. 2003, 42, 1187–1192. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Matsumoto, T.; Goto, A.; Rao, T.V.C.; Yoshimura, K.; Kosuge, K. Spin susceptibility and superexchange interaction in the antiferromagnet CuO. Phys. Rev. B 2003, 68, 224433. [Google Scholar] [CrossRef]
- Chattopadhyay, T.; McIntyre, G.J.; Vettier, C.; Brown, P.J.; Forsyth, J.B. Magnetic excitations and spin correlations in CuO. Physica B 1992, 180–181, 420–422. [Google Scholar] [CrossRef]
- Spencer, E.C.; Ross, N.L.; Olsen, R.E.; Huang, B.; Kolesnikov, A.I.; Woodfield, B.F. Thermodynamic properties of α-Fe2O3 and Fe3O4 nanoparticles. J. Phys. Chem. C 2015, 119, 9609–9616. [Google Scholar] [CrossRef]
- Mørup, S.; Hansen, M.F.; Frandsen, C. Magnetic interactions between nanoparticles. Beilstein J. Nanotechnol. 2010, 1, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Mørup, S.; Frandsen, C.; Hansen, M.F. Uniform excitations in magnetic nanoparticles. Beilstein J. Nanotechnol. 2010, 1, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Trukhanov, S.V.; Troyanchuk, I.O.; Trukhanov, A.V.; Fita, I.M.; Vasil’ev, A.N.; Maignan, A.; Szymczak, H. Magnetic properties of La0.70Sr0.30MnO2.85 anion-deficient manganite under hydrostatic pressure. JETP Lett. 2006, 83, 33–36. [Google Scholar] [CrossRef]
- Trukhanov, S.V.; Kozlenko, D.P.; Trukhanov, A.V. High hydrostatic pressure effect on magnetic state of anion-deficient La0.70Sr0.30MnOx perovskite manganites. J. Magn. Magn. Mater. 2008, 320, e88–e91. [Google Scholar] [CrossRef]
- Trukhanov, S.V.; Trukhanov, A.V.; Vasiliev, A.N.; Szymczak, H. Frustrated exchange interactions formation at low temperatures and high hydrostatic pressures in La0.70Sr0.30MnO2.85. J. Exp. Theor. Phys. 2010, 111, 209–214. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spencer, E.C.; Kolesnikov, A.I.; Woodfield, B.F.; Ross, N.L. New Insights about CuO Nanoparticles from Inelastic Neutron Scattering. Nanomaterials 2019, 9, 312. https://doi.org/10.3390/nano9030312
Spencer EC, Kolesnikov AI, Woodfield BF, Ross NL. New Insights about CuO Nanoparticles from Inelastic Neutron Scattering. Nanomaterials. 2019; 9(3):312. https://doi.org/10.3390/nano9030312
Chicago/Turabian StyleSpencer, Elinor C., Alexander I. Kolesnikov, Brian F. Woodfield, and Nancy L. Ross. 2019. "New Insights about CuO Nanoparticles from Inelastic Neutron Scattering" Nanomaterials 9, no. 3: 312. https://doi.org/10.3390/nano9030312
APA StyleSpencer, E. C., Kolesnikov, A. I., Woodfield, B. F., & Ross, N. L. (2019). New Insights about CuO Nanoparticles from Inelastic Neutron Scattering. Nanomaterials, 9(3), 312. https://doi.org/10.3390/nano9030312