Next Article in Journal
Biocompatibility and Bioimaging Potential of Fruit-Based Carbon Dots
Previous Article in Journal
Determining the Composite Structure of Au-Fe-Based Submicrometre Spherical Particles Fabricated by Pulsed-Laser Melting in Liquid
Previous Article in Special Issue
Thermally Robust Non-Wetting Ni-PTFE Electrodeposited Nanocomposite
Article Menu
Issue 2 (February) cover image

Export Article

Open AccessArticle
Nanomaterials 2019, 9(2), 200; https://doi.org/10.3390/nano9020200

The Effect of Electrode Topography on the Magnetic Properties and MRI Application of Electrochemically-Deposited, Synthesized, Cobalt-Substituted Hydroxyapatite

1
Graduate Institute of Oral Science, Chung Shan Medical University, Taichung 40201, Taiwan
2
Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung 40201, Taiwan
3
Chung Shan Medical University Hospital, Taichung 40201, Taiwan
4
Animal Radiation Therapy Research Center, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan
5
Department of Radiological Technology, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan
*
Authors to whom correspondence should be addressed.
Received: 23 December 2018 / Revised: 30 January 2019 / Accepted: 31 January 2019 / Published: 3 February 2019
(This article belongs to the Special Issue Electrochemical Synthesis of Nanostructures and Their Applications)
Full-Text   |   PDF [3964 KB, uploaded 14 February 2019]   |  
  |   Review Reports

Abstract

Magnetic nanoparticles are used to enhance the image contrast of magnetic resonance imaging (MRI). However, the development of magnetic nanoparticles with a low dose/high image contrast and non-toxicity is currently a major challenge. In this study, cobalt-substituted hydroxyapatite nanoparticles deposited on titanium (Ti-CoHA) and cobalt-substituted hydroxyapatite nanoparticles deposited on titanium dioxide nanotubes (TNT-CoHA) were synthesized by the electrochemical deposition method. The particle sizes of Ti-CoHA and TNT-CoHA were 418.6 nm and 127.5 nm, respectively, as observed using FE-SEM. It was shown that CoHA can be obtained with a smaller particle size using a titanium dioxide nanotube (TNT) electrode plate. However, the particle size of TNT-CoHA is smaller than that of Ti-CoHA. The crystal size of the internal cobalt oxide of CoHA was calculated by using an XRD pattern. The results indicate that the crystal size of cobalt oxide in TNT-CoHA is larger than that of the cobalt oxide in Ti-CoHA. The larger crystal size of the cobalt oxide in TNT-CoHA makes the saturation magnetization (Ms) of TNT-CoHA 12.6 times higher than that of Ti-CoHA. The contrast in MRIs is related to the magnetic properties of the particles. Therefore, TNT-CoHA has good image contrast at low concentrations in T2 images. The relaxivity coefficient of the CoHA was higher for TNT-CoHA (340.3 mM−1s−1) than Ti-CoHA (211.7 mM−1s−1), and both were higher than the commercial iron nanoparticles (103.0 mM−1s−1). We showed that the TNT substrate caused an increase in the size of the cobalt oxide crystal of TNT-CoHA, thus effectively improving the magnetic field strength and MRI image recognition. It was also shown that the relaxivity coefficient rose with the Ms. Evaluation of biocompatibility of CoHA using human osteosarcoma cells (MG63) indicated no toxic effects. On the other hand, CoHA had an excellent antibacterial effect, as shown by E. coli evaluation, and the effect of TNT-CoHA powder was higher than that of Ti-CoHA powder. In summary, TNT-CoHA deposited electrochemically on the TNT substrates can be considered as a potential candidate for the application as an MRI contrast agent. This paper is a comparative study of how different electrode plates affect the magnetic and MRI image contrast of cobalt-substituted hydroxyapatite (CoHA) nanomaterials. View Full-Text
Keywords: Titanium dioxide nanotubes; Cobalt-substituted hydroxyapatite; Magnetic resonance imaging; T2-contrast agent; Relaxivity coefficient Titanium dioxide nanotubes; Cobalt-substituted hydroxyapatite; Magnetic resonance imaging; T2-contrast agent; Relaxivity coefficient
Figures

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Lin, W.-C.; Chuang, C.-C.; Chang, C.-J.; Chiu, Y.-H.; Yan, M.; Tang, C.-M. The Effect of Electrode Topography on the Magnetic Properties and MRI Application of Electrochemically-Deposited, Synthesized, Cobalt-Substituted Hydroxyapatite. Nanomaterials 2019, 9, 200.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Nanomaterials EISSN 2079-4991 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top