High-Dose Electron Radiation and Unexpected Room-Temperature Self-Healing of Epitaxial SiC Schottky Barrier Diodes
Abstract
:1. Introduction
2. Materials and Methods
2.1. 4H-SiC SBDs Samples and Irradiation Experimental Conditions
2.2. The Electron-Induced Current Test
2.3. Noise Information Test
2.4. I–V Curve Test
3. Results and Discussion
3.1. High-Dose Electron Irradiation
3.2. Room-Temperature Self-Healing
4. Conclusions
5. Patents
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Morkoç, H.; Strite, S.; Gao, G.B.; Lin, M.E.; Sverdlov, B.; Burns, M. Large-band-gap sic, iii-v nitride, and ii-vi znse-based semiconductor device technologies. J. Appl. Phys. 1994, 76, 1363–1398. [Google Scholar] [CrossRef]
- Spiazzi, G.; Buso, S.; Citron, M.; Corradin, M. Performance evaluation of a schottky sic power diode in a boost pfc application. IEEE Trans. Power Electron. 2003, 18, 1249–1253. [Google Scholar] [CrossRef]
- Persson, C.; Lindefelt, U. Detailed band structure for 3c-, 2h-, 4h-, 6h-sic, and si around the fundamental band gap. Phys. Rev. B 1996, 54, 10257–10260. [Google Scholar] [CrossRef]
- Eiting, C.J.; Krishnamoorthy, V.; Rodgers, S.; George, T. Demonstration of a radiation resistant, high efficiency sic betavoltaic. Appl. Phys. Lett. 2006, 88, 064101. [Google Scholar] [CrossRef]
- Chandrashekhar, M.V.S.; Thomas, C.I.; Li, H.; Spencer, M.G.; Lal, A. Demonstration of a 4h sic betavoltaic cell. Appl. Phys. Lett. 2006, 88, 1009. [Google Scholar] [CrossRef]
- Bruzzi, M.; Nava, F.; Russo, S.; Sciortino, S.; Vanni, P. Characterisation of silicon carbide detectors response to electron and photon irradiation. Diam. Relat. Mat. 2001, 10, 657–661. [Google Scholar] [CrossRef]
- Metzger, S.; Henschel, H.; Kohn, O.; Lennartz, W. Silicon carbide radiation detector for harsh environments. IEEE Trans. Nucl. Sci. 2002, 49, 1351–1355. [Google Scholar] [CrossRef]
- Nava, F.; Vittone, E.; Vanni, P.; Verzellesi, G.; Fuochi, P.G.; Lanzieri, C.; Glaser, M. Radiation tolerance of epitaxial silicon carbide detectors for electrons, protons and gamma-rays. Nucl. Instrum. Methods Phys. Res. Sect. A 2003, 505, 645–655. [Google Scholar] [CrossRef]
- Seshadri, S.; Dulloo, A.R.; Ruddy, F.H.; Seidel, J.G.; Rowland, L.B. Demonstration of an sic neutron detector for high-radiation environments. IEEE Trans. Electron Devices 1999, 46, 567–571. [Google Scholar] [CrossRef]
- Castaldini, A.; Cavallini, A.; Rigutti, L.; Nava, F. Low temperature annealing of electron irradiation induced defects in 4h-sic. Appl. Phys. Lett. 2004, 85, 3780–3782. [Google Scholar] [CrossRef]
- Celik-Butler, Z.; Hsiang, T.Y. Determination of si-sio 2 interface trap density by 1/f noise measurements. IEEE Trans. Electron. Dev. 2015, 35, 1651–1655. [Google Scholar] [CrossRef]
- Adak, O.; Rosenthal, E.; Meisner, J.; Andrade, E.F.; Pasupathy, A.N.; Nuckolls, C.; Hybertsen, M.S.; Venkataraman, L. Flicker noise as a probe of electronic interaction at metal-single molecule interfaces. Nano Lett. 2015, 15, 4143–4149. [Google Scholar] [CrossRef] [PubMed]
- Folkes, P.A. Fluctuating deep-level trap occupancy model for hooge’s 1/f noise parameter for semiconductor resistors. J. Appl. Phys. 1994, 64, 487–489. [Google Scholar]
- Fleetwood, D.M.; Meisenheimer, T.L.; Scofield, J.H. 1/f noise and radiation effects in mos devices. IEEE Trans. Electron. Dev. 1994, 41, 1953–1964. [Google Scholar] [CrossRef]
- Arora, S.K.; Singh, R.; Kumar, R.; Kanjilal, D.; Mehta, G.K. In situ 1/f noise studies on swift heavy ion irradiated p-type silicon. Nucl. Instrum. Methods Phys. Res. Sect. B 1999, 156, 265–269. [Google Scholar] [CrossRef]
- Babcock, J.A.; Cressler, J.D.; Vempati, L.S.; Clark, S.D.; Jaeger, R.C.; Harame, D.L. Ionizing radiation tolerance of high-performance sige hbt’s grown by uhv/cvd. IEEE Trans. Nucl. Sci. 1995, 42, 1558–1566. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Q. The Noise Measurement and Analysis System of Optoelectronic Coupled Devices Based on Virtual Instrument. In Proceedings of the SPIE 2008 International Conference on Optical Instruments and Technology, Beijing, China, 16–19 November 2008. [Google Scholar]
- Aitken, J.M.; Young, D.R.; Pan, K. Electron trapping in electron-beam irradiated SiO2. J. Appl. Phys. 1978, 49, 3386–3391. [Google Scholar] [CrossRef]
- David, M.L.; Alfieri, G.; Monakhov, E.M.; Hallén, A.; Blanchard, C.; Svensson, B.G.; Barbot, J.F. Electrically active defects in irradiated 4h-sic. J. Appl. Phys. 2004, 95, 4728–4733. [Google Scholar] [CrossRef]
- Barry, A.L.; Lehmann, B.; Fritsch, D.; Bräunig, D. Energy dependence of electron damage and displacement threshold energy in 6h silicon carbide. IEEE Trans. Nucl. Sci. 1991, 38, 1111–1115. [Google Scholar] [CrossRef]
- Storasta, L.; Bergman, J.P.; Janzén, E.; Henry, A.; Lu, J. Deep levels created by low energy electron irradiation in 4h-sic. J. Appl. Phys. 2004, 96, 4909–4915. [Google Scholar] [CrossRef]
- Bardeleben, H.J.V.; Cantin, J.L.; Henry, L.; Barthe, M.F. Vacancy defects in p-type 6h−sic created by low-energy electron irradiation. Phys. Rev. B 2000, 62, 10841–10846. [Google Scholar] [CrossRef]
- Sheridan, D.C.; Chung, G.; Clark, S.; Cressler, J.D. The effects of high-dose gamma irradiation on high-voltage 4h-sic schottky diodes and the sic-SiO2 interface. IEEE Trans. Nucl. Sci. 2001, 48, 2229–2232. [Google Scholar] [CrossRef]
- Çınar, K.; Coşkun, C.; Aydoğan, Ş.; Asıl, H.; Gür, E. The effect of the electron irradiation on the series resistance of au/ni/6h-sic and au/ni/4h-sic schottky contacts. Nucl. Instrum. Methods Phys. Res. Sect. B 2010, 268, 616–621. [Google Scholar] [CrossRef]
- Pease, R.L.; Enlow, E.W.; Dinger, G.L.; Marshall, P. Comparison of proton and neutron carrier removal rates. IEEE Trans. Nucl. Sci. 1987, 34, 1140–1146. [Google Scholar] [CrossRef]
- McGarrity, J.M.; McLean, F.B.; DeLancey, W.M.; Palmour, J.; Carter, C.; Edmond, J.; Oakley, R.E. Silicon carbide jfet radiation response. IEEE Trans. Nucl. Sci. 1992, 39, 1974–1981. [Google Scholar] [CrossRef]
- Hemmingsson, C.; Son, N.T.; Kordina, O.; Bergman, J.P.; Janzén, E.; Lindström, J.L.; Savage, S.; Nordell, N. Deep level defects in electron-irradiated 4h sic epitaxial layers. J. Appl. Phys. 1997, 81, 6155–6159. [Google Scholar] [CrossRef]
- Iwamoto, N.; Johnson, B.C.; Hoshino, N.; Ito, M.; Tsuchida, H.; Kojima, K.; Ohshima, T. Defect-induced performance degradation of 4h-sic schottky barrier diode particle detectors. J. Appl. Phys. 2013, 113, 1065. [Google Scholar] [CrossRef]
- Toru, H.; Tsunenobu, K. Reduction of deep levels and improvement of carrier lifetime in n-type 4h-sic by thermal oxidation. Appl. Phys. Express 2009, 2, 041101. [Google Scholar]
- Ohyama, H.; Takakura, K.; Watanabe, T.; Nishiyama, K.; Shigaki, K.; Kudou, T.; Nakabayashi, M.; Kuboyama, S.; Matsuda, S.; Kamezawa, C.; et al. Radiation damage of sic schottky diodes by electron irradiation. J. Mater. Sci. Mater. Electron. 2005, 16, 455–458. [Google Scholar] [CrossRef]
- Muzykov, P.G.; Bolotnikov, A.V.; Sudarshan, T.S. Study of leakage current and breakdown issues in 4h–sic unterminated schottky diodes. Solid-State Electron. 2009, 53, 14–17. [Google Scholar] [CrossRef]
- Luo, Z.; Chen, T.; Ahyi, A.C.; Sutton, A.K.; Haugerud, B.M.; Cressler, J.D.; Sheridan, D.C.; Williams, J.R.; Marshall, P.W.; Reed, R.A. Proton radiation effects in 4h-sic diodes and mos capacitors. IEEE Trans. Nucl. Sci. 2004, 51, 3748–3752. [Google Scholar]
- Van Der Ziel, A. Theory of shot noise in junction diodes and junction transistors. Proc. IRE 1955, 43, 1639–1646. [Google Scholar] [CrossRef]
- Van Der Ziel, A. Noise in solid-state devices and lasers. Proc. IEEE 1970, 58, 1178–1206. [Google Scholar] [CrossRef]
- Kar, S.; Raychaudhuri, A.K. Temperature and frequency dependence of flicker noise in degenerately doped si single crystals. J. Phys. D Appl. Phys. 2001, 34, 3197–3202. [Google Scholar] [CrossRef]
- Hooge, F.N. The relation between 1/ƒ noise and number of electrons. Physica B 1990, 162, 344–352. [Google Scholar] [CrossRef]
- Fischer, J.; Corelli, J. Production and annealing of defects in 6–88 mev electron-irradiated n-type germanium. J. Appl. Phys. 1966, 37, 3287–3297. [Google Scholar] [CrossRef]
- Messina, F.; Agnello, S.; Cannas, M.; Parlato, A. Room temperature instability of e′γ centers induced by γ irradiation in amorphous SiO2. J. Phys. Chem. A 2009, 113, 1026–1032. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Itoh, Y.; Ando, K. Room-temperature annealing of radiation-induced defects in inp solar cells. Appl. Phys. Lett. 1984, 45, 1206–1208. [Google Scholar] [CrossRef]
- Zhou, X.J.; Fleetwood, D.M.; Schrimpf, R.D.; Faccio, F.; Gonella, L. Radiation effects on the 1/f noise of field-oxide field effect transistors. IEEE Trans. Nucl. Sci. 2008, 55, 2975–2980. [Google Scholar] [CrossRef]
- Haohao, Z.; Jinshun, B.; Yuan, D.; Yannan, X.; Ming, L. Proton irradiation effects and annealing behaviors of 16mb magneto-resistive random access memory(mram). In Proceedings of the 2016 13th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Hangzhou, China, 25–28 October 2016; pp. 1194–1196. [Google Scholar]
- Sato, S.i.; Beernink, K.; Ohshima, T. Charged particle radiation effects on flexible a-si/a-sige/a-sige triple junction solar cells for space use. In Proceedings of the 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) PART 2, Tampa, FL, USA, 16–21 June 2013; pp. 76–82. [Google Scholar]
- Simons, M.; Monteith, L.K.; Hauser, J.R. Some observations on charge buildup and release in silicon dioxide irradiated with low energy electrons. IEEE Trans. Electron. Dev. 1968, 15, 966–973. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, G.; Pang, Y.; Yang, Y.; Liu, J.; Peng, S.; Chen, G.; Jiang, M.; Zu, X.; Fang, X.; Zhao, H.; et al. High-Dose Electron Radiation and Unexpected Room-Temperature Self-Healing of Epitaxial SiC Schottky Barrier Diodes. Nanomaterials 2019, 9, 194. https://doi.org/10.3390/nano9020194
Yang G, Pang Y, Yang Y, Liu J, Peng S, Chen G, Jiang M, Zu X, Fang X, Zhao H, et al. High-Dose Electron Radiation and Unexpected Room-Temperature Self-Healing of Epitaxial SiC Schottky Barrier Diodes. Nanomaterials. 2019; 9(2):194. https://doi.org/10.3390/nano9020194
Chicago/Turabian StyleYang, Guixia, Yuanlong Pang, Yuqing Yang, Jianyong Liu, Shuming Peng, Gang Chen, Ming Jiang, Xiaotao Zu, Xuan Fang, Hongbin Zhao, and et al. 2019. "High-Dose Electron Radiation and Unexpected Room-Temperature Self-Healing of Epitaxial SiC Schottky Barrier Diodes" Nanomaterials 9, no. 2: 194. https://doi.org/10.3390/nano9020194