Plasma Activation of Copper Nanowires Arrays for Electrocatalytic Sensing of Nitrate in Food and Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Electrode Preparation
2.3. Plasma Treatment
2.4. Electrochemical Measurements
2.5. Samples Preparation
2.6. Ion Chromatography (IC)
2.7. Scanning Electron Microscopy
3. Results and Discussion
3.1. Preparation and Characterization of Nanowires Array
3.2. Determination of NO3− in Real Samples
3.2.1. River Water
3.2.2. Vegetable Samples
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- European Food Safety Authority (EFSA). Nitrate in vegetables—Scientific Opinion of the Panel on Contaminants in the Food chain. EFSA J. 2008, 1, 1–79. [Google Scholar] [CrossRef]
- Brkić, D.; Bošnir, J.; Bevardi, M.; Bošković, A.G.; Miloš, S.; Lasić, D.; Krivohlavek, A.; Racz, A.; Ćuić, A.M.; Trstenjak, N.U. Nitrate in leafy green vegetables and estimated intake. Afr. J. Tradit. Complement. Altern. Med. AJTCAM 2017, 14, 31–41. [Google Scholar] [CrossRef]
- Swann, P.F. The toxicology of nitrate, nitrite and n-nitroso compounds. J. Sci. Food Agric. 1975, 26, 1761–1770. [Google Scholar] [CrossRef]
- Moorcroft, M. Detection and determination of nitrate and nitrite: A review. Talanta 2001, 54, 785–803. [Google Scholar] [CrossRef]
- Ugo, P.; Moretto, L.M.; Ballarin, B. Nitrate detection at Nafion-modified electrodes incorporating ytterbium and uranyl electrocatalysts. Electroanalysis 1995, 7, 129–131. [Google Scholar] [CrossRef]
- Azevedo, C.M.N.; Araki, K.; Angnes, L.; Toma, H.E. Electrostatically Assembled Films for Improving the Properties of Tetraruthenated Porphyrin Modified Electrodes. Electroanalysis 1998, 10, 467–471. [Google Scholar] [CrossRef]
- Moretto, L.M.; Ugo, P.; Zanata, M.; Guerriero, P.; Martin, C.R. Nitrate Biosensor Based on the Ultrathin-Film Composite Membrane Concept. Anal. Chem. 1998, 70, 2163–2166. [Google Scholar] [CrossRef]
- Wang, Q.-H.; Yu, L.-J.; Liu, Y.; Lin, L.; Lu, R.; Zhu, J.; He, L.; Lu, Z.-L. Methods for the detection and determination of nitrite and nitrate: A review. Talanta 2017, 165, 709–720. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, S.; Shan, D.; Cosnier, S. Improvement of biosensor performances for nitrate determination using a new hydrophilic poly(pyrrole-viologen) film. Sens. Actuators B Chem. 2004, 103, 397–402. [Google Scholar] [CrossRef]
- Çirmi, D.; Aydin, R.; Köleli, F. The electrochemical reduction of nitrate ion on polypyrrole coated copper electrode. J. Electroanal. Chem. 2015, 736, 101–106. [Google Scholar] [CrossRef]
- Kato, M.; Okui, M.; Taguchi, S.; Yagi, I. Electrocatalytic nitrate reduction on well-defined surfaces of tin-modified platinum, palladium and platinum-palladium single crystalline electrodes in acidic and neutral media. J. Electroanal. Chem. 2017, 800, 46–53. [Google Scholar] [CrossRef]
- Garcia-Segura, S.; Lanzarini-Lopes, M.; Hristovski, K.; Westerhoff, P. Electrocatalytic reduction of nitrate: Fundamentals to full-scale water treatment applications. Appl. Catal. B Environ. 2018, 236, 546–568. [Google Scholar] [CrossRef]
- Mattarozzi, L.; Cattarin, S.; Comisso, N.; Guerriero, P.; Musiani, M.; Vázquez-Gómez, L.; Verlato, E. Electrochemical reduction of nitrate and nitrite in alkaline media at CuNi alloy electrodes. Electrochim. Acta 2013, 89, 488–496. [Google Scholar] [CrossRef]
- Pérez-Gallent, E.; Figueiredo, M.C.; Katsounaros, I.; Koper, M.T.M. Electrocatalytic reduction of Nitrate on Copper single crystals in acidic and alkaline solutions. Electrochim. Acta 2017, 227, 77–84. [Google Scholar] [CrossRef]
- Terzi, F.; Zanardi, C. Environmental Analysis by Electrochemical Sensors and Biosensors; Springer: New York, NY, USA, 2014; ISBN 978-1-4939-0675-8. [Google Scholar]
- Menon, V.P.; Martin, C.R. Fabrication and Evaluation of Nanoelectrode Enembles. Anal. Chem. 1995, 67, 1920–1928. [Google Scholar] [CrossRef]
- Yu, S.; Li, N.; Wharton, J.; Martin, C.R. Nano wheat fields prepared by plasma-etching gold nanowire-containing membranes. Nano Lett. 2003, 3, 815–818. [Google Scholar] [CrossRef]
- Ongaro, M.; Ugo, P. Bioelectroanalysis with nanoelectrode ensembles and arrays. Anal. Bioanal. Chem. 2013, 405, 3715–3729. [Google Scholar] [CrossRef] [PubMed]
- Stortini, A.M.; Moretto, L.M.; Mardegan, A.; Ongaro, M.; Ugo, P. Arrays of copper nanowire electrodes: Preparation, characterization and application as nitrate sensor. Sens. Actuators B Chem. 2015, 207, 186–192. [Google Scholar] [CrossRef] [Green Version]
- Lapierre-Devlin, M.A.; Asher, C.L.; Taft, B.J.; Gasparac, R.; Roberts, M.A.; Kelley, S.O. Amplified electrocatalysis at DNA-modified nanowires. Nano Lett. 2005, 5, 1051–1055. [Google Scholar] [CrossRef]
- Krishnamoorthy, K.; Zoski, C.G. Fabrication of 3D gold nanoelectrode ensembles by chemical etching. Anal. Chem. 2005, 77, 5068–5071. [Google Scholar] [CrossRef]
- De Leo, M.; Kuhn, A.; Ugo, P. 3D-ensembles of gold nanowires: Preparation, characterization and electroanalytical peculiarities. Electroanalysis 2007, 19, 227–236. [Google Scholar] [CrossRef]
- Mussano, F.; Genova, T.; Verga Falzacappa, E.; Scopece, P.; Munaron, L.; Rivolo, P.; Mandracci, P.; Benedetti, A.; Carossa, S.; Patelli, A. In vitro characterization of two different atmospheric plasma jet chemical functionalizations of titanium surfaces. Appl. Surf. Sci. 2017, 409, 314–324. [Google Scholar] [CrossRef] [Green Version]
- Patelli, A.; Mussano, F.; Brun, P.; Genova, T.; Ambrosi, E.; Michieli, N.; Mattei, G.; Scopece, P.; Moroni, L. Nanoroughness, Surface Chemistry, and Drug Delivery Control by Atmospheric Plasma Jet on Implantable Devices. ACS Appl. Mater. Interfaces 2018, 10, 39512–39523. [Google Scholar] [CrossRef] [PubMed]
- Patelli, A.; Verga, E.; Nodari, L.; Petrillo, S.M.; Delva, A.; Ugo, P.; Scopece, P. A customised atmospheric pressure plasma jet for conservation requirements. IOP Conf. Ser. Mater. Sci. Eng. 2018, 364, 012079. [Google Scholar] [CrossRef]
- Nam, V.B.; Lee, D. Copper Nanowires and Their Applications for Flexible, Transparent Conducting Films: A Review. Nanomaterials 2016, 6, 47. [Google Scholar] [CrossRef] [PubMed]
- Gambirasi, A.; Cattarin, S.; Musiani, M.; Vázquez-Gómez, L.; Verlato, E. Direct electrodeposition of metal nanowires on electrode surface. Electrochim. Acta 2011, 56, 8582–8588. [Google Scholar] [CrossRef]
- Patelli, A.; Falzacappa, E.V.; Scopece, P.; Pierobon, R.; Vezzu, S. Method for Generating an Atmospheric Plasma Jet and Atmospheric Plasma Minitorch Device. U.S. Patent WO2015071746A1, 21 May 2015. [Google Scholar]
- British Standards Institute. Foodstuffs. Determination of Nitrate and/or Nitrite Content—Part 4: Ion-Exchange Chromatographic (IC) Method for the Determination of Nitrate and Nitritecontent of Meat Products, BS EN 12014-4:2005; BSI: London, UK, 2005; ISBN 0 580 46248 X. [Google Scholar]
- Bard, A.J.; Faulkner, L.R. Fundamentals and Fundamentals and Applications; Wiley: New York, NY, USA, 2001. [Google Scholar]
- Voiry, D.; Chhowalla, M.; Gogotsi, Y.; Kotov, N.A.; Li, Y.; Penner, R.M.; Schaak, R.E.; Weiss, P.S. Best Practices for Reporting Electrocatalytic Performance of Nanomaterials. ACS Nano 2018, 12, 9635–9638. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.; Moorcroft, M.J.; Wilkins, S.J.; Compton, R.G.; Cardosi, M.F. Electrochemical detection of nitrate and nitrite at a copper modified electrode. Analyst 2000, 125, 737–742. [Google Scholar] [CrossRef]
- World Health Organization. WHO Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum, 4th ed.; World Health Organization WHO, Ed.; World Health Organization: Geneva, Switzerland, 2017; ISBN 978-92-4-154995-0. [Google Scholar]
- González, M.C.M.; Martínez-Tomé, M.J.; Isasa, M.E.T. Nitrate and nitrite content in organically cultivated vegetables. Food Addit. Contam. Part B 2010, 3, 19–29. [Google Scholar] [CrossRef]
Electrode | Test | Power HV (W) | Power RF (W) | Time (s) | Spark Event |
---|---|---|---|---|---|
E3 | 1° | 16 | 30 | 60 | – |
E3 | 2° | 16 | 35 | 90(+30) | + |
E3 | 3° | 16 | 30 | 180(+90) | + |
E2 | 1° | 16 | 30 | 180 | + |
E1 | 1° | 16 | 30 | 360 | + |
E5 | 1° | 70 | 30 | 60 | + |
Sample | Electrochemical | Ion Chromatography | Relative Variation % |
---|---|---|---|
River water | 7.3 ± 0.5 mg L−1 | 7.5 ± 0.4 mg L−1 | 3.3 |
Rucola | 4097 ± 0.6 mg kg−1 | 5016 ± 0.4 mg kg−1 | 8.3 |
Chard | 1239 ± 0.7 mg kg−1 | 1352 ± 0.4 mg kg−1 | 18.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stortini, A.M.; Fabris, S.; Saorin, G.; Verga Falzacappa, E.; Moretto, L.M.; Ugo, P. Plasma Activation of Copper Nanowires Arrays for Electrocatalytic Sensing of Nitrate in Food and Water. Nanomaterials 2019, 9, 150. https://doi.org/10.3390/nano9020150
Stortini AM, Fabris S, Saorin G, Verga Falzacappa E, Moretto LM, Ugo P. Plasma Activation of Copper Nanowires Arrays for Electrocatalytic Sensing of Nitrate in Food and Water. Nanomaterials. 2019; 9(2):150. https://doi.org/10.3390/nano9020150
Chicago/Turabian StyleStortini, Angela Maria, Sabrina Fabris, Gloria Saorin, Emanuele Verga Falzacappa, Ligia Maria Moretto, and Paolo Ugo. 2019. "Plasma Activation of Copper Nanowires Arrays for Electrocatalytic Sensing of Nitrate in Food and Water" Nanomaterials 9, no. 2: 150. https://doi.org/10.3390/nano9020150