2D Au Nanosphere Arrays/PVA-PBA-Modified-Hydrogel Composite Film for Glucose Detection with Strong Diffraction Intensity and Linear Response
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the 2D Au Nanosphere Arrays
2.3. Preparation of the 2D Au Nanosphere Arrays/Glucose-Sensitive Hydrogel Composite Film
2.4. Preparation of Buffer Solution
2.5. Characterization
3. Results and Discussion
3.1. Sensing Glucose by the 2D Au Nanosphere Arrays/PBA-Modified Hydrogel Composite Film in Low Ionic Strength Buffer Solution
3.2. Sensing Glucose by the 2D Au Nanosphere Arrays/PBA-Modified Hydrogel Composite Film in High Ionic Strength Buffer Solution
3.3. Sensing Glucose by the 2D Au Nanosphere Array/PVA-PBA-Modified Hydrogel Composite Film in High Ionic Strength Buffer Solution
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Farooqi, Z.H.; Wu, W.T.; Zhou, S.Q.; Siddiq, M. Engineering of Phenylboronic Acid Based Glucose-Sensitive Microgels with 4-Vinylpyridine for Working at Physiological pH and Temperature. Macromol. Chem. Phys. 2011, 212, 1510–1514. [Google Scholar] [CrossRef]
- Han, L.; Zhang, S.; Han, L.H.; Yang, D.P.; Hou, C.T.; Liu, A.H. Porous gold cluster film prepared from Au@BSA microspheres forelectrochemical nonenzymatic glucose sensor. Electrochim. Acta 2014, 138, 109–114. [Google Scholar] [CrossRef]
- Asher, S.A.; Alexeev, V.L.; Goponenko, A.V.; Sharma, A.C.; Lednev, I.K.; Wilcox, C.S.; Finegold, D.N. Photonic Crystal Carbohydrate Sensors: Low Ionic Strength Sugar Sensing. J. Am. Chem. Soc. 2003, 125, 3322–3329. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.J.; Cano, G.G.; Braun, P.V. Linear and Fast Hydrogel Glucose Sensor Materials Enabled by Volume Resetting Agents. Adv. Mater. 2014, 26, 5678–5683. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.L.; Fang, L.L.; Zhou, F.; Li, H.L.; Zhang, T.; Li, C.C.; Cai, W.P.; Deng, Z.X.; Li, L.B.; Li, Y. Ultrasensitive and Stable Au Dimer-Based Colorimetric Sensors Using the Dynamically Tunable Gap-Dependent Plasmonic Coupling Optical Properties. Adv. Funct. Mater. 2018, 28, 1707392. [Google Scholar] [CrossRef]
- Zhang, C.J.; Losego, M.D.; Braun, P.V. Hydrogel-based glucose sensors: Effects of phenylboronic acid chemical structure on response. Chem. Mater. 2013, 25, 3239–3250. [Google Scholar] [CrossRef]
- Li, H.L.; Men, D.D.; Sun, Y.Q.; Zhang, T.; Hang, L.F.; Liu, D.L.; Li, C.C.; Cai, W.P.; Li, Y. Optical sensing properties of Au nanoparticle/hydrogel composite microbeads using droplet microfluidics. Nanotechnology 2017, 28, 405502. [Google Scholar] [CrossRef]
- Lee, Y.J.; Pruzinsky, S.A.; Braun, P.V. Glucose-sensitive inverse opal hydrogels: analysis of optical diffraction response. Langmuir 2004, 20, 3096–3106. [Google Scholar] [CrossRef]
- Alexeev, V.L.; Das, S.; Finegold, D.N.; Asher, S.A. Photonic Crystal Glucose-Sensing Material for Noninvasive Monitoring of Glucose in Tear Fluid. Clin. Chem. 2004, 50, 2353–2360. [Google Scholar] [CrossRef]
- Wu, W.T.; Mitra, N.; Zhou, S.Q. Multifunctional hybrid nanogel for integration of optical glucose sensing and self-regulated insulin release at physiological pH. ACS Nano 2010, 4, 4831–4839. [Google Scholar] [CrossRef]
- Hang, L.F.; Zhou, F.; Men, D.D.; Li, H.L.; Li, X.Y.; Zhang, H.H.; Liu, G.Q.; Cai, W.P.; Li, C.C.; Li, Y. Functionalized periodic Au@MOFs nanoparticle arrays as biosensors for dual-channel detection through the complementary effect of SPR and diffraction peaks. Nano Res. 2017, 10, 2257–2270. [Google Scholar] [CrossRef]
- Zhao, J.; Dong, W.F.; Zhang, X.D.; Chai, H.X.; Huang, Y.M. FeNPs@Co3O4 hollow nanocages hybrids as effective peroxidase mimics for glucose biosensing. Sens. Actuators B-Chem 2018, 263, 575–584. [Google Scholar] [CrossRef]
- Nakayama, D.; Takeoka, Y.; Watanabe, M.; Kataoka, K. Simple and precise preparation of a porous gel for a colorimetric glucose sensor by a templating technique. Angew. Chem. Int. Ed. 2003, 42, 4197–4200. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Chai, Y.Q.; Yuan, R. A novel strategy for synthesis of hollow gold nanosphere and its application in electrogenerated chemiluminescence glucose biosensor. Talanta 2014, 128, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.; Wang, F.; Chen, Z.L. Electrochemical glucose sensor based on one-step construction of gold nanoparticle-chitosan composite film. Sens. Actuators B-Chem 2009, 138, 539–544. [Google Scholar] [CrossRef]
- Men, D.D.; Liu, D.L.; Li, Y. Visualized optical sensors based on two/three-dimensional photonic crystals for biochemicals. Sci. Bull. 2016, 61, 1358–1371. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, K.Q. Photonic Crystal Structures with Tunable Structure Color as Colorimetric Sensors. Sensors 2013, 13, 4192–4213. [Google Scholar] [CrossRef] [PubMed]
- Fenzl, C.; Hirsch, T.; Wolfbeis, O.S. Photonic Crystals for Chemical Sensing and Biosensing. Angew. Chem. Int. Ed. 2014, 53, 3318–3335. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.J.; Xie, Z.Y.; Gu, H.C.; Zhu, C.; Gu, Z.Z. Bio-inspired variable structural color materials. Chem. Soc. Rev. 2012, 41, 3297–3317. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.P.; Yin, Y.D. Responsive Photonic Crystals. Angew. Chem. Int. Ed. 2011, 50, 1492–1522. [Google Scholar] [CrossRef]
- Liao, Y.Y.; Chen, Y.T.; Chen, C.C.; Huang, J.J. Evanescent Properties of Optical Diffraction from 2-Dimensional Hexagonal Photonic Crystals and Their Sensor Applications. Materials 2018, 11, 549. [Google Scholar] [CrossRef] [PubMed]
- Venditti, I. Gold nanoparticles in photonic crystals applications: A review. Materials 2017, 10, 97. [Google Scholar] [CrossRef] [PubMed]
- Algorri, J.F.; Zografopoulos, D.C.; Tapetado, A.; Poudereux, D.; Sánchez-Pena, J.M. Infiltrated Photonic Crystal Fibers for Sensing Applications. Sensors 2018, 18, 4263. [Google Scholar] [CrossRef] [PubMed]
- Angelis, R.D.; Venditti, I.; Fratoddi, I.; Matteis, F.D.; Prosposito, P.; Cacciotti, I.; D’Amico, L.; Nanni, F.; Yadav, A.; Casalboni, M.; et al. From nanospheres to microribbons: Self-assembled Eosin Y doped PMMA nanoparticles as photonic crystals. J. Colloid Interface Sci. 2014, 414, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.Y.; Zheng, Y.; Wang, C.M.; Mu, Z.M.; Liu, Y.J. A review of photonic crystal fiber sensor applications for different physical quantities. Appl. Spectrosc. Rev. 2018, 53, 486–502. [Google Scholar] [CrossRef]
- Pantalei, S.; Zampetti, E.; Macagnano, A.; Bearzotti, A.; Venditti, I.; Russo, M. Enhanced Sensory Properties of a Multichannel Quartz Crystal Microbalance Coated with Polymeric Nanobeads. Sensors 2007, 7, 2920–2928. [Google Scholar] [CrossRef] [PubMed]
- Men, D.D.; Hang, L.F.; Zhang, H.H.; Zhang, X.M.; Lyu, X.J.; Cai, W.P.; Li, Y. 3-Acrylamidophenylboronic Acid-Modified Hydrogel Film Attached to a Gold Nanosphere Array to Detect Hydrofluoric Acid with Good Selectivity and Recyclability. ChemNanoMat 2018, 4, 165–169. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Guan, Y.; Zhou, S.Q. Permeability control of glucose-sensitive nanoshells. Biomacromolecules 2007, 8, 3842–3847. [Google Scholar] [CrossRef] [PubMed]
- Hoare, T.; Pelton, R. Charge-Switching, Amphoteric glucose-responsive microgels with physiological swelling activity. Biomacromolecules 2008, 9, 733–740. [Google Scholar] [CrossRef]
- Alexeev, V.L.; Sharma, A.C.; Goponenko, A.V.; Das, S.; Lednev, I.K.; Wilcox, C.S.; Finegold, D.N.; Asher, S.A. High ionic strength glucose-sensing photonic crystal. Anal. Chem. 2003, 75, 2316–2323. [Google Scholar] [CrossRef]
- Honda, M.; Kataoka, K.; Seki, T.; Takeoka, Y. Confined Stimuli-Responsive Polymer Gel in Inverse Opal Polymer Membrane for Colorimetric Glucose Sensor. Langmuir 2009, 25, 8349–8356. [Google Scholar] [CrossRef] [PubMed]
- Xue, F.; Meng, Z.H.; Wang, F.Y.; Wang, Q.H.; Xue, M.; Xu, Z.B. A 2-D photonic crystal hydrogel for selective sensing of glucose. J. Mater. Chem. A 2014, 2, 9559–9565. [Google Scholar] [CrossRef]
- Men, D.D.; Zhang, H.H.; Hang, L.F.; Liu, D.L.; Li, X.Y.; Cai, W.P.; Xiong, Q.H.; Li, Y. Optical sensor based on hydrogel films with 2D colloidal arrays attached on both the surfaces: Anti-curling performance and enhanced optical diffraction intensity. J. Mater. Chem. C 2015, 3, 3659–3665. [Google Scholar] [CrossRef]
- Cai, Z.Y.; Smith, N.L.; Zhang, J.T.; Asher, S.A. Two-Dimensional Photonic Crystal Chemical and Biomolecular Sensors. Anal. Chem. 2015, 87, 5013–5025. [Google Scholar] [CrossRef] [PubMed]
- Men, D.D.; Zhou, F.; Hang, L.F.; Li, X.Y.; Duan, G.T.; Cai, W.P.; Li, Y. A functional hydrogel film attached with a 2D Aunanosphere array and its ultrahigh optical diffraction intensity as a visualized sensor. J. Mater. Chem. C 2016, 4, 2117–2122. [Google Scholar] [CrossRef]
- Zhang, H.H.; Wang, C.; Li, H.L.; Jiang, L.F.; Men, D.D.; Wang, J.; Xiang, J.H. Physical process-aided fabrication of periodic Au-M (M = Ag, Cu, Ag-Cu) alloyed nanoparticle arrays with tunable localized surface plasmon resonance and diffraction peaks. Rsc Adv. 2018, 8, 9134–9140. [Google Scholar] [CrossRef]
- Xiang, J.H.; Wang, C.; Li, H.L.; Men, D.D.; Qiu, X.F.; Zhang, H.H. Highly efficient production of ordered wafer-scale gold nanoparticle arrays film by simple heat treatment based on colloidal monolayer. Int. J. Mod. Phys. B 2018, 32, 1850192. [Google Scholar] [CrossRef]
- Dai, Z.F.; Li, Y.; Duan, G.T.; Jia, L.C.; Cai, W.P.; Diagram, P. Design of Monolayer Binary Colloidal Crystals, and Their Fabrication Based on Ethanol-Assisted Self-Assembly at the Air/Water Interface. ACS Nano 2012, 6, 6706–6716. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ma, R.; Zhen, X.V.; Kudva, Y.C.; Buhlmann, P.; Koester, S.J. Capacitive Sensing of Glucose in Electrolytes Using Graphene Quantum Capacitance Varactors. ACS Appl. Mater. Interfaces 2017, 9, 38863–38869. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Dong, Z.Q.; Shen, J.H.; Chen, H.W.; Zhu, Y.H.; Zhu, Z.G. 2D Photonic Crystal Hydrogel Sensor for Tear Glucose Monitoring. ACS Omega 2018, 3, 3211–3217. [Google Scholar] [CrossRef]
- Wang, J. Electrochemical glucose biosensors. Chem. Rev. 2008, 108, 814–825. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, Y.J.; Guan, Y. New polymerized crystalline colloidal array for glucose sensing. Chem. Commun. 2009, 14, 1867–1869. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Xiang, J.; Men, D.; Zhang, H. 2D Au Nanosphere Arrays/PVA-PBA-Modified-Hydrogel Composite Film for Glucose Detection with Strong Diffraction Intensity and Linear Response. Nanomaterials 2019, 9, 140. https://doi.org/10.3390/nano9020140
Li W, Xiang J, Men D, Zhang H. 2D Au Nanosphere Arrays/PVA-PBA-Modified-Hydrogel Composite Film for Glucose Detection with Strong Diffraction Intensity and Linear Response. Nanomaterials. 2019; 9(2):140. https://doi.org/10.3390/nano9020140
Chicago/Turabian StyleLi, Wenjuan, Junhuai Xiang, Dandan Men, and Honghua Zhang. 2019. "2D Au Nanosphere Arrays/PVA-PBA-Modified-Hydrogel Composite Film for Glucose Detection with Strong Diffraction Intensity and Linear Response" Nanomaterials 9, no. 2: 140. https://doi.org/10.3390/nano9020140
APA StyleLi, W., Xiang, J., Men, D., & Zhang, H. (2019). 2D Au Nanosphere Arrays/PVA-PBA-Modified-Hydrogel Composite Film for Glucose Detection with Strong Diffraction Intensity and Linear Response. Nanomaterials, 9(2), 140. https://doi.org/10.3390/nano9020140