Vibration Analysis of Fluid Conveying Carbon Nanotubes Based on Nonlocal Timoshenko Beam Theory by Spectral Element Method
Abstract
1. Introduction
2. Dynamic Equations of SWCNT Conveying Fluid
3. Spectral Formulation of a SWCNT Conveying Fluid
3.1. The Spectral Formulations
3.2. Comparison Example
3.3. Free Vibration of a SWCNT Conveying Fluid
4. Dynamic Response of a Fluid Conveying SWCNTs
4.1. Spectral Formulations
4.2. Comparison Example
4.3. Example of SWCNT Conveying Fluid
5. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Ajayan, P.M.; Tour, J.M. Nanotube composites. Nature 2007, 447, 1066–1068. [Google Scholar] [CrossRef] [PubMed]
- Koziol, K.; Vilatela, J.; Moisala, A.; Motta, M.; Cunniff, P.; Sennett, M.; Windle, A. High-performance carbon nanotube fiber. Science 2007, 318, 1892–1895. [Google Scholar] [CrossRef] [PubMed]
- Lepak-Kuc, S.; Podsiadły, B.; Skalski, A.; Janczak, D.; Jakubowska, M.; Lekawa-Raus, A. Highly conductive carbon nanotube-thermoplastic polyurethane nanocomposite for smart clothing applications and beyond. Nanomaterials 2019, 9, 1287. [Google Scholar] [CrossRef] [PubMed]
- Albetran, H.; Vega, V.; Prida, V.; Low, I.M. Dynamic diffraction studies on the crystallization, phase transformation, and activation energies in anodized titania nanotubes. Nanomaterials 2018, 8, 122. [Google Scholar] [CrossRef] [PubMed]
- Dadrasi, A.; Albooyeh, A.R.; Mashhadzadeh, A.H. Mechanical properties of silicon-germanium nanotubes: A molecular dynamics study. Appl. Surf. Sci. 2019, 498, 143867. [Google Scholar] [CrossRef]
- Battaglia, S.; Evangelisti, S.; Leininger, T.; Pirani, F.; Faginas-Lago, N. A novel intermolecular potential to describe the interaction between the azide anion and carbon nanotubes. Diam. Relat. Mater. 2019. [Google Scholar] [CrossRef]
- Zhang, Z.; Han, S.; Wang, C.; Li, J.; Xu, G. Single-walled carbon nanohorns for energy applications. Nanomaterials 2015, 5, 1732–1755. [Google Scholar] [CrossRef]
- Farajpour, A.; Ghayesh, M.H.; Farokhi, H. A review on the mechanics of nanostructures. Int. J. Eng. Sci. 2018, 133, 231–263. [Google Scholar] [CrossRef]
- Ghayesh, M.H.; Farajpour, A. A review on the mechanics of functionally graded nanoscale and microscale structures. Int. J. Eng. Sci. 2019, 137, 8–36. [Google Scholar] [CrossRef]
- Li, B.; Fang, H.; He, H.; Yang, K.; Chen, C.; Wang, F. Numerical simulation and full-scale test on dynamic response of corroded concrete pipelines under multi-field coupling. Constr. Build. Mater. 2019, 200, 368–386. [Google Scholar] [CrossRef]
- Fang, H.; Lei, J.; Yang, M.; Li, Z. Analysis of GPR wave propagation using CUDA-implemented conformal symplectic partitioned Runge-Kutta method. Complexity 2019, 2019, 4025878. [Google Scholar] [CrossRef]
- Cai, K.; Yang, L.K.; Shi, J.; Qin, Q.H. Critical conditions for escape of a high-speed fullerene from a BNC nanobeam after collision. Sci. Rep. 2018, 8, 913. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Cai, K.; Shi, J.; Xie, Y.M.; Qin, Q.H. Nonlinear dynamic behavior of a clamped-clamped beam from BNC nanotube impacted by fullerene. Nonlinear Dyn. 2019, 96, 1133–1145. [Google Scholar] [CrossRef]
- Ru, C.Q. Elastic models for carbon nanotubes. In Encyclopedia of Nanoscience and Nanotechnology, vol. 2; American Scientific Publishers: Stevenson Ranch, CA, USA, 2004; Volume 2, pp. 731–744. [Google Scholar]
- Eringen, A.C.; Edelen, D.G.B. On nonlocal elasticity. Int. J. Eng. Sci. 1972, 10, 233–248. [Google Scholar] [CrossRef]
- Eringen, A.C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 1983, 54, 4703–4710. [Google Scholar] [CrossRef]
- Lu, P.; Lee, H.P.; Lu, C. Dynamic properties of flexural beams using a nonlocal elasticity model. J. Appl. Phys. 2006, 99, 073510. [Google Scholar] [CrossRef]
- Lu, P.; Lee, H.P.; Lu, C.; Zhang, P.Q. Application of nonlocal beam models for carbon nanotubes. Int. J. Solids Struct. 2007, 44, 5289–5300. [Google Scholar] [CrossRef]
- Wang, C.M.; Zhang, Y.Y.; He, X.Q. Vibration of nonlocal Timoshenko beams. Nanotechnology 2007, 18, 105401. [Google Scholar] [CrossRef]
- Reddy, J.N.; Pang, S.D. Nonlocal continuum theories of beams for the analysis of carbon nanotubes. J. Appl. Phys. 2008, 103, 023511. [Google Scholar] [CrossRef]
- Reddy, J.N. Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 2007, 45, 288–307. [Google Scholar] [CrossRef]
- Romano, G.; Barretta, R. Nonlocal elasticity in nanobeams: The stress-driven integral model. Int. J. Eng. Sci. 2017, 115, 14–27. [Google Scholar] [CrossRef]
- Barretta, R.; Faghidian, S.A.; Sciarra, F.M. Stress-driven nonlocal integral elasticity for axisymmetric nano-plates. Int. J. Eng. Sci. 2019, 136, 38–52. [Google Scholar] [CrossRef]
- Barretta, R.; Faghidian, S.A.; Luciano, R.; Medaglia, C.M.; Penna, R. Stress-driven two-phase integral elasticity for torsion of nano-beams. Compos. Part B Eng. 2018, 145, 62–69. [Google Scholar] [CrossRef]
- Barretta, R.; Fabbrocino, F.; Luciano, R.; de Sciarra, F.M. Closed-form solutions in stress-driven two-phase integral elasticity for bending of functionally graded nano-beams. Physica E 2018, 97, 13–30. [Google Scholar] [CrossRef]
- Barretta, R.; Sciarra, F.M. Variational nonlocal gradient elasticity for nano-beams. Int. J. Eng. Sci. 2019, 143, 73–91. [Google Scholar] [CrossRef]
- Lu, L.; Guo, X.M.; Zhao, J.Z. Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory. Int. J. Eng. Sci. 2017, 116, 12–24. [Google Scholar] [CrossRef]
- Faghidian, S.A. Reissner stationary variational principle for nonlocal strain gradient theory of elasticity. Eur. J. Mech. A Solid 2018, 70, 115–126. [Google Scholar] [CrossRef]
- Apuzzo, A.; Barretta, R.; Faghidian, S.A.; Luciano, R.; de Sciarra, F.M. Free vibrations of elastic beams by modified nonlocal strain gradient theory. Int. J. Eng. Sci. 2018, 133, 99–108. [Google Scholar] [CrossRef]
- Hosseini, M.; Bahaadini, R. Size dependent stability analysis of cantilever micro-pipes conveying fluid based on modified strain gradient theory. Int. J. Eng. Sci. 2016, 101, 1–13. [Google Scholar] [CrossRef]
- Whitby, M.; Quirke, N. Fluid flow in carbon nanotubes and nanopipes. Nat. Nanotechnol. 2007, 2, 87–94. [Google Scholar] [CrossRef]
- Rinaldi, S.; Prabhakar, S.; Vengallatore, S.; Païdoussis, M.P. Dynamics of microscale pipes containing internal fluid flow: Damping, frequency shift, and stability. J. Sound Vib. 2010, 329, 1081–1088. [Google Scholar] [CrossRef]
- Paidoussis, M.P.; Issid, N.T. Dynamic stability of pipes conveying fluid. J. Sound Vib. 1974, 33, 267–294. [Google Scholar] [CrossRef]
- Yoon, J.; Ru, C.Q.; Mioduchowski, A. Flow-induced flutter instability of cantilever carbon nanotubes. Int. J. Solids Struct. 2006, 43, 3337–3349. [Google Scholar] [CrossRef]
- Yoon, J.; Ru, C.Q.; Mioduchowski, A. Vibration and instability of carbon nanotubes conveying fluid. Compos. Sci. Technol. 2005, 65, 1326–1336. [Google Scholar] [CrossRef]
- Wang, L. Size-dependent vibration characteristics of fluid-conveying microtubes. J. Fluid Struct. 2010, 26, 675–684. [Google Scholar] [CrossRef]
- Wang, L. Vibration and instability analysis of tubular nano- and micro-beams conveying fluid using nonlocal elastic theory. Phys. E 2009, 41, 1835–1840. [Google Scholar] [CrossRef]
- Wang, L. A modified nonlocal beam model for vibration and stability of nanotubes conveying fluid. Phys. E 2011, 44, 25–28. [Google Scholar] [CrossRef]
- Liang, F.; Su, Y. Stability analysis of a single-walled carbon nanotube conveying pulsating and viscous fluid with nonlocal effect. Appl. Math. Model. 2013, 37, 6821–6828. [Google Scholar] [CrossRef]
- Bahaadini, R.; Saidi, A.R.; Hosseini, M. Flow-induced vibration and stability analysis of carbon nanotubes based on the nonlocal strain gradient Timoshenko beam theory. J. Vib. Control 2018, 25, 203–218. [Google Scholar] [CrossRef]
- Afkhami, Z.; Farid, M. Thermo-mechanical vibration and instability of carbon nanocones conveying fluid using nonlocal Timoshenko beam model. J. Vib. Control 2014, 22, 604–618. [Google Scholar] [CrossRef]
- Zhen, Y.X.; Fang, B. Nonlinear vibration of fluid-conveying single-walled carbon nanotubes under harmonic excitation. Int. J. Nonlin Mech. 2015, 76, 48–55. [Google Scholar] [CrossRef]
- Ghayesh, M.H.; Farokhi, H.; Farajpour, A. Global dynamics of fluid conveying nanotubes. Int. J. Eng. Sci. 2019, 135, 37–57. [Google Scholar] [CrossRef]
- Farajpour, A.; Farokhi, H.; Ghayesh, M.H.; Hussain, S. Nonlinear mechanics of nanotubes conveying fluid. Int. J. Eng. Sci. 2018, 133, 132–143. [Google Scholar] [CrossRef]
- Doyle, J.F. Wave Propagation in Structures: An FFT-Based Spectral Analysis Methodology; Springer: Berlin/Heidelberg, Germany, 1989; p. 158. ISBN 978-1-4612-1832-6. [Google Scholar]
- Paidoussis, M.P.; Laithie, B.E. Dynamics of Timoshenko beams conveying fluid. J. Mech. Eng. Sci. 1976, 18, 210–220. [Google Scholar] [CrossRef]
- Luo, Y.; Bao, J. A material-field series-expansion method for topology optimization of continuum structures. Comput. Struct. 2019, 225, 106122. [Google Scholar] [CrossRef]
- Faghidian, S.A. Unified Formulations of the Shear Coefficients in Timoshenko Beam Theory. J. Eng. Mech. 2017, 143, 06017013. [Google Scholar] [CrossRef]
- Romano, G.; Barretta, A.; Barretta, R. On torsion and shear of Saint-Venant beams. Eur. J. Mech. A Solid 2012, 35, 47–60. [Google Scholar] [CrossRef]
- Cowper, G.R. The shear coefficient in Timoshenko’s beam theory. J. Appl. Mech. 1966, 33, 335–340. [Google Scholar] [CrossRef]
- Dym, C.L.; Shames, I.H. Solid Mechanics: A Variational Approach; Springer: Berlin/Heidelberg, Germany, 2013; p. 203. ISBN 978-1-4614-6033-6. [Google Scholar]
- Song, Y.; Kim, T.; Lee, U. Vibration of a beam subjected to a moving force: Frequency-domain spectral element modeling and analysis. Int. J. Mech. Sci. 2016, 113, 162–174. [Google Scholar] [CrossRef]
- Carrer, J.A.M.; Fleischfresser, S.A.; Garcia, L.F.T. Dynamic analysis of Timoshenko beams by the boundary element method. Eng. Anal. Bound. Elem. 2013, 37, 1602–1616. [Google Scholar] [CrossRef]
Young’s Modulus | Diameter | Length | CNT Density | Poisson Ration | Shear Coefficient |
---|---|---|---|---|---|
5.5 TPa | d = 0.678 nm | L = 10 d | 2.3 g/cm3 | μ = 0.19 | k0 = 0.563 |
α = 0 | α = 0.1 | α = 0.3 | α = 0.5 | α = 0.7 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Present | [19] | Present | [19] | Present | [19] | Present | [19] | Present | [19] | |
3.09 | 3.09 | 3.02 | 3.02 | 2.65 | 2.65 | 2.29 | 2.29 | 2.01 | 2.01 | |
5.94 | 5.94 | 5.53 | 5.53 | 4.21 | 4.21 | 3.40 | 3.40 | 2.92 | 2.92 | |
8.44 | 8.44 | 7.47 | 7.47 | 5.24 | 5.24 | 4.16 | 4.16 | 3.55 | 3.55 | |
10.63 | 10.63 | 8.99 | 8.99 | 6.02 | 6.02 | 4.74 | 4.74 | 4.03 | 4.03 | |
12.54 | 12.54 | 10.21 | 10.21 | 6.63 | 6.63 | 5.20 | 5.20 | 4.41 | 4.41 |
α = 0 | α = 0.1 | α = 0.3 | α = 0.5 | |||||
---|---|---|---|---|---|---|---|---|
Present | [19] | Present | [19] | Present | [19] | Present | [19] | |
1.86 | 1.86 | 1.87 | 1.87 | 1.90 | 1.90 | 2.00 | 2.00 | |
4.47 | 4.47 | 4.35 | 4.35 | 3.66 | 3.66 | 2.89 | 2.89 | |
7.11 | 7.11 | 6.61 | 6.61 | 5.08 | 5.08 | - | - | |
9.38 | 9.38 | 8.32 | 8.32 | 5.79 | 5.79 | - | - | |
11.38 | 11.38 | 9.67 | 9.67 | 6.58 | 6.58 | - | - |
α = 0 | α = 0.1 | α = 0.2 | α = 0.3 | |
---|---|---|---|---|
8.69 | 8.26 | 7.27 | 6.14 | |
33.82 | 29.10 | 21.61 | 16.09 | |
69.61 | 54.16 | 36.12 | 25.53 | |
111.14 | 79.56 | 49.76 | 34.33 | |
155.37 | 104.07 | 62.67 | 42.53 |
u = 0 | u = 0.2 | u = 0.6 | u = 1.0 | |
---|---|---|---|---|
8.18 | 7.74 | 6.77 | 5.70 | |
23.38 | 22.51 | 20.67 | 18.69 | |
38.69 | 37.43 | 34.76 | 31.89 | |
53.08 | 51.45 | 48.01 | 44.32 | |
66.45 | 64.50 | 60.36 | 55.92 |
Young’s Modulus | Density | Length | Section Size | Poisson Ratio | Shear Coefficient |
---|---|---|---|---|---|
50 GPa | 2.5 g/cm3 | 4 m | b = 0.2 m h = 0.6 m | μ = 0.2 | k0 = 5/6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, X.; Li, B.; Wang, Z. Vibration Analysis of Fluid Conveying Carbon Nanotubes Based on Nonlocal Timoshenko Beam Theory by Spectral Element Method. Nanomaterials 2019, 9, 1780. https://doi.org/10.3390/nano9121780
Yi X, Li B, Wang Z. Vibration Analysis of Fluid Conveying Carbon Nanotubes Based on Nonlocal Timoshenko Beam Theory by Spectral Element Method. Nanomaterials. 2019; 9(12):1780. https://doi.org/10.3390/nano9121780
Chicago/Turabian StyleYi, Xiaolei, Baohui Li, and Zhengzhong Wang. 2019. "Vibration Analysis of Fluid Conveying Carbon Nanotubes Based on Nonlocal Timoshenko Beam Theory by Spectral Element Method" Nanomaterials 9, no. 12: 1780. https://doi.org/10.3390/nano9121780
APA StyleYi, X., Li, B., & Wang, Z. (2019). Vibration Analysis of Fluid Conveying Carbon Nanotubes Based on Nonlocal Timoshenko Beam Theory by Spectral Element Method. Nanomaterials, 9(12), 1780. https://doi.org/10.3390/nano9121780