Ductile Zr-Based Bulk Metallic Glasses by Controlling Heterogeneous Microstructure from Phase Competition Strategy
Abstract
1. Introduction
2. Experimental Procedures
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, W.H.; Dong, C.; Shek, C.H. Bulk metallic glasses. Mater. Sci. Eng. R Rep. 2004, 44, 45–89. [Google Scholar] [CrossRef]
- Chen, M. A brief overview of bulk metallic glasses. NPG Asia Mater. 2011, 3, 82–90. [Google Scholar] [CrossRef]
- Hays, C.C.; Kim, C.P.; Johnson, W.L. Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 2000, 84, 2901–2904. [Google Scholar] [CrossRef] [PubMed]
- Conner, R.D.; Dandliker, R.B.; Johnson, W.L. Mechanical properties of Tungsten and steel fiber reinforced Zr41.2Ti13.8Cu12.5Ni10Be22.5 metallic glass matrix composites. Acta Mater. 1998, 46, 6089–6102. [Google Scholar] [CrossRef]
- Xiong, J.; Liu, Y.; Yu, A.S.; Liu, B.; Yu, K.; Huang, X.H.; Yang, X.J. Microstructure and mechanical properties of Ti48Zr18V12Cu5Be17 bulk metallic glass composite. J. Alloys Compd. 2018, 741, 1212–1221. [Google Scholar] [CrossRef]
- Cheng, J.L.; Wang, J.J.; Yun, Y.L.; Rui, J.X.; Zhao, W.; Li, F. A novel core-shell structure reinforced Zr-based metallic glass composite with combined high strength and good tensile ductility. J. Alloys Compd. 2019, 803, 413–416. [Google Scholar] [CrossRef]
- Liu, D.M.; Lin, S.F.; Ge, S.F.; Zhu, Z.W.; Fu, H.M.; Zhang, H.F. A Ti-based bulk metallic glass composite with excellent tensile properties and significant work-hardening capacity. Mater. Lett. 2018, 233, 107–110. [Google Scholar] [CrossRef]
- Cheng, J.L.; Chen, G.; Zhao, W.; Wang, Z.Z.; Zhang, Z.W. Enhancement of tensile properties by the solid solution strengthening of nitrogen in Zr-based metallic glass composites. Mater. Sci. Eng. A 2017, 696, 461–465. [Google Scholar] [CrossRef]
- Fan, C.; Li, C.F.; Inoue, A. Deformation behavior of Zr-based bulk nanocrystalline amorphous alloys. Phys. Rev. B 2000, 61, 3761–3763. [Google Scholar] [CrossRef]
- Yao, K.F.; Ruan, F.; Yang, T.Q.; Chen, N. Superductile bulk metallic glass. Appl. Phys. Lett. 2006, 88, 122106. [Google Scholar] [CrossRef]
- Liu, Y.H.; Wang, G.; Wang, R.J.; Pan, M.X.; Wang, W.H. Super Plastic Bulk Metallic Glasses at Room Temperature. Science 2007, 315, 1385–1388. [Google Scholar] [CrossRef] [PubMed]
- Qiao, J.C.; Wang, Q.; Pelletier, J.M.; Kato, H.; Casalini, R.; Crespo, D.; Pineda, E.; Yao, Y.; Yang, Y. Structural heterogeneities and mechanical behavior of amorphous alloys. Prog. Mater. Sci. 2019, 104, 250–329. [Google Scholar] [CrossRef]
- Park, T.G.; Kim, S.Y.; Ahn, H.S.; Oh, H.S.; Kim, D.H.; Chang, H.J.; Park, E.S. Tuning correlative atomic scale fluctuation and related properties in Ni–Nb–Zr metallic glasses. Acta Mater. 2019, 173, 53–60. [Google Scholar] [CrossRef]
- Cao, D.; Wu, Y.; Liu, X.J.; Wang, H.; Wang, X.Z.; Lu, Z.P. Enhancement of glass-forming ability and plasticity via alloying the elements having positive heat of mixing with Cu in Cu48Zr48Al4 bulk metallic glass. J. Alloys Compd. 2019, 777, 382–391. [Google Scholar] [CrossRef]
- Sikan, F.; Atabay, S.E.; Motallebzadeh, A.; Özerinç, S.; Kalay, I.; Kalay, Y.E. Effect of Sm on thermal and mechanical properties of Cu-Zr-Al bulk metallic glasses. Mater. Sci. Eng. A 2019, 743, 168–174. [Google Scholar] [CrossRef]
- Zhang, L.; Cheng, Y.Q.; Cao, A.J.; Xu, J.; Ma, E. Bulk metallic glasses with large plasticity: Composition design from the structural perspective. Acta Mater. 2009, 57, 1154–1164. [Google Scholar] [CrossRef]
- Kim, H.K.; Ahn, J.P.; Lee, B.J.; Park, K.W. Role of atomic-scale chemical heterogeneities in improving the plasticity of Cu-Zr-Ag bulk amorphous alloys. Acta Mater. 2018, 157, 209–217. [Google Scholar] [CrossRef]
- Xie, S.H.; Kruzic, J.J. Cold rolling improves the fracture toughness of a Zr-based bulk metallic glass. J. Alloys Compd. 2017, 694, 1109–1120. [Google Scholar] [CrossRef]
- Ebner, C.; Escher, B.; Gammer, C.; Eckert, J.; Pauly, S.; Rentenberger, C. Structural and mechanical characterization of heterogeneities in a CuZr-based bulk metallic glass processed by high pressure torsion. Acta Mater. 2018, 160, 147–157. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, W.H.; Greer, A.L. Making metallic glasses plastic by control of residual stress. Nat. Mater. 2006, 5, 857–860. [Google Scholar] [CrossRef]
- Tong, Y.; Dmowski, W.; Bei, H.; Yokoyama, Y.; Egami, T. Mechanical rejuvenation in bulk metallic glass induced by thermo-mechanical creep. Acta Mater. 2018, 148, 384–390. [Google Scholar] [CrossRef]
- Ketov, S.V.; Sun, Y.H.; Nachum, S.; Lu, Z.; Checchi, A.; Beraldin, A.R.; Bai, H.Y.; Wang, W.H.; Luzgin, D.V.L.; Carpenter, M.A.; et al. Rejuvenation of metallic glasses by non-affine thermal strain. Nature 2015, 524, 200–203. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Wang, Y.X.; Guo, Q.; Zhang, D.; Greer, A.L.; Li, Y. Extreme rejuvenation and softening in a bulk metallic glass. Nat. Commun. 2018, 9, 560. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Lu, Y.Z. Laser directed energy deposition of Zr-based bulk metallic glass composite with tensile strength. Mater. Lett. 2019, 247, 79–81. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, C.; Xing, W.; Liu, L. 3D printing of Zr-based bulk metallic glasses with complex geometries and enhanced catalytic properties. Intermetallics 2018, 94, 22–28. [Google Scholar] [CrossRef]
- Ida, H.; Seiryu, M.; Takeshita, N.; Iwasaki, M.; Yokoyama, Y.; Tsutsumi, Y.; Ikeda, E.; Sasaki, S.; Miyashita, S.; Sasaki, S.; et al. Biosafety, stability, and osteogenic activity of novel implants made of Zr70Ni16Cu6Al8 bulk metallic glass for biomedical application. Acta Biomater. 2018, 74, 505–517. [Google Scholar] [CrossRef]
- Cheng, J.L.; Chen, G.; Gao, P.; Liu, C.T.; Li, Y. The critical cooling rate and microstructure evolution of Zr41.2Ti13.8Cu12.5Ni10Be22.5 composites by Bridgman solidification. Intermetallics 2018, 18, 115–118. [Google Scholar] [CrossRef]
- Cheng, J.L.; Chen, G.; Fan, C.; Li, Y. Glass formation, microstructure evolution and mechanical properties of Zr41.2Ti13.8Cu12.5Ni10Be22.5 and its surrounding alloys. Acta Mater. 2014, 73, 194–204. [Google Scholar] [CrossRef]
- Zhou, W.; Hu, J.Q.; Weng, W.P.; Gao, L.Y.; Xu, G.Y. Enhancement of plasticity in Zr-Cu-Ni-Al-Ti bulk metallic glass by heterogeneous microstructure. J. Non-Cryst. Solids 2018, 481, 530–536. [Google Scholar] [CrossRef]
- Saida, J.; Li, C.; Matsushita, M.; Inoue, A. Investigation of the stability of glassy state in the Zr- and Hf-based glassy alloys correlated with their transformation behavior. J. Mater. Res. 2001, 16, 3389–3401. [Google Scholar] [CrossRef]
- Saida, J.; Inoue, A. Quasicrystals from glass devitrification. J. Non-Cryst. Solids 2003, 317, 97–105. [Google Scholar] [CrossRef]
- Sarac, B.; Ivanov, Y.P.; Chuvilin, A.; Schöberl, T.; Stoica, M.; Zhang, Z.L.; Eckert, J. Origin of large plasticity and multiscale effects in iron-based metallic glasses. Nat. Commun. 2018, 9, 1333. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Peng, C.X.; Cheng, Y.; Zhang, G.; Wang, P.F.; Jia, L.J.; Wang, L. Mechanical behavior of CuZr dual-phase nanocrystal-metallic glass composites. Comp. Mater. Sci. 2019, 163, 290–300. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, J.L.; Wang, J.J.; Rui, J.X.; Yun, Y.L.; Zhao, W.; Li, F. Ductile Zr-Based Bulk Metallic Glasses by Controlling Heterogeneous Microstructure from Phase Competition Strategy. Nanomaterials 2019, 9, 1728. https://doi.org/10.3390/nano9121728
Cheng JL, Wang JJ, Rui JX, Yun YL, Zhao W, Li F. Ductile Zr-Based Bulk Metallic Glasses by Controlling Heterogeneous Microstructure from Phase Competition Strategy. Nanomaterials. 2019; 9(12):1728. https://doi.org/10.3390/nano9121728
Chicago/Turabian StyleCheng, J. L., J. J. Wang, J. X. Rui, Y. L. Yun, W. Zhao, and F. Li. 2019. "Ductile Zr-Based Bulk Metallic Glasses by Controlling Heterogeneous Microstructure from Phase Competition Strategy" Nanomaterials 9, no. 12: 1728. https://doi.org/10.3390/nano9121728
APA StyleCheng, J. L., Wang, J. J., Rui, J. X., Yun, Y. L., Zhao, W., & Li, F. (2019). Ductile Zr-Based Bulk Metallic Glasses by Controlling Heterogeneous Microstructure from Phase Competition Strategy. Nanomaterials, 9(12), 1728. https://doi.org/10.3390/nano9121728