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Abstract: In this paper, we prepare the alloys of Zr41.2Ti13.8Cu12.5Ni10Be22.5, Zr44.4Ti14.8Cu14.3Ni11.5

Be15, and Zr38Ti12.7Cu9.6Ni7.7Be32 to show the effects of alloy composition on the inhomogeneity
structures and mechanical properties of Zr-based bulk metallic glasses (BMGs). Compared with the
best glass former Zr41.2Ti13.8Cu12.5Ni10Be22.5, some nanoscale inhomogeneity structures can be induced
by shifting the compositions towards a primary phase in the alloys of Zr44.4Ti14.8Cu14.3Ni11.5Be15 and
Zr38Ti12.7Cu9.6Ni7.7Be32. The room temperature compression tests reveal that theBMGs contained
nanoscale inhomogeneity structures exhibit superior mechanical properties with the high strength
of 1780 MPa and especially a remarkable plastic strain of over 9%. These findings provide a new
perspective to enhance the ductility of BMGs by introducing nanoscale inhomogeneity structures
based on the phase competition strategy.
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1. Introduction

Due to the long-range disordering structure characteristic, bulk metallic glasses (BMGs) have
some unique mechanical, chemical, and physical properties, which make BMG potentially useful
for engineering applications [1,2]. However, most of BMGs usually fail catastrophically at ambient
temperature by the highly localized deformation behavior, which severely limits their actual applications.
To improve the ductility of BMGs, the BMG composites with the enforcement of intrinsic or extrinsic
phases were developed [3–8]. These BMG composites exhibited large plasticity, but their yield strengths
are decreased significantly. Moreover, some BMGs with nanoscale inhomogeneity structures have
been developed, which achieves the combination of high strength and toughness [9–12]. Therefore,
some efforts are devoted to controlling inhomogeneity structures, especially the microalloying
technique [13–15], composition design from the structural perspective [16] and molecular dynamics
simulations [17]. However, it is still hard to predict a priori at what alloy compositions the BMGs
would be plastic.

Moreover, it is worth mentioning that a variety of pre-treatments, such as cold rolling [18],
high-pressure torsion [19], surface mechanical attrition [20], thermo-mechanical creep [21], thermal
cycling [22] and triaxial compression [23], have been used to obtain the inhomogeneity structures
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and plasticity for the BMGs. These pre-treatments effectively enhance the plasticity of BMGs but also
dramatically increase the cost of production. Therefore, it is necessary to propose an effective strategy
to design the ductile BMGs.

As known, the origin of inhomogeneity structures in BMGs is correlated with the short-range
order and structural fluctuation in the undercooled melting. However, to enhance the glass forming
ability (GFA), most of the best glass formers based on the pseudo-binary or ternary eutectics have the
highest thermodynamic, dynamic stability and densely stacking structures, which may be detrimental
to the formation of nanoscale inhomogeneous structures. Therefore, we proposed that the alloy
compositions deviated from the best glass formers could have more amounts of crystal-like short-range
order and structural fluctuation, because of the stronger crystallization tendency of the primary phase.
In this work, we select the Zr-based alloy system as a model, which has a high GFA and significant
scientific and commercial interests [24–26]. We will show how to design the BMGs with nanoscale
inhomogeneity structures and large plasticity from the phase competition strategy. These findings give
a new perspective to enhance the ductility of BMGs.

2. Experimental Procedures

According to the authors’ previous studies [27,28], the glass formation of the famous Vit-1
alloy (Zr41.2Ti13.8Cu12.5Ni10Be22.5) is based on the Zr(Ti)2Cu(Ni)–Zr(Ti)Be2 pseudo-binary eutectics.
To obtain the nanoscaled inhomogeneity structures, we design the two alloy compositions of
Zr44.4Ti14.8Cu14.3Ni11.5Be15 and Zr38Ti12.7Cu9.6Ni7.7Be32, which are toward the Zr2Cu and ZrBe2

primary phase respectively. For comparison, the Vit1 alloy was also prepared. Hereafter, the three
alloys are designated as Be15, Be22.5, and Be32 respectively.

Alloy button ingots with the compositions of Zr41.2Ti13.8Cu12.5Ni10Be22.5, Zr44.4Ti14.8Cu14.3Ni11.5

Be15, and Zr38Ti12.7Cu9.6Ni7.7Be32 were prepared by arc-melting the mixtures of metal chips with
purities higher than 99.9 (wt. %) under a Ti-gettered argon atmosphere. Then the alloy button
ingots were remelted and cast into the copper mold with a 7 mm diameter using gravity casting.
The microstructures of the samples were investigated by X-ray diffractometry (XRD) and optical
microscopy (OM). Cylindrical specimens for uniaxial compression with 3 mm diameter and 6 mm
length were machined and conducted on an Instron-8801 testing machine using an engineering strain
rate of 5 × 10−4 s−1. At least three samples for mechanical testing were measured to ensure that the
results are reproducible and statistically meaningful. The nanoscaled inhomogeneity structures were
investigated by the high-resolution transmission electron microscopy (HRTEM). Differential scanning
calorimetry (DSC) was conducted to analyze the thermal properties of the samples under a heating
rate of 20 K/min.

3. Results and Discussion

Figure 1a–c shows the OM micrographs of the three master alloys prepared by arc-melting.
As shown, the alloy Be15 exhibits a typical BMG composite, and some needle-like crystals with 45%
volume fraction are embedded in the glass matrix. According to the XRD pattern (see Figure 1d),
this needle-like phase can be identified as a tetragonal Zr2Cu phase. While the alloy Be22.5 shows a
featureless amorphous structure, indicating it has the best GFA. For the alloy Be32, it also is a BMG
composite with a primary lath-like phase of 29% volume fraction. This lath-like phase can be identified
as a hexagonal ZrBe2 phase by the XRD pattern. These results indicate that with the increase of Be
content, the microstructures of alloys are changed from Zr2Cu+BMG to monolithic BMG and then to
ZrBe2+BMG. Therefore, we propose that in the undercooled melting of alloys Be15 and Be32, there are
some origins of inhomogeneity structures, such as crystal-like short-range order structures, which are
easy to induce the medium-range order (IMRO) or nanoscale inhomogeneous structures in the alloys
of Be15 and Be32, respectively.
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Figure 1. Optical microscopy (OM) micrographs of the master alloys prepared by arc-melting (a) Be15, 
(b) Be22.5 (c) Be32 and (d) their x-ray diffractometry (XRD) patterns. 

In order to verify the above speculation, the three alloys were cast into a copper mold to obtain 
rod-like samples with a diameter of 7 mm. Figure 2 shows the OM graphs, XRD patterns and DSC 
curves of the casting rod-shaped samples. As shown, just like the alloy Be22.5, the alloys Be15 and 
Be32 exhibit the featureless microstructures (see Figure 2a and b). The amorphous nature of the alloys 
Be15, Be22.5 and Be32 are also confirmed by the XRD patterns (see Figure 2c), because of them exhibit 
the broad scattering humps. Moreover, all three alloys show a clear glass transition, further 
confirming their glass intrinsic nature, as shown in Figure 2d. However, there are obvious differences 
in the crystallization behavior of the three alloys, which have different onset crystallization 
temperature Tx and the position of crystallization exothermic peak. It is reasonable to speculate that 
the different medium-range order structures or nanoscale inhomogeneous structures could lead to 
this difference in the crystallization behavior. 

 

Figure 1. Optical microscopy (OM) micrographs of the master alloys prepared by arc-melting (a) Be15,
(b) Be22.5 (c) Be32 and (d) their X-ray diffractometry (XRD) patterns.

In order to verify the above speculation, the three alloys were cast into a copper mold to obtain
rod-like samples with a diameter of 7 mm. Figure 2 shows the OM graphs, XRD patterns and DSC
curves of the casting rod-shaped samples. As shown, just like the alloy Be22.5, the alloys Be15 and
Be32 exhibit the featureless microstructures (see Figure 2a,b). The amorphous nature of the alloys Be15,
Be22.5 and Be32 are also confirmed by the XRD patterns (see Figure 2c), because of them exhibit the
broad scattering humps. Moreover, all three alloys show a clear glass transition, further confirming
their glass intrinsic nature, as shown in Figure 2d. However, there are obvious differences in the
crystallization behavior of the three alloys, which have different onset crystallization temperature Tx

and the position of crystallization exothermic peak. It is reasonable to speculate that the different
medium-range order structures or nanoscale inhomogeneous structures could lead to this difference in
the crystallization behavior.

TEM was performed to further identify the inhomogeneity structures. As shown in Figure 3,
the selected area electron diffraction patterns show that from the region with a diameter of 10 nm
consists of a broad halo, characteristic of a fully amorphous phase. Even from the HRTEM image,
none of the inhomogeneity structures can be found in the alloy Be22.5, as shown in Figure 3a. However,
it seems that there are some nanoscale inhomogeneity structures (denoted by the red circle) exists in
the glassy phase for the alloys Be15 and Be32, as shown in Figure 3b,c. Similar phenomenon has been
observed in the Zr–Cu–Ni–Al, Zr–Cu–Ni–Al–Pd, Hf–Cu–Ni–Al–Pd, Zr–Pd and Hf–Pd metallic glasses
(MGs) [29–31], although the IMRO and nanoscale inhomogeneous structures are difficult to identify
due to the resolution range of TEMs. It is worth mentioning that Sarac et al. [32] also proposed that
with the Ni content increases, the GFA of Fe-based alloy system decreased, but gave rise to nanocrystal
formation. Using aberration-corrected high-resolution transmission electron microscopy (HRTEM),
they observed the nanoscale inhomogeneity structures on the order of 1–1.5 nm in size. Therefore,
we propose that the nanoscale inhomogeneity structures in BMGs can be obtained in the alloys Be15
and Be32, which deviate from the best glass formers and are towards a primary phase.
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Figure 3. HRTEM images of the casting samples of (a) Be22.5, (b) Be15 and (c) Be32. The insets of (a),
(b) and (c) are the corresponding selected area electron diffraction patterns.

The room temperature compressive tests were performed to investigate the effect of the nanoscale
inhomogeneity structures on the mechanical properties. As shown in Figure 4a, the alloy Be22.5
shows a typical mechanical behavior of BMGs with up to 1790 MPa strength and complete brittle
fracture. However, both of the alloys Be15 and Be32 exhibit ~10% plastic strain, while the strengths
of them are also up to 1780 MPa, indicating a unique combination of the high strength and large
plasticity. In the previous reports [9,32,33], it has been found that the plasticity in BMGs containing
fine in-situ precipitated nanocrystals can be greatly improved. In general, the as-casting nanocrystals
can stimulate the shear band nucleation and also block the growth of shear bands, and resulting in
multiplication of shear bands and macroscopic plastic deformation. Figure 4b–d show the fracture
surfaces of the alloys Be22.5, Be15, and Be32, respectively. All three alloys reveal typical vein-like
patterns and molten droplets, indicating a local viscous flow during the fracture process. However,
it is worthy to notice that the vein patterns are more developed and smaller in the alloys Be15 and
Be32, obviously demonstrating its improved plasticity.
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4. Conclusions

In conclusion, we prepare the BMGs of Be15, Be22.5, and Be32 using copper mold casting.
Some nanoscale inhomogeneity structures can be obtained in the BMGs of Be15 and Be32, which are
towards the Zr2Cu and ZrBe2 primary phases, respectively. Compare with the best glass formers
Be22.5 without nanoscale inhomogeneity structures, the BMGs of Be15 and Be22.5 exhibit the unique
large scale plasticity beside the high strength. These findings give a new perspective to enhance the
ductility of BMGs by introducing nanoscale inhomogeneity structures based on the phase competition
strategy. Although to some extent this strategy will sacrifice the glass formation ability, it is still a
promising method to toughen a BMG for practical engineering applications, especially the excellent
glass former system, such as Zr-based BMGs.
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