Nanoparticles Assembled CdIn2O4 Spheres with High Sensing Properties towards n-Butanol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of CdIn2O4 Spheres
2.2. Materials Characterization
2.3. Sensor Fabrication and Testing
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dai, Z.F.; Liang, T.T.; Lee, J.H. Gas sensors using ordered macroporous oxide nanostructures. Nanoscale Adv. 2019, 1, 1626–1639. [Google Scholar] [CrossRef]
- Li, Z.J.; Li, H.; Wu, Z.L.; Wang, M.K.; Luo, J.T.; Torun, H.; Hu, P.A.; Yang, C.; Grudmann, M.; Liu, X.T.; et al. Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature. Mater. Horiz. 2019, 6, 470–506. [Google Scholar] [CrossRef]
- Andre, R.S.; Sanfelice, R.C.; Pavinatto, A.; Mattoso, L.H.C.; Correa, D.S. Hybrid nanomaterials designed for volatile organic compounds sensors: A review. Mater. Des. 2018, 156, 154–166. [Google Scholar] [CrossRef]
- Mirzaei, A.; Leonardi, S.G.; Neri, G. Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review. Ceram. Int. 2016, 42, 15119–15141. [Google Scholar] [CrossRef]
- Dong, C.J.; Wang, L.H.; Chen, G.; Xiao, X.C.; Djerdj, I.; Wang, Y.D. Facile synthesis of CuO micro-sheets over Cu foil in oxalic acid solution and their sensing properties towards n-butanol. J. Mater. Chem. C 2016, 4, 985–990. [Google Scholar] [CrossRef]
- Li, M.Q.; Li, B.; Meng, F.L.; Liu, J.Y.; Yuan, Z.Y.; Wang, C.; Liu, J.H. Highly sensitive and selective butanol sensors using the intermediate state nanocomposites converted from β-FeOOH to α-Fe2O3. Sens. Actuators B Chem. 2018, 273, 543–551. [Google Scholar] [CrossRef]
- Liu, X.; Chen, N.; Xing, X.X.; Li, Y.X.; Xiao, X.C.; Wang, Y.D.; Djerdj, I. A high-performance n-butanol gas sensor based on ZnO nanoparticles synthesized by a low-temperature solvothermal route. RSC Adv. 2015, 5, 54372–54378. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Zeng, Y.; Wang, L.Q.; Lou, Z.; Qiao, L.; Tian, H.W.; Zheng, W.T. Ultrathin nanorod-assembled SnO2 hollow cubes for high sensitive n-butanol detection. Sens. Actuators B Chem. 2019, 283, 693–704. [Google Scholar] [CrossRef]
- Han, B.Q.; Liu, X.; Xing, X.X.; Chen, N.; Xiao, X.C.; Liu, S.Y.; Wang, Y.D. A high response butanol gas sensor based on ZnO hollow spheres. Sens. Actuators B Chem. 2016, 237, 423–430. [Google Scholar] [CrossRef]
- Wang, Y.L.; Zhang, B.; Liu, J.; Yang, Q.Y.; Cui, X.B.; Gao, Y.; Chuai, X.H.; Liu, F.M.; Sun, P.; Liang, X.S.; et al. Au-loaded mesoporous WO3: Preparation and n-butanol sensing performances. Sens. Actuators B Chem. 2016, 236, 67–76. [Google Scholar] [CrossRef]
- Kaneti, Y.V.; Zakaria, Q.M.D.; Zhang, Z.J.; Chen, C.Y.; Yue, J.; Liu, M.S.; Jiang, X.C.; Yu, A.B. Solvothermal synthesis of ZnO-decoratedα-Fe2O3 nanorods with highly enhanced gas-sensing performance toward n-butnol. J. Mater. Chem. A 2014, 2, 13283–13292. [Google Scholar] [CrossRef]
- Liu, F.J.; Huang, G.X.; Wang, X.Z.; Xie, X.; Xu, G.G.; Lu, G.X.; He, X.M.; Tian, J.; Cui, H.Z. High response and selectivity of single crystalline ZnO nanorods modified by In2O3 nanoparticles for n-butanol gas sensing. Sens. Actuators B Chem. 2018, 277, 144–151. [Google Scholar] [CrossRef]
- Bai, J.H.; Li, Y.Y.; Liu, Y.Y.; Wang, H.T.; Liu, F.M.; Liu, F.M.; Sun, P.; Yan, X.; Lu, G.Y. Au39Rh61 alloy nanocrystal-decorated W18O49 for enhanced detection of n-butanol. ACS Sens. 2019, 4, 2662–2670. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.L.; Kong, C.; Lu, X.J.; Liao, F.H.; Huang, F.Q.; Lin, J.H. One-step hydrothermal synthesis of high-performance gas-sensing crystals CdIn2O4 with octahedral shape. Cryst. Growth Des. 2012, 12, 4104–4108. [Google Scholar] [CrossRef]
- Wang, Y.D.; Chen, T.; Mu, Q.Y.; Wang, G.F. A nonaqueous sol-gel route to synthesize CdIn2O4 nanoparticles for the improvement of formaldehyde-sensing performance. Scr. Mater. 2009, 61, 935–938. [Google Scholar] [CrossRef]
- Wang, Z.D.; Zou, T.; Xing, X.X.; Zhao, R.J.; Wang, Z.Z.; Yang, Y.; Wang, Y.D. CdIn2O4 nanoporous thin film gas-sensor for formaldehyde detection. Phys. E 2018, 103, 18–24. [Google Scholar] [CrossRef]
- Cao, M.H.; Wang, Y.D.; Chen, T.; Antonietti, M.; Niederberger, M. A highly sensitive and fast-responding ethanol sensor based on CdIn2O4 nanocrystals synthesized by a nonaqueous sol-gel route. Chem. Mater. 2008, 20, 5781–5786. [Google Scholar] [CrossRef]
- Cheng, Z.X.; Huang, C.Y.; Song, L.Y.; Wang, Y.Q.; Ding, Y.P.; Xu, J.Q.; Zhang, Y. Electrospinning synthesis of CdIn2O4 nanofibers for ethanol detection. Sens. Actuators B Chem. 2015, 209, 530–535. [Google Scholar] [CrossRef]
- Liu, Y.L.; Wang, W.; Lin, T.Q.; Liao, F.H.; Huang, F.Q.; Lin, J.H. Enhanced Cl-2 sensing performance by decorating discrete Au nanoparticles on octahedral CdIn2O4 crystals. Cyst. Eng. Comm. 2013, 15, 2929–2933. [Google Scholar] [CrossRef]
- Chen, C.; Li, J.H.; Mi, R.D.; Liu, Y.L. Enhanced gas-sensing performance of one-pot-synthesized Pt/CdIn2O4 composites with controlled morphologies. Anal. Methods 2015, 7, 1085–1091. [Google Scholar] [CrossRef]
- Deokate, R.J.; Dhawale, D.S.; Lokhande, C.D. Sprayed CdIn2O4 thin films for liquefied petroleum gas (LPG) detection. Sens. Actuators B Chem. 2011, 156, 954–960. [Google Scholar] [CrossRef]
- Chaudhari, G.N.; Alvi, M.; Wankhade, H.G.; Bodade, A.B.; Manorama, S.V. Nanocrystalline chemically modified CdIn2O4 thick films for H2S gas sensor. Thin Solid Film. 2012, 520, 4057–4062. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Y.P.; Fan, M.H.; Yuan, L.; Zou, X.X. From solid-state metal alkoxides to nanostructured oxides: A precursor-directed synthetic route to functional inorganic nanomaterials. Inorg. Chem. Front. 2015, 2, 198–212. [Google Scholar] [CrossRef]
- Yu, J.X.; Huang, B.B.; Wang, Z.Y.; Qin, X.Y.; Zhang, X.Y.; Wang, P. Self-template synthesis of CdIn2O4 hollow spheres and effects of Cd/In molar ratios on its morphologies. Inorg. Chem. 2009, 48, 10548–10552. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.W.; Yu, L.; Lou, X.W. Synthesis of Highly uniform molybdenum-glycerate spheres and their conversion into hierarchical MoS2 hollow nanospheres for lithium-ion batteries. Angew. Chem. Int. Ed. 2016, 55, 7423–7426. [Google Scholar] [CrossRef] [PubMed]
- Seiyama, T.; Kagawa, S. Study on a detector for gaseous components using semiconductive thin films. Anal. Chem. 1962, 38, 1502–1503. [Google Scholar] [CrossRef]
- Das, S.; Jayaraman, V. SnO2: A comprehensive review on structures and gas sensors. Prog. Mater. Sci. 2014, 66, 112–255. [Google Scholar] [CrossRef]
- Yang, F.F.; Fang, L.; Zhang, S.F.; Sun, J.S.; Xu, Q.T.; Wu, S.Y.; Dong, J.X.; Kong, C.Y. Structure and electrical properties of CdIn2O4 thin films prepared by DC reactive magnetron sputtering. Appl. Surf. Sci. 2008, 254, 5481–5486. [Google Scholar] [CrossRef]
- Deokate, R.J.; Moholkar, A.V.; Agawane, G.L.; Pawar, S.M.; Kim, J.H.; Rajpure, K.Y. Studies on the effect of nozzle-to-substrate distance on the structural, electrical and optical properties of spray deposited CdIn2O4 thin films. Appl. Surf. Sci. 2010, 256, 3522–3530. [Google Scholar] [CrossRef]
- Al-Hashem, M.; Akbar, S.; Morris, P. Role of oxygen vacancies in nanostructures metal-oxide gas sensors: A review. Sens. Actuators B Chem. 2019, 301, 126845. [Google Scholar] [CrossRef]
- Mirzaei, A.; Kim, J.H.; Kim, H.W.; Kim, S.S. Resistive-based gas sensors for detection of benzene, toluene and xylene (BTX) gases: A review. J. Mater. Chem. C 2018, 6, 4342–4370. [Google Scholar] [CrossRef]
- Gurlo, T.A.; Bârsan, N.; Weimar, U. Basics of oxygen and SnO2 interaction: Work function change and conductivity measurements. Sens. Actuators B Chem. 2006, 118, 78–83. [Google Scholar]
- Rai, P.; Majhi, S.J.; Yu, Y.T.; Lee, J.H. Noble metal@metal oxide semiconductor core@shell nano-architectures as a new platform for gas sensor applications. RSC Adv. 2015, 5, 76229–76248. [Google Scholar] [CrossRef]
- Miller, D.R.; Akbar, S.A.; Morris, P.A. Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sens. Actuators B Chem. 2014, 204, 250–272. [Google Scholar] [CrossRef]
- Zappa, D.; Galstyan, V.; Kaur, N.; Arachchige, M.M.M.; Sisman, O.; Comini, E. Metal oxide-based heterostructures for gas sensors-a review. Anal. Chim. Acta 2018, 1039, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Krajina, B.A.; Proctor, A.C.; Schoen, A.P.; Spakowitz, A.J.; Heilshorn, S.C. Biotemplated synthesis of inorganic mateirals: An emerging paradigm for nanomaterial synthesis inspired by nature. Prog. Mater. Sci. 2018, 91, 1–23. [Google Scholar] [CrossRef]
- Liu, Y.D.; Goebl, J.; Yin, Y.D. Templated synthesis of nanostructured materials. Chem. Soc. Rev. 2013, 42, 2610–2653. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, Z.; An, D.M.; Tong, X.Q.; Zhou, Q.J. Highly selective n-butanol gas sensor based on porous In2O3 nanoparticles prepared by solvothermal treatment. Mat. Sci. Semicon. Proc. 2018, 83, 139–143. [Google Scholar] [CrossRef]
- Wang, M.; Shen, Z.; Zhao, X.; Duanmu, F.; Yu, H.; Ji, H. Rational shape control of porous Co3O4 assemblies derived from MOF and their structural effects on n-butanol sensing. J. Hazard. Mater. 2019, 371, 352–361. [Google Scholar] [CrossRef]
Materials | Microstructures | Concentration (ppm) | T (°C) | Response | Response and Recovery Times (s) | Limit of Detection (ppm) | Ref. |
---|---|---|---|---|---|---|---|
SnO2 | Hollow cubes | 100 | 310 | 75.7 | 2.1/17 (20 ppm) | 1 | [8] |
ZnO | Hollow spheres | 100 | 385 | 57.6 | 23/13 (100 ppm) | 10 | [9] |
α-Fe2O3 | Shuttle-shaped | 100 | 250 | 145 | 20/55 (50 ppm) | 10 | [6] |
In2O3 | Nanoparticles | 50 | 140 | 97 | 45/65 (10 ppm) | 5 | [38] |
CuO | Micro-sheets | 1000 | 160 | 69.73 | -- | 10 | [5] |
Co3O4 | Porous | 100 | 100 | 21 | 146/90 (100 ppm) | <5 | [39] |
CdIn2O4 | Spheres | 500 | 280 | 81.20 | 4/10 (100 ppm) | 1 | This work |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Zhang, X.; Wang, Z.; Wang, R.; Chen, C.; Dong, C. Nanoparticles Assembled CdIn2O4 Spheres with High Sensing Properties towards n-Butanol. Nanomaterials 2019, 9, 1714. https://doi.org/10.3390/nano9121714
Liu W, Zhang X, Wang Z, Wang R, Chen C, Dong C. Nanoparticles Assembled CdIn2O4 Spheres with High Sensing Properties towards n-Butanol. Nanomaterials. 2019; 9(12):1714. https://doi.org/10.3390/nano9121714
Chicago/Turabian StyleLiu, Weiping, Ximing Zhang, Zhaofeng Wang, Ruijian Wang, Chen Chen, and Chengjun Dong. 2019. "Nanoparticles Assembled CdIn2O4 Spheres with High Sensing Properties towards n-Butanol" Nanomaterials 9, no. 12: 1714. https://doi.org/10.3390/nano9121714
APA StyleLiu, W., Zhang, X., Wang, Z., Wang, R., Chen, C., & Dong, C. (2019). Nanoparticles Assembled CdIn2O4 Spheres with High Sensing Properties towards n-Butanol. Nanomaterials, 9(12), 1714. https://doi.org/10.3390/nano9121714