Photocatalytic Performance of SiO2/CNOs/TiO2 to Accelerate the Degradation of Rhodamine B under Visible Light
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of SiO2/CNOs/TiO2
- CNOs/TiO2 solution: Firstly, 7 mL of C12H28O4Ti solution was added into 3 mL of C3H8O solution and stirred at room temperature. Secondly, magnetic CNOs were added to the mixed solution. The mixed solution was then transferred dropwise to a round bottom flask containing distilled water at a dropping rate of 0.4 mL/min, when the stir and condensation system were opened. Next, 1 mL of HNO3 solution was added to the mixed solution at a dropping rate of 0.35 mL/min at 80 °C. Finally, CNOs/TiO2 solution was obtained after the solution was cooled to room temperature.
- SiO2 solution: Firstly, 6 mL of C8H20O4Si, 15 mL of C2H6O, 0.35 mL of HNO3 and 0.4 mL of deionized water were thoroughly mixed in a three-neck round bottom flask and stirred for 30 min. Secondly, a certain amount of mixed solution (C2H6O and HNO3) was added to the flask and stirred at 55 ± 3 °C for 2 h. Finally, SiO2 solution was obtained after the solution was cooled to room temperature.
- SiO2/CNOs/TiO2 composite: Firstly, 26.5 mL of the CNOs/TiO2 solution prepared in Step (a) and 16 mL of the SiO2 solution prepared in Step (b) were mixed and stirred for 30 min. Then, 26 mL of the diluent solution 1 (C2H6O:C6H12O2:HNO3:P-19:H2O = 239:31:5:1:49) was added and stirred for 30 min. Next, 42 mL of the diluent solution 2 (C2H6O:C3H8O2:P-19:H2O = 260:67:1:242) was added and stirred for 1 h. Finally, the SiO2/CNOs/TiO2 composite was obtained after the solution was oven-dried at 100 °C.
2.3. Characterization
2.4. Photocatalytic Degradation Experiments
3. Results and Discussion
3.1. Characterization of TiO2, SiO2, CNOs and SiO2/CNOs/TiO2(3%)
3.2. Degradation of RhB under Visible Light Irradiation
3.3. Photodegradation Mechanism of the SiO2/CNOs/TiO2(3%) Composite
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vikrant, K.; Giri, B.S.; Raza, N.; Roy, K.; Kim, K.-H.; Rai, B.N.; Singh, R.S. Recent advancements in bioremediation of dye: Current status and challenges. Bioresour. Technol. 2018, 253, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Rochkind, M.; Pasternak, S.; Paz, Y. Using Dyes for Evaluating Photocatalytic Properties: A Critical Review. Molecules 2015, 20, 88–110. [Google Scholar] [CrossRef]
- Hurd, T.M.; Brookhart-Rebert, A.; Feeney, T.P.; Otz, M.H.; Otz, I. Fast, regional conduit flow to an exceptional-value spring-fed creek: Implications for source-water protection in mantled karst of south-central Pennsylvania. J. Cave Karst Stud. 2013, 31, 66–70. [Google Scholar]
- Girgis, B.; Attia, A.; Fathy, N.; Attia, A. Potential of nano-carbon xerogels in the remediation of dye-contaminated water discharges. Desalination 2011, 265, 169–176. [Google Scholar] [CrossRef]
- Shouman, M.A.; Fathy, N.A. Microporous nanohybrids of carbon xerogels and multi-walled carbon nanotubes for removal of rhodamine B dye. J. Water Process. Eng. 2018, 23, 165–173. [Google Scholar] [CrossRef]
- Naldoni, A.; Altomare, M.; Zoppellaro, G.; Liu, N.; Kment, Š.; Zbořil, R.; Schmuki, P. Photocatalysis with Reduced TiO2: From Black TiO2 to Cocatalyst-Free Hydrogen Production. ACS Catal. 2019, 9, 345–364. [Google Scholar] [CrossRef]
- Shiraishi, Y.; Imai, J.; Yasumoto, N.; Sakamoto, H.; Tanaka, S.; Ichikawa, S.; Hirai, T. Doping of Nb5+ Species at the Au–TiO2 Interface for Plasmonic Photocatalysis Enhancement. Langmuir 2019, 35, 5455–5462. [Google Scholar] [CrossRef]
- Ariza-Tarazona, M.C.; Villarreal-Chiu, J.F.; Barbieri, V.; Siligardi, C.; Cedillo-González, E.I. New strategy for microplastic degradation: Green photocatalysis using a protein-based porous N-TiO2 semiconductor. Ceram. Int. 2019, 45, 9618–9624. [Google Scholar] [CrossRef]
- Nakata, K.; Kagawa, T.; Sakai, M.; Liu, S.; Ochiai, T.; Sakai, H.; Murakami, T.; Abe, M.; Fujishima, A. Preparation and Photocatalytic Activity of Robust Titania Monoliths for Water Remediation. ACS Appl. Mater. Interfaces 2013, 5, 500–504. [Google Scholar] [CrossRef]
- Rioult, M.; Magnan, H.; Stanescu, D.; Barbier, A. Single Crystalline Hematite Films for Solar Water Splitting: Ti-Doping and Thickness Effects. J. Phys. Chem. C 2014, 118, 3007–3014. [Google Scholar] [CrossRef]
- Pu, A.; Deng, J.; Li, M.; Gao, J.; Zhang, H.; Hao, Y.; Zhong, J.; Sun, X. Coupling Ti-doping and oxygen vacancies in hematite nanostructures for solar water oxidation with high efficiency. J. Mater. Chem. A 2014, 2, 2491–2497. [Google Scholar] [CrossRef]
- Luan, Y.; Jing, L.; Xie, Y.; Sun, X.; Feng, Y.; Fu, H. Exceptional Photocatalytic Activity of 001-Facet-Exposed TiO2 Mainly Depending on Enhanced Adsorbed Oxygen by Residual Hydrogen Fluoride. ACS Catal. 2013, 3, 1378–1385. [Google Scholar] [CrossRef]
- Cai, J.; Wu, X.; Li, Y.; Lin, Y.; Yang, H.; Li, S. Noble metal sandwich-like TiO2@Pt@C3N4 hollow spheres enhance photocatalytic performance. J. Colloid Interface Sci. 2018, 514, 791–800. [Google Scholar] [CrossRef] [PubMed]
- Ong, W.-J.; Tan, L.-L.; Chai, S.-P.; Yong, S.-T.; Mohamed, A.R. Highly reactive {001} facets of TiO2-based composites: Synthesis, formation mechanism and characterization. Nanoscale 2014, 6, 1946–2008. [Google Scholar] [CrossRef] [PubMed]
- Sclafani, A.; Herrmann, J.M. Comparison of the Photoelectronic and Photocatalytic Activities of Various Anatase and Rutile Forms of Titania in Pure Liquid Organic Phases and in Aqueous Solutions. J. Phys. Chem. 1996, 100, 13655–13661. [Google Scholar] [CrossRef]
- Wang, X.; Song, J.; Huang, J.; Zhang, J.; Wang, X.; Ma, R.; Wang, J.; Zhao, J. Activated carbon-based magnetic TiO2 photocatalyst codoped with iodine and nitrogen for organic pollution degradation. Appl. Surf. Sci. 2016, 390, 190–201. [Google Scholar] [CrossRef]
- Aqeel, M.; Anjum, S.; Imran, M.; Ikram, M.; Majeed, H.; Naz, M.; Ali, S.; Ahmad, M.A. TiO2 @ RGO (reduced graphene oxide) doped nanoparticles demonstrated improved photocatalytic activity. Mater. Res. Express 2019, 6, 086215. [Google Scholar] [CrossRef]
- Zhang, W.; Li, G.; Liu, H.; Chen, J.; Ma, S.; An, T. Micro/nano-bubble assisted synthesis of Au/TiO2@CNTs composite photocatalyst for photocatalytic degradation of gaseous styrene and its enhanced catalytic mechanism. Environ. Sci. Nano 2019, 6, 948–958. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, W.; Liu, R.; Cui, J.; Deng, C. Preparation and photocatalytic properties of visible light driven Ag-AgBr-RGO composite. Sep. Purif. Technol. 2018, 190, 278–287. [Google Scholar] [CrossRef]
- Regulska, E.; Rivera-Nazario, D.M.; Karpinska, J.; Plonska-Brzezinska, M.E.; Echegoyen, L. Zinc Porphyrin-Functionalized Fullerenes for the Sensitization of Titania as a Visible-Light Active Photocatalyst: River Waters and Wastewaters Remediation. Molecules 2019, 24, 1118. [Google Scholar] [CrossRef]
- Zhang, W.-K.; Fu, J.-J.; Chang, J.; Zhang, M.; Yang, Y.-Q.; Gao, L.-Z. Fabrication and purification of carbon nano onions. Carbon 2015, 82, 610. [Google Scholar] [CrossRef]
- Zhang, W.; Deng, C.; Jia, J.; Wang, J.; Zhang, Y.; Yang, Y.; Lian, Y. Efficient removal of transition phase from metal encapsulated carbon onions. Diam. Relat. Mater. 2018, 89, 282–285. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, J.; Yang, Y.; Liang, Y.; Gao, Z. Novel magnetically retrievable Bi2WO6/magnetic carbon nano-onions composite with enhanced photoactivity under visible light. J. Colloid Interface Sci. 2018, 531, 502–512. [Google Scholar] [CrossRef]
- Zhang, Y.R.; Zhang, W.K.; Yang, K.; Yang, Y.Q.; Jia, J.; Liang, Y.; Guo, L.J. Carbon nano-onions (CNOs)/TiO2 composite preparation and its photocatalytic performance under visible light irradiation. J. Environ. Eng. 2019, in press. [Google Scholar] [CrossRef]
- Zhao, X.; Ju, W.; Zhang, J.; Liu, B.; Zhang, J.; Yi, X. Mesoporous TiO2/SiO2/Ag ternary composite aerogels for high photocatalysis. New J. Chem. 2019, 43, 6234–6241. [Google Scholar] [CrossRef]
- Fang, Y.; Lakey, P.S.J.; Riahi, S.; McDonald, A.T.; Shrestha, M.; Tobias, D.J.; Shiraiwa, M.; Grassian, V.H. A molecular picture of surface interactions of organic compounds on prevalent indoor surfaces: Limonene adsorption on SiO2. Chem. Sci. 2019, 10, 2906–2914. [Google Scholar] [CrossRef]
- Sun, J.; Bi, H.; Su, S.; Jia, H.; Xie, X.; Sun, L. One-step preparation of GO/SiO2 membrane for highly efficient separation of oil-in-water emulsion. J. Membr. Sci. 2018, 553, 131–138. [Google Scholar] [CrossRef]
- Yaparatne, S.; Tripp, C.P.; Amirbahman, A. Photodegradation of taste and odor compounds in water in the presence of immobilized TiO2-SiO2 photocatalysts. J. Hazard. Mater. 2018, 346, 208–217. [Google Scholar] [CrossRef]
- Kim, U.-J.; Kimura, S.; Wada, M. Facile preparation of cellulose-SiO2 composite aerogels with high SiO2 contents using a LiBr aqueous solution. Carbohydr. Polym. 2019, 222, 114975. [Google Scholar] [CrossRef]
- Cui, L.; Song, Y.; Wang, F.; Sheng, Y.; Zou, H. Electrospinning synthesis of SiO2-TiO2 hybrid nanofibers with large surface area and excellent photocatalytic activity. Appl. Surf. Sci. 2019, 488, 284–292. [Google Scholar] [CrossRef]
- Isari, A.A.; Payan, A.; Fattahi, M.; Jorfi, S.; Kakavandi, B. Photocatalytic degradation of rhodamine B and real textile wastewater using Fe-doped TiO2 anchored on reduced graphene oxide (Fe-TiO2/rGO): Characterization and feasibility, mechanism and pathway studies. Appl. Surf. Sci. 2018, 462, 549–564. [Google Scholar] [CrossRef]
- Ren, L.; Li, Y.; Mao, M.; Lan, L.; Lao, X.; Zhao, X. Significant improvement in photocatalytic activity by forming homojunction between anatase TiO2 nanosheets and anatase TiO2 nanoparticles. Appl. Surf. Sci. 2019, 490, 283–292. [Google Scholar] [CrossRef]
- Matysiak, W.; Tański, T. Analysis of the morphology, structure and optical properties of 1D SiO2 nanostructures obtained with sol-gel and electrospinning methods. Appl. Surf. Sci. 2019, 489, 34–43. [Google Scholar] [CrossRef]
- Prokes, S.; Gole, J.; Chen, X.B.; Burda, C.; Carlos, W.E. Defect-Related Optical Behavior in TiO2 Nanostructures. Adv. Funct. Mater. 2005, 15, 161–167. [Google Scholar] [CrossRef]
- Liu, B.; Zeng, H.C. Carbon Nanotubes Supported Mesoporous Mesocrystals of Anatase TiO2. Chem. Mater. 2008, 20, 2711–2718. [Google Scholar] [CrossRef]
- Hung, M.-C.; Yuan, S.-Y.; Hung, C.-C.; Cheng, C.-L.; Ho, H.-C.; Ko, T.-H. Effectiveness of ZnO/carbon-based material as a catalyst for photodegradation of acrolein. Carbon 2014, 66, 93–104. [Google Scholar] [CrossRef]
- Netterfield, R.P.; Martin, P.J.; Pacey, C.G.; Sainty, W.G.; Mc Kenzie, D.; Auchterlonie, G. Ion-assisted deposition of mixed TiO2-SiO2 films. J. Appl. Phys. 1989, 66, 1805–1809. [Google Scholar] [CrossRef] [Green Version]
- Soler-Illia, G.J.D.A.A.; Louis, A.; Sanchez, C. Synthesis and Characterization of Mesostructured Titania-Based Materials through Evaporation-Induced Self-Assembly. Chem. Mater. 2002, 14, 750–759. [Google Scholar] [CrossRef]
- Mykhailiv, O.; Imierska, M.; Petelczyc, M.; Echegoyen, L.; Plonska-Brzezinska, M.E.; Plonska-Brzezinska, M.E. Chemical versus Electrochemical Synthesis of Carbon Nano-onion/Polypyrrole Composites for Supercapacitor Electrodes. Chem. Eur. J. 2015, 21, 5783–5793. [Google Scholar] [CrossRef]
- Mykhailiv, O.; Zubyk, H.; Brzezinski, K.; Gras, M.; Lota, G.; Gniadek, M.; Romero, E.; Echegoyen, L.; Plonska-Brzezinska, M.E. Improvement of the Structural and Chemical Properties of Carbon Nano-onions for Electrocatalysis. ChemNanoMat 2017, 3, 583–590. [Google Scholar] [CrossRef]
- Liu, G.; Chen, Z.-G.; Dong, C.; Zhao, Y.; Li, F.; Lu, G.Q.; Cheng, H.-M. Visible Light Photocatalyst: Iodine-Doped Mesoporous Titania with a Bicrystalline Framework. J. Phys. Chem. B 2006, 110, 20823–20828. [Google Scholar] [CrossRef]
- Hou, Y.; Wang, X.; Wu, L.; Chen, X.; Ding, Z.; Wang, X.; Fu, X. N-Doped SiO2/TiO2 mesoporous nanoparticles with enhanced photocatalytic activity under visible-light irradiation. Chemosphere 2008, 72, 414–421. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Y.; Wang, S.; Wu, Q.; Liu, C. Study on nanomagnets supported TiO2 photocatalysts prepared by a sol–gel process in reverse microemulsion combining with solvent-thermal technique. J. Hazard. Mater. 2009, 169, 1045–1053. [Google Scholar] [CrossRef]
- Suresh, S.; Lekshmi, G.; Kirupha, S.; Ariraman, M.; Bazaka, O.; Levchenko, I.; Bazaka, K.; Mandhakini, M.; Mohandas, M. Superhydrophobic fluorine-modified cerium-doped mesoporous carbon as an efficient catalytic platform for photo-degradation of organic pollutants. Carbon 2019, 147, 323–333. [Google Scholar] [CrossRef]
- Zimnyakov, D.A.; Sevrugin, A.V.; Yuvchenko, S.A.; Fedorov, F.S.; Tretyachenko, E.V.; Vikulova, M.A.; Kovaleva, D.S.; Krugova, E.Y.; Gorokhovsky, A.V. Data on energy-band-gap characteristics of composite nanoparticles obtained by modification of the amorphous potassium polytitanate in aqueous solutions of transition metal salts. Data Brief 2016, 7, 1383–1388. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.Z.; Chen, D.P.; Hu, X.L.; Qian, Y.J.; Li, D.X. Preparation of TiO2/Carbon Nanotubes/Reduced Graphene Oxide Composites with Enhanced Photocatalytic Activity for the Degradation of Rhodamine B. Nanomaterials 2018, 8, 431. [Google Scholar] [CrossRef] [Green Version]
- Monteagudo, J.; Durán, A.; Martín, I.S.; Carrillo, P. Effect of sodium persulfate as electron acceptor on antipyrine degradation by solar TiO2 or TiO2/rGO photocatalysis. Chem. Eng. J. 2019, 364, 257–268. [Google Scholar] [CrossRef]
- Zhao, J.; Wu, T.; Wu, K.; Oikawa, K.; Hidaka, H.; Serpone, N. Photoassisted Degradation of Dye Pollutants. 3. Degradation of the Cationic Dye Rhodamine B in Aqueous Anionic Surfactant/TiO2 Dispersions under Visible Light Irradiation: Evidence for the Need of Substrate Adsorption on TiO2 Particles. Environ. Sci. Technol. 1998, 32, 2394–2400. [Google Scholar] [CrossRef]
- Chen, C.; Liu, X.; Long, H.; Ding, F.; Liu, Q.; Chen, X. Preparation and photocatalytic performance of graphene Oxide/WO3 quantum Dots/TiO2@SiO2 microspheres. Vacuum 2019, 164, 66–71. [Google Scholar] [CrossRef]
- Shi, F.; Liu, J.; Liu, J.X.; Huang, X.; Hu, S.C.; Liu, D.Y.; Wang, Y.Q.; Shan, Z.J. Influences of solvothermal-assisted crystallization process on the microstructure and properties of SiO2-W0.02TiO2.06 composite aerogels synthesized via ambient pressure drying. J. Sol-Gel Sci. Technol. 2019, 92, 101–115. [Google Scholar] [CrossRef]
- Liddell, P.A.; Kuciauskas, D.; Sumida, J.P.; Nash, B.; Nguyen, D.; Moore, A.L.; Moore, T.A.; Gust, D. Photoinduced Charge Separation and Charge Recombination to a Triplet State in a Carotene−Porphyrin−Fullerene Triad. J. Am. Chem. Soc. 1997, 119, 1400–1405. [Google Scholar] [CrossRef]
- Rasalingam, S.; Kibombo, H.S.; Wu, C.-M.; Budhi, S.; Peng, R.; Baltrusaitis, J.; Koodali, R.T. Influence of Ti–O–Si hetero-linkages in the photocatalytic degradation of Rhodamine B. Catal. Commun. 2013, 31, 66–70. [Google Scholar] [CrossRef]
Sample | Grain Size (nm) | Specific Surface Area(m2/g) | Average Pore Size (nm) | Pore Volume (cm3/g) |
---|---|---|---|---|
TiO2 | 26.53 | 255.948 | 2.348 | 0.150 |
CNOs/TiO2(10%) | 23.54 | 263.442 | 2.367 | 0.156 |
SiO2/CNOs/TiO2(3%) | 22.55 | 479.243 | 3.54 | 0.305 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Zhang, Y.; Yang, K.; Yang, Y.; Jia, J.; Guo, L. Photocatalytic Performance of SiO2/CNOs/TiO2 to Accelerate the Degradation of Rhodamine B under Visible Light. Nanomaterials 2019, 9, 1671. https://doi.org/10.3390/nano9121671
Zhang W, Zhang Y, Yang K, Yang Y, Jia J, Guo L. Photocatalytic Performance of SiO2/CNOs/TiO2 to Accelerate the Degradation of Rhodamine B under Visible Light. Nanomaterials. 2019; 9(12):1671. https://doi.org/10.3390/nano9121671
Chicago/Turabian StyleZhang, Weike, Yanrong Zhang, Kai Yang, Yanqing Yang, Jia Jia, and Lijun Guo. 2019. "Photocatalytic Performance of SiO2/CNOs/TiO2 to Accelerate the Degradation of Rhodamine B under Visible Light" Nanomaterials 9, no. 12: 1671. https://doi.org/10.3390/nano9121671