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Abstract: A silicon dioxide/carbon nano onions/titanium dioxide (SiO2/CNOs/TiO2) composite
was synthesized by a simple sol-gel method and characterized by the methods of X-ray
diffraction (XRD), scanning electronic microscope (SEM), X-ray photoelectron spectroscopy (XPS),
Brunauer–Emmett–Teller (BET), Fourier transform infrared (FTIR), thermogravimetric analysis (TG),
differential scanning calorimeter (DSC) and UV-Vis diffuse reflectance spectra (UV-Vis DRS). In this
work, the photocatalytic activity of the SiO2/CNOs/TiO2 photocatalyst was assessed by testing the
degradation rate of Rhodamine B (RhB) under visible light. The results indicated that the samples
exhibited the best photocatalytic activity when the composite consisted of 3% CNOs and the optimum
dosage of SiO2/CNOs/TiO2(3%) was 1.5 g/L as evidenced by the highest RhB degradation rate (96%).
The SiO2/CNOs/TiO2 composite greatly improved the quantum efficiency of TiO2. This work provides
a new option for the modification of subsequent nanocomposite oxide nanoparticles.

Keywords: titanium dioxide; carbon nano onions; silicon dioxide; rhodamine B; photocatalytic
degradation

1. Introduction

Industrial dye wastewater is the main source of water pollution. As a triphenylmethane derivative,
Rhodamine B is widely used in the manufacture of paints, acrylic fabrics and other biological products
due to its bright color and good color-solidity. This dye wastewater is highly toxic to human beings
(LD50: Oral-Mouse-887 mg/kg) due to its high chroma, strong toxicity and difficulty in degradation [1–3].
In addition, the low rate of removal during primary and secondary treatments observed in wastewater
plants is due to their recalcitrant tendency toward aerobic conditions (emanating from the hard to
breakdown compounds, such as aromatic structures) and it results in their easy carry-over into the
aqueous ecosystem [4,5]. Recent research efforts have been centered on the development of novel
strategies that can eliminate dyes more efficiently and economically. Semiconductor photocatalysis
technology is one of the effective means to solve water polluted by organic contaminants [6–8]. As a
semiconductor, titanium dioxide (TiO2) is featured by its chemical stability, being environmentally
harmless and low cost [9–12]. However, its application in environmental pollution remediation
was hampered by some internal defects of TiO2, such as a large band gap, higher recombination of
photogenerated e−-h+ pairs, small surface area and low recovery rate [13–15]. Therefore, the nano-TiO2
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were modified to prepare a composite, which may have properties of a low rate of recombination of
photogenerated e−-h+, high surface adsorption and a good recovery rate.

Carbon materials, such as activated carbon, carbon nanotubes, graphene, fullerene materials
(C60) and graphene-based material, have been widely used in the field of photocatalysis. These
carbon materials can improve photocatalytic activity by facilitating the transfer of photogenerated
electrons and enhancing the adsorption performance of the catalyst due to their unique electrical
properties and large specific surface area [16–20]. Commercial CNOs prepared by the chemical vapor
deposition (CVD) method using iron-nickel as a catalyst exhibit good electrical conductivity and certain
paramagnetism [21,22]. Zhang et al. synthesized Bi2WO6/MCNOs (MCNOs, magnetic carbon nano
onions) via a simple hydrothermal method and reported that the degradation efficiency of RhB by
the Bi2WO6/MCNOs after six cycles was 87.2% [23]. Meanwhile, our previous research found that
the pure TiO2, CNOs/TiO2 (10%) composite was more effective in the separation of e−-h+ and easily
recovered by an external magnet (the degradation value of RhB was 78%). The reason for this is
that the good electrical conductivity of nano-onion carbon was beneficial to capture photogenerated
electrons and could effectively inhibit photogenerated electron-hole pair recombination. In addition,
as the paramagnetism of CNOs, the catalyst powder can be recovered by an external magnet [24].

Considering that the specific surface area of CNOs/TiO2 (263.442 m2/g) is not significantly
improved compared with TiO2 (255.948 m2/g), which is not conducive to the adsorption of pollution,
the CNOs/TiO2 composite is further modified to increase its specific surface area. SiO2 is a typical
disordered mesoporous material. Due to its large specific surface area, uniform pore size, stable
chemical properties and relatively high mechanical strength, SiO2 has been widely used in the fields
of catalysis, separation and adsorption [25–27]. For example, Yaparatne et al. found that P25 (P25
is a titanium dioxide with an average particle size of 25 nm composed of anatase crystals and rutile
crystals) modified TiO2-SiO2 photocatalyst films which showed ~80% loss of 2-methylisoborneol (MIB)
within 1 h and resulted in ~80% Geosmin (GSM) photodegradation in 1 h, while the major species
hydroxyl radicals (•OH) did not change after 10 repetitions [28]. Kim et.al reported that the SBET
value of the Cellulose-SiO2 composite aerogel (CSG, the concentration of SiO2 was 10 wt %) increased
to 355 m2/g compared with the cellulose aerogel (CG, 216 m2/g) [29]. In addition, Cui et al. found
that the surface area of 600–5% SiO2-TiO2 nanofibers (95.96 m2/g) was nearly 12 times that of 600–0%
SiO2-TiO2 nanofibers (8.17 m2/g) (the Si/Ti ratio increased from 0% to 5% and treated at 600 ◦C) [30].

Herein, in this work, SiO2/CNOs/TiO2 photocatalyst was synthesized for the first time via a sol-gel
method and was separated from aqueous media using an external magnet. In addition, SiO2 significantly
improved the specific surface area of SiO2/CNOs/TiO2 which was 1.87-times larger than that of TiO2.
Moreover, this study explored the photodegradation performance of the SiO2/CNOs/TiO2 composite
for RhB under visible light and proposed a possible mechanism according to the characterization of
the synthesized composite and free radical capture experiments.

2. Materials and Methods

2.1. Materials

Titanium (IV) isopropoxide (C12H28O4Ti), ethanol (C2H6O), nitric acid (HNO3), tetraethyl
orthosilicate (C8H20O4Si), rhodamine B (C28H31ClN2O3), diacetone alcohol (C6H12O2),
2-methoxyethanol (C3H8O2), sodium sulphate (Na2SO4), dimethyl carbinol (C3H8O),
ethylenediaminetetraacetic acid disodium salt (C10H14N2Na2O8), P-19 dispersant and benzoquinone
(C6H4O2) were purchased from Damao Chemical Reagent Factory (Tianjin, China). All the above
chemical reagents were analytical grade. CNOs were purchased from Shanxi Zhongxing Environmental
and Energy Technology Co. Ltd. (Shanxi, China). The Brunauer–Emmett–Teller (BET) surface area of
the CNOs was 60–80 m2/g and D50 was 70 nm.
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2.2. Synthesis of SiO2/CNOs/TiO2

The SiO2/CNOs/TiO2 composite was prepared by the sol-gel method. C12H28O4Ti and C8H20O4Si
were used as a titanium resource and silicon resource, respectively. The CNOs were used as functional
additives. The target product designed by the authors is a composite of Anatase TiO2 (TiO6 octahedral
structure with a coordination number of 6), SiO2 crystal (SiO4 tetrahedral structure with a coordination
number of 4) and CNOs. Therefore, the atom ratio of Ti and Si was controlled at 3:2. The products
were designated as SiO2/CNOs/TiO2(X), where X was the mass ratio of CNOs to TiO2. The values of
X in this experiment were 1%, 2%, 3%, 5% and 10% for five different SiO2/CNOs/TiO2 samples. The
detailed steps of synthesis are as follows:

a. CNOs/TiO2 solution: Firstly, 7 mL of C12H28O4Ti solution was added into 3 mL of C3H8O
solution and stirred at room temperature. Secondly, magnetic CNOs were added to the mixed
solution. The mixed solution was then transferred dropwise to a round bottom flask containing
distilled water at a dropping rate of 0.4 mL/min, when the stir and condensation system were
opened. Next, 1 mL of HNO3 solution was added to the mixed solution at a dropping rate of
0.35 mL/min at 80 ◦C. Finally, CNOs/TiO2 solution was obtained after the solution was cooled to
room temperature.

b. SiO2 solution: Firstly, 6 mL of C8H20O4Si, 15 mL of C2H6O, 0.35 mL of HNO3 and 0.4 mL of
deionized water were thoroughly mixed in a three-neck round bottom flask and stirred for
30 min. Secondly, a certain amount of mixed solution (C2H6O and HNO3) was added to the
flask and stirred at 55 ± 3 ◦C for 2 h. Finally, SiO2 solution was obtained after the solution was
cooled to room temperature.

c. SiO2/CNOs/TiO2 composite: Firstly, 26.5 mL of the CNOs/TiO2 solution prepared in Step (a) and
16 mL of the SiO2 solution prepared in Step (b) were mixed and stirred for 30 min. Then, 26 mL of
the diluent solution 1 (C2H6O:C6H12O2:HNO3:P-19:H2O = 239:31:5:1:49) was added and stirred
for 30 min. Next, 42 mL of the diluent solution 2 (C2H6O:C3H8O2:P-19:H2O = 260:67:1:242) was
added and stirred for 1 h. Finally, the SiO2/CNOs/TiO2 composite was obtained after the solution
was oven-dried at 100 ◦C.

2.3. Characterization

The morphologies and microstructures of the SiO2/CNOs/TiO2 composite were analyzed using
a field-emission scanning electron microscopy (FESEM) (JSM-6700, Joel Ltd., Tokyo, Japan) with an
operating voltage of 10 kV. An X-ray diffraction (XRD) analyzer (DX-2700X, Haoyuan Instrument Co.,
Ltd., Dandong, China) was used to characterize its crystallographic structure and crystallographic
composition, with a power set at 40 kV and 30 mA, 2θ ranging from 5◦ to 80◦ at a scanning rate
of 8◦/min with a Cu Kα-radiation wavelength = 1.54184 Å. The functional groups of the samples
were analyzed using a Nicolet iS10 Fourier transform-infrared spectrometer (FTIR) (Nicolet iS10,
Thermo Fisher Scientific, Waltham, MA, USA) in the wavenumber range of 400–4000 cm−1. The
Brunauer–Emmett–Teller (BET) surface area and pore distribution were determined using a surface
area and porosity analyzer (Quadrasorb SI, Quantachrome instruments, Boynton Beach, FL, USA).
The chemical states of the main elements in the photocatalysts were explored by using an X-ray
photoelectron spectroscopy (XPS) (Amicus, Shimadzu, Kyoto, Japan). The thermal stability of the
samples was tested on a thermogravimetric-differential scanning calorimeter (TG-DSC) (STA449 F3,
NETZSCH-Gerätebau GmbH, Selb, Germany). The tests of the optical properties of the samples
were carried out on an UV-Vis diffuse reflectance spectrum (UV2550, Shimadzu, Kyoto, Japan). The
electrochemical properties were analyzed by using a CHI760E electrochemical workstation which was
based on a three-electrode system with a working electrode (ITO slide), an auxiliary electrode (Pt) and
a reference electrode (standard calomel electrode (SCE)), while 0.5 mol/L Na2SO4 solution was used as
the electrolyte.
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2.4. Photocatalytic Degradation Experiments

The light source was a 300 W Xenon (Xe)-lamp with a cutoff filter (λ ≥ 420 nm) and a light-proof
box on the outside. Rhodamine B (RhB) was selected to evaluate the photocatalytic activity of the
catalytic material. The specific steps were as follows. Firstly, a given amount of the SiO2/CNOs/TiO2

sample was added to 100 mL of 10 mg/L RhB solution, followed by 10 min ultrasonic dispersion. Then,
the mixture was stirred in the dark for 30 min, in which the adsorption-desorption equilibrium was
reached between the catalysts and the reactants. Finally, the mixture was stirred using a magnetic
stirrer with the Xe-lamp irradiating (120.5–150.0 mW/cm2 of the photon flux density). Further, 6 mL of
the mixture was taken at an interval of 20 min and centrifuged, followed by measuring the absorbance
of the supernatant with an ultraviolet spectrophotometer (UV-2102PC, Unico, Princeton, NJ, USA).

Photocatalytic degradation efficiency was calculated by the following equation:

D% =

[
C0 −Ct

C0

]
× 100% =

[
A0 −At

A0

]
× 100% (1)

where C0 and Ct are the initial concentration (mg/L) and t-time equilibrium concentration (mg/L). A0
and At are the absorbance of original and time t, respectively.

In addition, the total organic carbon (TOC) of the solution was tested using a Total Organic Carbon
Analyzer (TOC) (TOC-V CPH, Shimadzu, Kyoto, Japan). The mineralization ratio was determined by
the following equation [31]:

M% =

[
TOC0 − TOCt

TOC0

]
× 100% (2)

where TOC0 and TOCt are the initial concentration (mg/L) and t-time equilibrium concentration
(mg/L), respectively.

3. Results and Discussion

3.1. Characterization of TiO2, SiO2, CNOs and SiO2/CNOs/TiO2(3%)

The morphologies and sizes of the as-prepared samples were observed by scanning electronic
microscope (SEM) images. The TiO2 sample was composed of particles with heavy agglomerates as
its sizes were 0.5–1 um (Figure 1a). In contrast, the particles of SiO2/CNOs/TiO2 was presented with
slight agglomeration as its sizes in 0.1–0.3 um (Figure 1b), indicating the dispersion of SiO2/CNOs/TiO2

improved significantly than pure TiO2. The high dispersion of the as-prepared composite may not
only improve its adsorption capacity, but also expose more active sites.
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The XRD patterns of CNOs, TiO2, SiO2 and SiO2/CNOs/TiO2(3%) offered some information about
the phase compositions and crystal properties in Figure 2. In Figure 2a, there was an obvious diffraction
peak of CNOs at 26.7◦, corresponding to the (002) crystal plane of the graphitized cubic crystal [21]. In
Figure 2b, the diffraction peaks (25.2◦ (101), 37.8◦ (004), 48.1◦ (200), 53.9◦ (105), 55.1◦ (211), 62.7◦ (204),
and 70.3◦ (220)) were well assigned to the anatase diffraction peaks (PDF#21-1272), indicating that the
synthesized TiO2 was anatase [32]. In Figure 2c, there was a broad peak at 23◦ of SiO2, a characteristic
peak of amorphous SiO2, indicating that SiO2 existed in an amorphous state [33]. In Figure 2d, the
diffraction peaks of SiO2/CNOs/TiO2(3%) were similar to those of pure TiO2, indicating that the form
of TiO2 existed in the composite was anatase.
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Figure 2. The X-ray diffraction (XRD) patterns of (a) CNOs, (b) TiO2, (c) SiO2 and (d) SiO2/CNOs/TiO2(3%).

The characteristic diffraction peak at 26.7◦ belonging to the CNOs (002) crystal plane was also
observed, indicating that CNOs effectively combined with TiO2. However, there were no obvious
diffraction peaks of SiO2 probably due to the amorphous state of SiO2.

The diffraction peaks at the (104) and (200) crystal planes in TiO2 were selected to calculate the
grain size using the Scherrer formula. These peaks could avoid interference of diffraction peaks
between the (101) crystal plane of TiO2 and the (002) plane of CNOs. As shown in Table 1, the grain size
of SiO2/CNOs/TiO2(3%) was smaller than that of TiO2 and CNOs/TiO2. This finding was consistent
with the above SEM images, indicating that the addition of SiO2 improved the dispersity of the sample.

Table 1. Grain size, surface area, average pore size and pore volume of TiO2, CNOs/TiO2(10%) and
SiO2/CNOs/TiO2(3%).

Sample Grain Size
(nm)

Specific Surface
Area(m2/g)

Average Pore Size
(nm)

Pore Volume
(cm3/g)

TiO2 26.53 255.948 2.348 0.150
CNOs/TiO2(10%) 23.54 263.442 2.367 0.156

SiO2/CNOs/TiO2(3%) 22.55 479.243 3.54 0.305

The BET surface area of the as-prepared SiO2/CNOs/TiO2(3%) was evaluated by the nitrogen
adsorption and desorption measurement (Figure 3). The sample showed a type IV isotherm with a H2

hysteresis loop in Figure 3a, belonging to the porous structure type predominated by mesoporous.
Meanwhile, its average pore size was 3.54 nm as presented in the pore size distribution of the
SiO2/CNOs/TiO2(3%) composite (Figure 3b), confirming that the sample was a mesoporous structure.



Nanomaterials 2019, 9, 1671 6 of 16

Nanomaterials 2019, 9, 1671 5 of 15 

 

SiO2, a characteristic peak of amorphous SiO2, indicating that SiO2 existed in an amorphous state [33]. 
In Figure 2d, the diffraction peaks of SiO2/CNOs/TiO2(3%) were similar to those of pure TiO2, 
indicating that the form of TiO2 existed in the composite was anatase. 

20 40 60 80

·

♦

♦

♦

(c)

(d)

(b) ♦♦♦♦♦

·

·

♦♦♦♦♦

2 Theta (degree)

R
el

at
iv

e 
In

te
ns

ity
 (a

.u
.)

SiO2/CNOs/TiO2( 3%)

SiO2

TiO2

 

♦--TiO2    ·--CNOs   ′×--SiO2 

CNOs

♦

×

(a) (0
02

)

(1
01

)

(1
01

)

(0
04

)

(2
00

)

(1
05
)

(2
11

)

(2
04

)

(2
20

)

   

 
Figure 2. The X-ray diffraction (XRD) patterns of (a) CNOs, (b) TiO2, (c) SiO2 and (d) 
SiO2/CNOs/TiO2(3%). 

The characteristic diffraction peak at 26.7° belonging to the CNOs (002) crystal plane was also 
observed, indicating that CNOs effectively combined with TiO2. However, there were no obvious 
diffraction peaks of SiO2 probably due to the amorphous state of SiO2. 

The diffraction peaks at the (104) and (200) crystal planes in TiO2 were selected to calculate the 
grain size using the Scherrer formula. These peaks could avoid interference of diffraction peaks 
between the (101) crystal plane of TiO2 and the (002) plane of CNOs. As shown in Table 1, the grain 
size of SiO2/CNOs/TiO2(3%) was smaller than that of TiO2 and CNOs/TiO2. This finding was 
consistent with the above SEM images, indicating that the addition of SiO2 improved the dispersity 
of the sample. 

The BET surface area of the as-prepared SiO2/CNOs/TiO2(3%) was evaluated by the nitrogen 
adsorption and desorption measurement (Figure 3). The sample showed a type IV isotherm with a 
H2 hysteresis loop in Figure 3a, belonging to the porous structure type predominated by mesoporous. 
Meanwhile, its average pore size was 3.54 nm as presented in the pore size distribution of the 
SiO2/CNOs/TiO2(3%) composite (Figure 3b), confirming that the sample was a mesoporous structure. 

The specific surface area, average pore size and pore volume of the samples are shown in Table 
1. Due to the addition of SiO2 and CNOs, the specific surface area of SiO2/CNOs/TiO2(3%) was 1.87-
times larger than that of TiO2. The improvement in the specific surface area may be beneficial to 
pollutant adsorption.  

0.0 0.2 0.4 0.6 0.8 1.0
100

120

140

160

180

200

 

Desorption

Adsorption

A
ds

or
be

d 
vo

lu
m

e/
cm

3 ·
g-1

Relative Pressure/(P/P0)

a

  

Figure 3. (a) Nitrogen adsorption/desorption isotherms and (b) pore size distribution of 
SiO2/CNOs/TiO2(3%). 

0 4 8 12 16 20
-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

 

 

Po
re

 v
ol

um
e/

cm
3 •g

-1

Pore diameter/nm

b

Figure 3. (a) Nitrogen adsorption/desorption isotherms and (b) pore size distribution of
SiO2/CNOs/TiO2(3%).

The specific surface area, average pore size and pore volume of the samples are shown in
Table 1. Due to the addition of SiO2 and CNOs, the specific surface area of SiO2/CNOs/TiO2(3%) was
1.87-times larger than that of TiO2. The improvement in the specific surface area may be beneficial to
pollutant adsorption.

The element composition and valence bond structure of the SiO2/CNOs/TiO2(3%) composite
were characterized by XPS analysis. Figure 4 shows the X-ray photoelectron full spectrum of
SiO2/CNOs/TiO2(3%) and high-resolution spectra of Ti 2p, C 1s and Si 2p, respectively. For the
SiO2/CNOs/TiO2(3%) composite, there were four predominant binding energy peaks at 459 eV, 285 eV,
102 eV and 530 eV, corresponding to the Ti 2p, C 1s, Si 2p and O1s, respectively. In the spectrum of
the Ti element (Figure 4b), two characteristic peaks observed at approximately 459.7 eV and 465.1 eV
corresponded to Ti4+ 2p1/2 and Ti4+ 2p3/2 in anatase TiO2, indicating that the Ti element existed as
Ti4+ in the sample [34]. Meanwhile, the peaks at 460.9 eV and 466.7 eV corresponded to Ti 2p in
Ti-O-Si. In the high-resolution spectrum of the C element (Figure 4c), the peaks at the binding energies
of 284.6 eV, 283.3 eV and 288.6 eV corresponded to the contamination of the instrument itself, sp2

hybridization in CNOs or C of Ti–O–C bonds and the C=O in CNOs, respectively [35,36]. There were
two peaks at 102.56 eV and 101.66 eV in the high-resolution spectrum of the Si element (Figure 4d),
which belonged to the binding energy Si 2p in Si-O-Si and Ti-O-Si, respectively [37]. The XPS results
are consistent with the results of the XRD analysis, confirming that the SiO2/CNOs/TiO2(3%) composite
was successfully synthetized.

Figure 5 shows the FTIR spectra of TiO2, CNOs, SiO2 and SiO2/CNOs/TiO2(3%). The absorption
peaks near 3400 cm−1 and 1637 cm−1 of all the samples may be caused by water molecules in the
samples or the stretching vibration of the hydroxyl functional groups [38]. For CNOs (Figure 5a): The
characteristic absorption peaks at 2900 cm−1 and 2820 cm−1 corresponded to the stretching vibration of
the methyl and methylene groups; the peak at 1064 cm−1 was caused by C–O bond stretching vibration;
the peak at 526 cm−1 corresponded to the C60 energy band [39,40]. For TiO2 (Figure 5b), the symmetry
stretching vibration peak of the Ti–O–Ti bond was located at 604 cm−1 [41], and the bending vibration
peak of NO3

− was located at 1384 cm−1 due to the addition of HNO3 in the material synthesis. In
the infrared spectrum of SiO2 (Figure 5c), the characteristic peaks at 956 cm−1 and 1074 cm−1 were
the symmetric stretching vibration of Si–O–Si and the antisymmetric stretching vibration of Si–O–Si,
respectively [42]. For the SiO2/CNOs/TiO2 (3%) composite (Figure 5d), the characteristic peaks at
1384 cm−1, 664 cm−1 and 961 cm−1 corresponded to the bending vibration of the C–C bond, the
symmetric stretching vibration of Ti–O–Ti bond and the stretching vibration of Si–O–Si, respectively.
Meanwhile, the characteristic peak of CNOs at 1064 cm−1 was weak due to its overlap with the peak of
the antisymmetric stretching vibration of Si-O-Si (1074 cm−1). The results indicated that the composite
was successfully synthesized by TiO2, SiO2 and CNOs [38–42].
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Meanwhile, the value of the DSC curve was greater than zero, indicating that the process was an 
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dihydroxylation process inside the material. During the process, the hydroxyl group combined 
oxygen to form water. Part 3: 300–600 °C. The weight loss was 7.68%, derived from the oxidative 
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remaining sample was pure TiO2 without mass lost [40]. The TG curve of SiO2/CNOs/TiO2(3%) was 
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the TiO2 sample, of which the weight loss of evaporation, dihydroxylation and oxidative 
decomposition of the organic matter were 6.85%, 4.53% and 8.27%, respectively. Between 550 °C and 
780 °C, the mass loss of the sample was 0.96%, caused by the thermal decomposition of CNOs in the 
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Figure 5. Fourier transform-infrared spectrometer (FTIR) spectra of (a) CNOs, (b) TiO2, (c) SiO2 and
(d) SiO2/CNOs/TiO2(3%) and partial enlargement in 3000–2500 cm−1.

The thermal stability of the SiO2/CNOs/TiO2(3%) composite was explored by TG-DSC. In Figure 6a,
the thermogravimetric analysis (TG) curve of the TiO2 sample consisted of four parts. Part 1: below
200 ◦C. The mass loss was 6.23 wt %, derived from moisture evaporation from the TiO2 surface.
Meanwhile, the value of the DSC curve was greater than zero, indicating that the process was an
endothermic reaction. Part 2: 200–300 ◦C. The weight loss was 4.51 wt %, caused by the dihydroxylation
process inside the material. During the process, the hydroxyl group combined oxygen to form water.
Part 3: 300–600 ◦C. The weight loss was 7.68%, derived from the oxidative decomposition of organic
matter in the sample. Part 4: above 600 ◦C. The main component in the remaining sample was
pure TiO2 without mass lost [40]. The TG curve of SiO2/CNOs/TiO2(3%) was made up of five parts
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(Figure 6b). The mass loss of the composite before 600 ◦C was similar to that of the TiO2 sample, of
which the weight loss of evaporation, dihydroxylation and oxidative decomposition of the organic
matter were 6.85%, 4.53% and 8.27%, respectively. Between 550 ◦C and 780 ◦C, the mass loss of the
sample was 0.96%, caused by the thermal decomposition of CNOs in the sample. Above 780 ◦C, the
weight remained stable. The residual was dominated by SiO2 and TiO2 [43]. These results indicated
that the thermal stability of the SiO2/CNOs/TiO2(3%) composites was quite good.Nanomaterials 2019, 9, 1671 8 of 15 

 

0 100 200 300 400 500 600 700 800

80

85

90

95

100

105

110

-7.68%

-4.54%

 

TG
/%

Temperature/°C

 TG

-6.20%

a

-8

-6

-4

-2

0 DSC

D
SC

/(m
W

/m
g)

 
0 200 400 600 800

75

80

85

90

95

100

105

110

-0.96%

-8.27%

-4.53%

 

TG
/%

Temperature/°C

 TG

-6.85%

b

-8

-6

-4

-2

0 DSC

 
D

SC
/(m

W
/m

g)

 

Figure 6. Thermogravimetric-differential scanning calorimeter (TG-DSC) curves of (a) TiO2 and (b) 
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possible reasons. On the one hand, the addition of CNOs improved the visible light absorption 
capacity of TiO2 due to its high electrical conductivity [21,22]. On the other hand, the addition of SiO2 
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Figure 6. Thermogravimetric-differential scanning calorimeter (TG-DSC) curves of (a) TiO2 and (b) the
SiO2/CNOs/TiO2(3%) composite.

The band gap energies were estimated using the Tauc formula (αhν)1/2
∝ (hυ–Eg), where α is the

absorption coefficient, ν is the frequency of the light, h is Planck’s constant and Eg is the band gap [44,45].
In Figure 7, the absorbance of SiO2/CNOs/TiO2(3%) in the visible region was stronger than TiO2, in
which the band gap energies were found to be 2.90 eV and 2.22 eV for TiO2 and SiO2/CNOs/TiO2(3%).
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Figure 7. UV-Vis diffuse reflectance spectra of TiO2 and SiO2/CNOs/TiO2(3%).

In addition, the conduction band (CB) and valence band (VB) of TiO2 are calculated by following
equations:

E0
CB = χ − EC

− 0.5Eg (3)

EVB = ECB − Eg (4)

where χ is the absolute electronegativity of the semiconductor (χ is 5.81 eV for TiO2 ), EC is the energy
of free electrons on the hydrogen scale (~4.5 eV) and Eg is the band gap energy of the semiconductor.
After calculations, the VB and CB of TiO2 are −3.04 eV and −0.14 eV, respectively. There may be two
possible reasons. On the one hand, the addition of CNOs improved the visible light absorption capacity
of TiO2 due to its high electrical conductivity [21,22]. On the other hand, the addition of SiO2 enhanced
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the dispersibility of the material caused by its large specific surface area and therefore increased the
contact rate of the material with photons under visible light [29,30].

3.2. Degradation of RhB under Visible Light Irradiation

Photocatalytic performance was evaluated by measuring the degradation efficiency of RhB (100 mL
of 10 mg/L RhB, dosage was 2.0 g/L). Photocatalytic degradation efficiencies of RhB by different ratio
CNOs to the SiO2/CNOs/TiO2 composites is presented in Figure 8.Nanomaterials 2019, 9, 1671 9 of 15 
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continuously, caused by high turbidity in the reaction system and aggregation of the catalyst [23]. 
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Figure 8. (a) Photocatalytic degradation of different CNOs composite ratio and (b) linear transform of
ln(C/C0) = k·t of the kinetic curve of Rhodamine B degradation by the TiO2/CNOs/ SiO2 catalysts.

In the dark reaction, all samples reached the adsorption-desorption equilibrium in 30 min and the
process could adsorb approximately 35–45% of RhB corresponding to the adsorbed quantities which
were 1.634–2.274 mg/L as seen in Figure 8a. This phenomenon may be attributed to the large specific
surface area of SiO2 which was beneficial to the adsorption of pollutants. In the light reaction, compared
with the absence of the photocatalyst, the degradation efficiency of RhB significantly improved after
the addition of the prepared materials. The low CNOs (<3%) may have a little high recombination
of photogenerated e−-h+ as the e− could not transfer to CNOs immediately. On the other hand, the
high-level CNOs (>3%) may lead the formation of passive layers that lowered the photoadsorption
efficiency of SiO2/CNOs/TiO2 and reduced the specific surface area. Meanwhile, the degradation
efficiency of SiO2/CNOs/TiO2(3%) reached the highest value of 94% (Figure 8a), so 3% was selected as
the optimal content of CNOs in this work.

To further explore the catalytic reaction, the degradation kinetics of the catalyst with the
integrated rate law ln(C/C0) = k·t (Figure 8b) was investigated [46]. As shown in Figure 8b, the
rate constants k were −0.00148, −0.00956, −0.01714, −0.01815, −0.01638 and −0.01213 min−1 for
TiO2, SiO2/CNOs/TiO2(1%), SiO2/CNOs/TiO2(2%), SiO2/CNOs/TiO2(3%), SiO2/CNOs/TiO2(5%) and
SiO2/CNOs/TiO2(10%), respectively. The absolute value of k of SiO2/CNOs/TiO2(3%) was largest,
which was consistent with the SiO2/CNOs/TiO2(3%) composites which exhibited optimal photoactivity.

In order to explore the effect of the sample dosage on photodegradation efficiency, 1.0 g/L, 1.5 g/L,
2.0 g/L, 2.5 g/L and 3.0 g/L of the SiO2/CNOs/TiO2(3%) composite were added to 100 mL of 10 mg/L
RhB solution, respectively (Figure 9).
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Figure 9. (a) The effect of the dosage of SiO2/CNOs/TiO2(3%) on photodegradation efficiency and
(b) the RhB’s mineralization ratio of 1.5 g/L SiO2/CNOs/TiO2(3%) during photocatalytic processes.

At the beginning, the photodegradation efficiency of RhB increased with the increase of the amount
of SiO2/CNOs/TiO2(3%). Then, it decreased as the amount of the sample increased continuously,
caused by high turbidity in the reaction system and aggregation of the catalyst [23]. The optimum
additional amount of SiO2/CNOs/TiO2(3%) was 1.5 g/L as the value of the photodegradation efficiency
for RhB reached 96.25% after 120 min under visible light irradiation. To further explore the kinetics of
RhB photodegradation, the mineralization ratio by TOC was measured [31]. As shown in Figure 9b,
after 120 min and 270 min of irradiation, the mineralization ratio of RhB reached 61.31% and
100%, respectively.

The stability of the SiO2/CNOs/TiO2(3%) was determined by the efficiencies of the repeated
degradation of RhB (100 mL of 10 mg/L RhB, dosage was 1.5 g/L). The catalyst material was recovered
by applying an external magnet due to the paramagnetism magnetism of CNOs, which was washed
several times with distilled water and subsequently dried at 80 ◦C for 12 h. The degradation efficiency
of the recovered catalyst presented in Figure 10 shows that the degradation efficiency of RhB reduced
from 96.25% in the initial test to 79.3% after 5 cycles of testing. This may be due to a decrease in the
surface-active sites of the catalyst or a mass loss of the catalyst during the recovery process.
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and (b) its degradation efficiency.

Furthermore, in order to investigate the cycle stability of the catalyst, RhB, the newly prepared
SiO2/CNOs/TiO2(3%) composite and the five cycles composite were characterized by FTIR, respectively
(Figure 11). The intensity and position of the characteristic absorption peak of the two catalysts hardly
changed. No other new absorption peak was found in the five cycles of the catalyst indicating that the
adsorbed RhB on the photocatalytic material was completely degraded. The above results showed that
the SiO2/CNOs/TiO2(3%) composite had good stability.
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3.3. Photodegradation Mechanism of the SiO2/CNOs/TiO2(3%) Composite

In order to investigate the role of the different active species in the catalytic system which was
generated under visible light irradiation, EDTA-2Na (0.02 g/L) was used to capture h+. Isopropanol
(IPA) (0.02 g/L) was added to capture •OH and benzoquinone (BQ) (0.01 g/L) was adopted to capture
•O2

−, respectively [47]. In Figure 12, compared with the original degradation, the degradation
efficiency of RhB did not change significantly after adding IPA and EDTA-2Na. However, the efficiency
of the photocatalytic degradation reduced from 94% to 60% when BQ was added, indicating that the
•O2

− was the main active species in the photocatalytic degradation process.
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Figure 12. Reactive species trapping experiments of RhB with the sample SiO2/CNOs/TiO2(3%).

Then, the UV-visible absorption spectrum of RhB solutions with different degradation time was
measured. In Figure 13, the reaction time was extended until the RhB solution degraded and became
colorless with the optimum dosage of 1.5 g/L. It can be seen from the figure that the intensity of the
largest characteristic absorption peak at 554 nm was significantly weakened and its position was
blue-shifted within the progress. The entire degradation process took 150 min, in which the color of
the RhB solution changed from pink to light yellow, and finally to colorless.
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Figure 13. (a) UV-vis scanning of different degradation time of RhB solution and (b) the color change
of RhB during photodegradation.

In addition, the excitation and migration of photogenerated carriers during photocatalysis was
explored by photochemical tests. In Figure 14a, for the SiO2/CNOs/TiO2(3%) composite, the value of
photocurrent response did not change significantly after several tests, indicating that the photocurrent
response of the material was stable. Meanwhile, the prepared sample showed a higher photocurrent
intensity than TiO2 when the light source was turned on, indicating that the composite enhanced the
separation efficiency of electrons and holes [48].
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Figure 14. (a) Time-based photocurrent responses of samples and (b) Nyquist plots.

The electron mobility of photocatalytic materials was further studied according to an
electrochemical impedance spectroscopy (EIS) test (Figure 14b. The charge transport resistance
of the SiO2/CNOs/TiO2(3%) material was smaller than that of TiO2 as the radius of SiO2/CNOs/TiO2(3%)
was smaller, increasing the electron migration rate and reducing the recombination probability of
photogenerated e−-h+ pairs.

Based on the above results, the photocatalytic degradation mechanism of the SiO2/CNOs/TiO2(3%)
composite may be elucidated as follows. First, the BET surface area of the SiO2/CNOs/TiO2(3%) sample
was 1.94-times larger than that of the pure TiO2 (Table 1), benefitting the adsorption of RhB in a dark
reaction and the contact between catalysts and contaminants. Then, after N-deethylation of RhB, the
opening ring process began with the formation of oxides and small molecule compounds, which were
further mineralized into Cl−, CO2, NO3

−, NH4
+ and H2O [49,50]. Figure 15 shows the reactions that

may occur during photocatalysis. For the SiO2/CNOs/TiO2(3%) composite under light irradiation, the
electrons (e) are excited and transfer from the valence band (VB) to the conduction band (CB), forming
e−-h+ pairs that travel to the catalyst surface. The band gap energy was 2.22 eV of SiO2/CNOs/TiO2(3%)
(Figure 7). As CNOs have good conductivity, photogenerated electrons of the prepared composite
transferred to CNOs and reacted with O2 in the pollutants to form superoxide anion •O2

−(main active
species), resulting in the separation of photogenerated electrons from holes [51]. Moreover, due to
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the high surface content of the Ti–O–Si species (formed between TiO2 and SiO2), which improved
dispersion effectively, the photocatalytic degradation of RhB was significantly enhanced [52].
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The reactions that occurred in this process were as follows.

SiO2/CNOs/TiO2(3%) + hν→SiO2/CNOs(e−)/TiO2 (h+) (5)

TiO2 (h+) + H2O→ •OH + H+ +TiO2 (6)

OH- + TiO2 (h+)→ •OH + TiO2 (7)

O2 + CNOs (e−)→•O2
− (8)

RhB + •O2
−
→ CO2 + H2O+NO3

−+NH4
+ +Cl− (9)

4. Conclusions

The SiO2/CNOs/TiO2(3%) composite was successfully prepared by a sol-gel method with a large
surface area of 497 m2/g. The good electrical conductivity of CNOs and the strong adsorption properties
of SiO2 benefited the migration of electrons and separation efficiency of the photo-generated e−-h+

pairs. When the compounding amount of CNOs was 3% and the dosage was 1.5 g/L, the composite
showed the highest photocatalytic activity, where the degradation rate of RhB reached 96.25%. In
addition, due to the paramagnetism of the CNOs, the powders can be easily recovered from the
aqueous solution using an external magnet. Furthermore, the possible photocatalytic mechanism of the
SiO2/CNOs/TiO2(3%) composite was proposed based on the all experiments. This work may provide a
new insight to improve the performance of photocatalysts.
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