Fabrication of BaTiO3-Loaded Graphene Nanosheets-Based Polyarylene Ether Nitrile Nanocomposites with Enhanced Dielectric and Crystallization Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Barium [email protected] Phthalocyanine and Graphene Oxide Hybrid ([email protected])
2.3. Preparation of [email protected]/Polyarylene Ether Nitrile (PEN) Nanocomposites
2.4. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chu, B. A Dielectric Polymer with High Electric Energy Density and Fast Discharge Speed. Science 2006, 313, 334–336. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Moon, K.S.; Kim, B.K.; Wong, C. High dielectric constant polyaniline/epoxy composites via in situ polymerization for embedded capacitor applications. Polymer 2007, 48, 1510–1516. [Google Scholar] [CrossRef]
- Chan, K.Y.; Jia, B.; Lin, H.; Hameed, N.; Lee, J.H.; Lau, K.T. A critical review on multifunctional composites as structural capacitors for energy storage. Compos. Struct. 2018, 188, 126–142. [Google Scholar] [CrossRef]
- Rytöluoto, I.; Lahti, K.; Karttunen, M.; Koponen, M. Large-area dielectric breakdown performance of polymer films-Part I: Measurement method evaluation and statistical considerations on area-dependence. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 689–700. [Google Scholar] [CrossRef]
- Dang, Z.M.; Yuan, J.K.; Yao, S.H.; Liao, R.J. Flexible Nanodielectric Materials with High Permittivity for Power Energy Storage. Adv. Mater. 2013, 25, 6334–6365. [Google Scholar] [CrossRef]
- Yang, Y.; Chiesura, G.; Vervust, T.; Bossuyt, F.; Luyckx, G.; Degrieck, J.; Vanfleteren, J. Design and fabrication of a flexible dielectric sensor system for in situ and real-time production monitoring of glass fibre reinforced composites. Sens. Actuators A Phys. 2016, 243, 103–110. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, Y.; Zhao, C.; Yang, W. High dielectric constant and low dielectric loss hybrid nanocomposites fabricated with ferroelectric polymer matrix and BaTiO3 nanofibers modified with perfluoroalkylsilane. Appl. Surf. Sci. 2014, 305, 531–538. [Google Scholar] [CrossRef]
- Yao, Z.; Song, Z.; Hao, H.; Yu, Z.; Cao, M.; Zhang, S.; Lanagan, M.T.; Liu, H. Homogeneous/Inhomogeneous-Structured Dielectrics and their Energy-Storage Performances. Adv. Mater. 2017, 29, 1601727. [Google Scholar] [CrossRef]
- Chao, X.; Wu, P.; Zhao, Y.; Liang, P.; Yang, Z. Effect of CaCuTiO powders prepared by the different synthetic methods on dielectric properties of CaCuTiO/polyvinylidene fluoride composites. J. Mater. Sci. Mater. Electron. 2015, 26, 3044–3051. [Google Scholar] [CrossRef]
- Wang, L.; Liu, X.; Liu, C.; Zhou, X.; Liu, C.; Cheng, M.; Wei, R.; Liu, X. Ultralow Dielectric Constant Polyarylene Ether Nitrile Foam with excellent mechanical properties. Chem. Eng. J. 2019. [Google Scholar] [CrossRef]
- Dang, Z.M.; Lin, Y.H.; Nan, C.W. Novel Ferroelectric Polymer Composites with High Dielectric Constants. Adv. Mater. 2003, 15, 1625–1629. [Google Scholar] [CrossRef]
- Dang, Z.M.; Wang, L.; Yin, Y.; Zhang, Q.; Lei, Q.Q. Giant Dielectric Permittivities in Functionalized Carbon-Nanotube/Electroactive-Polymer Nanocomposites. Adv. Mater. 2007, 19, 852–857. [Google Scholar] [CrossRef]
- Wang, Z.; Wei, R.; Liu, X. Dielectric properties of reduced graphene oxide/copper phthalocyanine nanocomposites fabricated through π–π interaction. J. Electron. Mater. 2017, 46, 488–496. [Google Scholar] [CrossRef]
- You, Y.; Liu, S.; Tu, L.; Wang, Y.; Zhan, C.; Du, X.; Wei, R.; Liu, X. Controllable Fabrication of Poly(Arylene Ether Nitrile) Dielectrics for Thermal-Resistant Film Capacitors. Macromolecules 2019, 52, 5850–5859. [Google Scholar] [CrossRef]
- Zhan, Y.; Lei, Y.; Meng, F.; Zhong, J.; Zhao, R.; Liu, X. Electrical, thermal, and mechanical properties of polyarylene ether nitriles/graphite nanosheets nanocomposites prepared by masterbatch route. J. Electron. Mater. 2011, 46, 824–831. [Google Scholar] [CrossRef]
- Zou, Y.; Yang, J.; Zhan, Y.; Yang, X.; Zhong, J.; Zhao, R.; Liu, X. Effect of curing behaviors on the properties of poly(arylene ether nitrile) end-capped with phthalonitrile. J. Appl. Polym. Sci. 2012, 125, 3829–3835. [Google Scholar] [CrossRef]
- You, Y.; Han, W.; Tu, L.; Wang, Y.; Wei, R.; Liu, X. Double-layer core/shell-structured nanoparticles in polyarylene ether nitrile-based nanocomposites as flexible dielectric materials. RSC Adv. 2017, 7, 29306–29311. [Google Scholar] [CrossRef]
- Cheng, D.; Wang, H.; Liu, B.; Wang, S.; Li, Y.; Xia, Y.; Xiong, C. Dielectric properties and energy-storage performance of two-dimensional molybdenum disulfide nanosheets/polyimide composite films. J. Appl. Polym. Sci. 2019, 136, 47991. [Google Scholar] [CrossRef]
- Kalia, R.; Sharma, V.; Mahna, S.K.; Sharma, J.K. Dielectric relaxation behavior of C 5+(70 MeV) swift heavy ion irradiated polyetheretherketone (PEEK) using TSDC technique. Polym. Sci. Ser. A 2014, 56, 837–843. [Google Scholar] [CrossRef]
- Liu, S.; Liu, C.; Liu, C.; Tu, L.; You, Y.; Wei, R.; Liu, X. Polyarylene Ether Nitrile and Barium Titanate Nanocomposite Plasticized by Carboxylated Zinc Phthalocyanine Buffer. Polymers 2019, 11, 418. [Google Scholar] [CrossRef]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved Synthesis of Graphene Oxide. ACS Nano 2010, 4, 4806–4814. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.; Li, D.; Zhou, C.; Liu, T. Microporous Co/rGO nanocomposites: Strong and broadband microwave absorber with well-matched dielectric and magnetic loss. J. Alloy. Compd. 2019, 782, 556–565. [Google Scholar] [CrossRef]
- Doan, V.C.; Vu, M.C.; Islam, M.A.; Kim, S.R. Poly (methyl methacrylate)-functionalized reduced graphene oxide-based core-shell structured beads for thermally conductive epoxy composites. J. Appl. Polym. Sci. 2019, 136, 47377. [Google Scholar] [CrossRef]
- Pan, L.; Jia, K.; Shou, H.; Zhou, X.; Wang, P.; Liu, X. Unification of molecular NIR fluorescence and aggregation-induced blue emission via novel dendritic zinc phthalocyanines. J. Mater. Sci. 2017, 52, 3402–3418. [Google Scholar] [CrossRef]
- Wang, Z.; Wei, R.; Liu, X. Dielectric properties of copper phthalocyanine nanocomposites incorporated with graphene oxide. J. Mater. Sci. Mater. Electron. 2017, 28, 7437–7448. [Google Scholar] [CrossRef]
- Zhou, T.; Zha, J.W.; Cui, R.Y.; Fan, B.H.; Yuan, J.K.; Dang, Z.M. Improving Dielectric Properties of BaTiO3/Ferroelectric Polymer Composites by Employing Surface Hydroxylated BaTiO3 Nanoparticles. ACS Appl. Mater. Interfaces 2011, 3, 2184–2188. [Google Scholar] [CrossRef]
- You, Y.; Tu, L.; Wang, Y.; Tong, L.; Wei, R.; Liu, X. Achieving Secondary Dispersion of Modified Nanoparticles by Hot-Stretching to Enhance Dielectric and Mechanical Properties of Polyarylene Ether Nitrile Composites. Nanomaterials 2019, 9, 1006. [Google Scholar] [CrossRef]
- Wang, Y.; You, Y.; Tu, L.; Hu, W.; Tong, L.; Wei, R.; Liu, X. Mechanical and dielectric properties of crystalline poly (arylene ether nitrile) copolymers. High Perform. Polym. 2019, 31, 310–320. [Google Scholar] [CrossRef]
- Tang, X.; You, Y.; Mao, H.; Li, K.; Wei, R.; Liu, X. Improved energy storage density of composite films based on poly(arylene ether nitrile) and sulfonated poly(arylene ether nitrile) functionalized graphene. Mater. Today Commun. 2018, 17, 355–361. [Google Scholar] [CrossRef]
- Xu, W.; Yang, G.; Jin, L.; Liu, J.; Zhang, Y.; Zhang, Z.; Jiang, Z. High-k Polymer Nanocomposites Filled with Hyperbranched Phthalocyanine-Coated BaTiO3 for High-Temperature and Elevated Field Applications. ACS Appl. Mater. Interfaces 2018, 10, 11233–11241. [Google Scholar] [CrossRef]
- Tu, L.; You, Y.; Tong, L.; Wang, Y.; Hu, W.; Wei, R.; Liu, X. Crystallinity of poly(arylene ether nitrile) copolymers containing hydroquinone and bisphenol A segments. J. Appl. Polym. Sci. 2018, 135, 46412. [Google Scholar] [CrossRef]
- Luo, B.; Wang, X.; Tian, E.; Gong, H.; Zhao, Q.; Shen, Z.; Xu, Y.; Xiao, X.; Li, L. Dielectric Enhancement in Graphene/Barium Titanate Nanocomposites. ACS Appl. Mater. Interfaces 2016, 8, 3340–3348. [Google Scholar] [CrossRef] [PubMed]
- Prateek; Thakur, V.K.; Gupta, R.K. Recent Progress on Ferroelectric Polymer-Based Nanocomposites for High Energy Density Capacitors: Synthesis, Dielectric Properties, and Future Aspects. Chem. Rev. 2016, 116, 4260–4317. [Google Scholar]
Tempreture (°C) | 200 | 270 | 280 | 290 | 300 | 310 |
---|---|---|---|---|---|---|
Melting enthalpy ΔH (J g−1) | 9.63 | 13.27 | 15.33 | 14.74 | 13.79 | 12.80 |
Melting point (Tml, °C) | 257.38 | 287.35 | 298.63 | 309.33 | 319.89 | 328.26 |
Melting point (Tmh, °C) | 316.22 | 313.02 | 314.29 | 309.33 | 319.89 | 328.26 |
Glass transition temperature (°C) | 171.36 | 173.62 | 175.67 | 176.24 | 177.01 | 178.08 |
Crystallinity (%) | 13.21 | 18.20 | 21.03 | 20.22 | 18.92 | 17.56 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Liu, C.; You, Y.; Wang, Y.; Wei, R.; Liu, X. Fabrication of BaTiO3-Loaded Graphene Nanosheets-Based Polyarylene Ether Nitrile Nanocomposites with Enhanced Dielectric and Crystallization Properties. Nanomaterials 2019, 9, 1667. https://doi.org/10.3390/nano9121667
Liu S, Liu C, You Y, Wang Y, Wei R, Liu X. Fabrication of BaTiO3-Loaded Graphene Nanosheets-Based Polyarylene Ether Nitrile Nanocomposites with Enhanced Dielectric and Crystallization Properties. Nanomaterials. 2019; 9(12):1667. https://doi.org/10.3390/nano9121667
Chicago/Turabian StyleLiu, Shuning, Chenchen Liu, Yong You, Yajie Wang, Renbo Wei, and Xiaobo Liu. 2019. "Fabrication of BaTiO3-Loaded Graphene Nanosheets-Based Polyarylene Ether Nitrile Nanocomposites with Enhanced Dielectric and Crystallization Properties" Nanomaterials 9, no. 12: 1667. https://doi.org/10.3390/nano9121667