Next Article in Journal
Preparation of Hierarchically Porous Graphitic Carbon Spheres and Their Applications in Supercapacitors and Dye Adsorption
Previous Article in Journal
Kinetics of Aggregation and Magnetic Separation of Multicore Iron Oxide Nanoparticles: Effect of the Grafted Layer Thickness
Article

Carbon Nanocones with Curvature Effects Close to the Vertex

1
School of Mathematical Sciences, University of Adelaide, Adelaide , SA 5005, Australia
2
School of Information Technology and Mathematical Sciences, University of South Australia, Adelaide, SA 5000, Australia
*
Author to whom correspondence should be addressed.
Nanomaterials 2018, 8(8), 624; https://doi.org/10.3390/nano8080624
Received: 15 July 2018 / Revised: 7 August 2018 / Accepted: 14 August 2018 / Published: 17 August 2018
The conventional rolled-up model for carbon nanocones assumes that the cone is constructed from a rolled-up graphene sheet joined seamlessly, which predicts five distinct vertex angles. This model completely ignores any effects due to the changing curvature, and all bond lengths and bond angles are assumed to be those for the planar graphene sheet. Clearly, curvature effects will become more important closest to the cone vertex, and especially so for the cones with the smaller apex angles. Here, we construct carbon nanocones which, in the assembled cone, are assumed to comprise bond lengths and bond angles that are, as far as possible, equal throughout the structure at the same distance from the conical apex. The predicted bond angles and bond lengths are shown to agree well with those obtained by relaxing the conventional rolled-up model using Lammps software (version: 11 September 2008). The major objective here is not simply to model physically realisable carbon nanocones for which numerical procedures are far superior, but rather, to produce an improved model that takes curvature effects close to the vertex into account, and from which we may determine an analytical formula which represents an improvement on the conventional rolled-up model. View Full-Text
Keywords: carbon nanocones; geometry; curvature effects; mathematical modelling; approximate formulae carbon nanocones; geometry; curvature effects; mathematical modelling; approximate formulae
Show Figures

Figure 1

MDPI and ACS Style

Cox, B.J.; Hill, J.M. Carbon Nanocones with Curvature Effects Close to the Vertex. Nanomaterials 2018, 8, 624. https://doi.org/10.3390/nano8080624

AMA Style

Cox BJ, Hill JM. Carbon Nanocones with Curvature Effects Close to the Vertex. Nanomaterials. 2018; 8(8):624. https://doi.org/10.3390/nano8080624

Chicago/Turabian Style

Cox, Barry J., and James M. Hill. 2018. "Carbon Nanocones with Curvature Effects Close to the Vertex" Nanomaterials 8, no. 8: 624. https://doi.org/10.3390/nano8080624

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop