# Impact of Nano-Scale Distribution of Atoms on Electronic and Magnetic Properties of Phases in Fe-Al Nanocomposites: An Ab Initio Study

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Methods

## 3. Results for Individual Phases

## 4. Results for Nanocomposites

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## Appendix A

**Table A1.**Atomic positions (expressed as fractions of supercell dimensions) within the computational supercells shown in Figure 1. Aluminium positions are the first six rows in the case of Fe-Al variants and the first eight rows in the case of Fe${}_{3}$Al.

Fe-Al SQS | Fe-Al SQS no 1NN | Fe-Al SQS no 1&2NN | Fe${}_{3}$Al | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|

1 | 1 | $\sqrt{\mathbf{2}}$/2 | 1 | 1 | $\sqrt{\mathbf{2}}$/2 | 1 | 1 | $\sqrt{\mathbf{2}}$/2 | 1 | 1 | $\sqrt{\mathbf{2}}$/2 |

0.75 | 0.75 | 0.50 | 0.50 | 0.75 | 0.25 | 0.25 | 0.00 | 0.75 | 0.25 | 0.00 | 0.75 |

0.25 | 0.00 | 0.75 | 0.75 | 0.00 | 0.75 | 0.25 | 0.50 | 0.75 | 0.75 | 0.00 | 0.75 |

0.50 | 0.75 | 0.75 | 0.25 | 0.00 | 0.25 | 0.00 | 0.25 | 0.25 | 0.25 | 0.50 | 0.75 |

0.00 | 0.75 | 0.75 | 0.25 | 0.50 | 0.25 | 0.00 | 0.75 | 0.25 | 0.75 | 0.50 | 0.75 |

0.25 | 0.50 | 0.25 | 0.50 | 0.25 | 0.25 | 0.50 | 0.25 | 0.25 | 0.00 | 0.25 | 0.25 |

0.50 | 0.50 | 0.50 | 0.50 | 0.25 | 0.75 | 0.50 | 0.75 | 0.25 | 0.00 | 0.75 | 0.25 |

0.50 | 0.25 | 0.25 | 0.75 | 0.50 | 0.75 | 0.75 | 0.50 | 0.75 | 0.50 | 0.25 | 0.25 |

0.75 | 0.50 | 0.25 | 0.00 | 0.75 | 0.75 | 0.75 | 0.00 | 0.75 | 0.50 | 0.75 | 0.25 |

0.00 | 0.25 | 0.75 | 0.50 | 0.75 | 0.75 | 0.00 | 0.25 | 0.75 | 0.00 | 0.25 | 0.75 |

0.00 | 0.75 | 0.25 | 0.00 | 0.75 | 0.25 | 0.00 | 0.75 | 0.75 | 0.00 | 0.75 | 0.75 |

0.00 | 0.00 | 0.00 | 0.00 | 0.25 | 0.25 | 0.50 | 0.25 | 0.75 | 0.50 | 0.25 | 0.75 |

0.00 | 0.25 | 0.25 | 0.75 | 0.00 | 0.25 | 0.50 | 0.75 | 0.75 | 0.50 | 0.75 | 0.75 |

0.25 | 0.00 | 0.25 | 0.25 | 0.50 | 0.75 | 0.25 | 0.00 | 0.25 | 0.25 | 0.00 | 0.25 |

0.50 | 0.75 | 0.25 | 0.75 | 0.50 | 0.25 | 0.75 | 0.00 | 0.25 | 0.75 | 0.00 | 0.25 |

0.75 | 0.75 | 0.00 | 0.25 | 0.00 | 0.75 | 0.25 | 0.50 | 0.25 | 0.25 | 0.50 | 0.25 |

0.25 | 0.50 | 0.75 | 0.00 | 0.25 | 0.75 | 0.75 | 0.50 | 0.25 | 0.75 | 0.50 | 0.25 |

0.75 | 0.50 | 0.75 | 0.75 | 0.75 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

0.00 | 0.50 | 0.00 | 0.50 | 0.50 | 0.50 | 0.50 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 |

0.50 | 0.25 | 0.75 | 0.00 | 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.50 | 0.00 |

0.75 | 0.00 | 0.25 | 0.75 | 0.75 | 0.00 | 0.50 | 0.50 | 0.00 | 0.50 | 0.50 | 0.00 |

0.25 | 0.25 | 0.50 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.50 |

0.50 | 0.00 | 0.50 | 0.25 | 0.25 | 0.50 | 0.50 | 0.00 | 0.50 | 0.50 | 0.00 | 0.50 |

0.00 | 0.00 | 0.50 | 0.50 | 0.00 | 0.50 | 0.00 | 0.50 | 0.50 | 0.00 | 0.50 | 0.50 |

0.50 | 0.50 | 0.00 | 0.00 | 0.00 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |

0.25 | 0.25 | 0.00 | 0.50 | 0.50 | 0.00 | 0.25 | 0.25 | 0.00 | 0.25 | 0.25 | 0.00 |

0.75 | 0.25 | 0.00 | 0.25 | 0.25 | 0.00 | 0.75 | 0.25 | 0.00 | 0.75 | 0.25 | 0.00 |

0.25 | 0.75 | 0.00 | 0.75 | 0.25 | 0.00 | 0.25 | 0.75 | 0.00 | 0.25 | 0.75 | 0.00 |

0.75 | 0.00 | 0.75 | 0.25 | 0.75 | 0.00 | 0.75 | 0.75 | 0.00 | 0.75 | 0.75 | 0.00 |

0.50 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 0.25 | 0.25 | 0.50 | 0.25 | 0.25 | 0.50 |

0.75 | 0.25 | 0.50 | 0.75 | 0.25 | 0.50 | 0.75 | 0.25 | 0.50 | 0.75 | 0.25 | 0.50 |

0.25 | 0.75 | 0.50 | 0.25 | 0.75 | 0.50 | 0.25 | 0.75 | 0.50 | 0.25 | 0.75 | 0.50 |

0.00 | 0.50 | 0.50 | 0.00 | 0.50 | 0.50 | 0.75 | 0.75 | 0.50 | 0.75 | 0.75 | 0.50 |

## References

- Sauthoff, G. Intermetallics; VCH Verlagsgesellschaft: Weinheim, Germany, 1995. [Google Scholar]
- Liu, C.T.; Stringer, J.; Mundy, J.N.; Horton, L.L.; Angelini, P. Ordered intermetallic alloys: An assessment. Intermetallics
**1997**, 5, 579–596. [Google Scholar] [CrossRef] - Stoloff, N.S. Iron aluminides: Present status and future prospects. Mater. Sci. Eng. A
**1998**, 258, 1–14. [Google Scholar] [CrossRef] - Liu, C.T.; Lee, E.H.; McKamey, C.G. An environmental-effect as the major cause for room-temperature embrittlement in FeAl. Scr. Metall.
**1989**, 23, 875–880. [Google Scholar] [CrossRef] - Lynch, R.J.; Heldt, L.A.; Milligan, W.W. Effects of alloy composition on environmental embrittlement of B2 ordered iron aluminides. Scr. Metall.
**1991**, 25, 2147–2151. [Google Scholar] [CrossRef] - Liu, C.T.; McKamey, C.G.; Lee, E.H. Environmental-effects on room-temperature ductility and fracture in Fe
_{3}Al. Scr. Metall.**1990**, 24, 385–389. [Google Scholar] [CrossRef] - Lynch, R.J.; Gee, K.A.; Heldt, L.A. Environmental embrittlement of single-crystal and thermomechanically processed B2-ordered iron aluminides. Scr. Metall.
**1994**, 30, 945–950. [Google Scholar] [CrossRef] - Palm, M.; Inden, G.; Thomas, N. The Fe-Al-Ti system. J. Phase Equilib.
**1995**, 16, 209–222. [Google Scholar] [CrossRef] - Palm, M.; Lacaze, J. Assessment of the Al-Fe-Ti system. Intermetallics
**2006**, 14, 1291–1303. [Google Scholar] [CrossRef] - Palm, M.; Sauthoff, G. Deformation behaviour and oxidation resistance of single-phase and two-phase L2
_{1}-ordered Fe-Al-Ti alloys. Intermetallics**2004**, 12, 1345–1359. [Google Scholar] [CrossRef] - Sundman, B.; Ohnuma, I.; Dupin, N.; Kattner, U.R.; Fries, S.G. An assessment of the entire Al-Fe system including D0(3) ordering. Acta Mater.
**2009**, 57, 2896–2908. [Google Scholar] [CrossRef] - Kattner, U.; Burton, B. Al-Fe (Aluminium-Iron). In Phase Diagrams of Binary Iron Alloys; Okamoto, H., Ed.; ASM International: Geauga County, OH, USA, 1993; pp. 12–28. [Google Scholar]
- Allen, S.; Cahn, J. Mechanisms of phase-transformations within miscibility gap of Fe-rich Fe-Al alloys. Acta Metall. Mater.
**1976**, 24, 425–437. [Google Scholar] [CrossRef] - Wang, K.; Wang, Y.; Cheng, Y. The Formation and Dynamic Evolution of Antiphase Domain Boundary in FeAl Alloy: Computational Simulation in Atomic Scale. Mater. Res.-Ibero-Am. J. Mater.
**2018**, 21. [Google Scholar] [CrossRef] - Balagurov, A.M.; Bobrikov, I.A.; Sumnikov, V.S.; Golovin, I.S. Antiphase domains or dispersed clusters? Neutron diffraction study of coherent atomic ordering in Fe
_{3}Al-type alloys. Acta Mater.**2018**, 153, 45–52. [Google Scholar] [CrossRef] - Murakami, Y.; Niitsu, K.; Tanigaki, T.; Kainuma, R.; Park, H.S.; Shindo, D. Magnetization amplified by structural disorder within nanometre-scale interface region. Nat. Commun.
**2014**, 5. [Google Scholar] [CrossRef] [PubMed] - Oguma, R.; Matsumura, S.; Eguchi, T. Kinetics of B2-and D0
_{3}type ordering and formation of domain structures in Fe-Al alloys. J. Phys. Condens. Matter**2008**, 20, 275225. [Google Scholar] [CrossRef] [PubMed] - Watson, R.E.; Weinert, M. Transition-metal aluminide formation: Ti, V, Fe, and Ni aluminides. Phys. Rev. B
**1998**, 58, 5981–5988. [Google Scholar] [CrossRef] - Gonzales-Ormeno, P.; Petrilli, H.; Schon, C. Ab-initio calculations of the formation energies of BCC-based superlattices in the Fe-Al system. Calphad
**2002**, 26, 573. [Google Scholar] [CrossRef] - Friák, M.; Neugebauer, J. Ab initio study of the anomalous volume-composition dependence in Fe-Al alloys. Intermetallics
**2010**, 18, 1316–1321. [Google Scholar] [CrossRef] - Friák, M.; Oweisová, S.; Pavlů, J.; Holec, D.; Šob, M. An Ab Initio Study of Thermodynamic and Mechanical Stability of Heusler-Based Fe
_{2}AlCo Polymorphs. Materials**2018**, 11, 1543. [Google Scholar] [CrossRef] - Friák, M.; Holec, D.; Šob, M. Quantum-Mechanical Study of Nanocomposites with Low and Ultra-Low Interface Energies. Nanomaterials
**2018**, 8, 1057. [Google Scholar] [CrossRef] - Friák, M.; Slávik, A.; Miháliková, I.; Holec, D.; Všianská, M.; Šob, M.; Palm, M.; Neugebauer, J. Origin of the Low Magnetic Moment in Fe
_{2}AlTi: An Ab Initio Study. Materials**2018**, 11, 1732. [Google Scholar] [CrossRef] - Šesták, P.; Friák, M.; Holec, D.; Všianská, M.; Šob, M. Strength and Brittleness of Interfaces in Fe-Al Superalloy Nanocomposites under Multiaxial Loading: An ab initio and Atomistic Study. Nanomaterials
**2018**, 8, 873. [Google Scholar] [CrossRef] [PubMed] - Liu, S.; Duan, S.; Ma, B. First-principles calculation of vibrational entropy for Fe-Al compounds. Phys. Rev. B
**1998**, 58, 9705–9709. [Google Scholar] - Kulikov, N.I.; Postnikov, A.V.; Borstel, G.; Braun, J. Onset of magnetism in B2 transition-metal aluminides. Phys. Rev. B
**1999**, 59, 6824–6833. [Google Scholar] [CrossRef] - Fähnle, M.; Drautz, R.; Lechermann, F.; Singer, R.; Diaz-Ortiz, A.; Dosch, H. Thermodynamic properties from ab-initio calculations: New theoretical developments, and applications to various materials systems. Phys. Status Solidi B Basic Solid State Phys.
**2005**, 242, 1159–1173. [Google Scholar] [CrossRef] - Friák, M.; Deges, J.; Krein, R.; Frommeyer, G.; Neugebauer, J. Combined ab initio and experimental study of structural and elastic properties of Fe
_{3}Al-based ternaries. Intermetallics**2010**, 18, 1310. [Google Scholar] [CrossRef] - Kirklin, S.; Saal, J.E.; Hegde, V.I.; Wolverton, C. High-throughput computational search for strengthening precipitates in alloys. Acta Mater.
**2016**, 102, 125–135. [Google Scholar] [CrossRef][Green Version] - Airiskallio, E.; Nurmi, E.; Heinonen, M.H.; Vayrynen, I.J.; Kokko, K.; Ropo, M.; Punkkinen, M.P.J.; Pitkanen, H.; Alatalo, M.; Kollar, J.; et al. High temperature oxidation of Fe-Al and Fe-Cr-Al alloys: The role of Cr as a chemically active element. Corros. Sci.
**2010**, 52, 3394–3404. [Google Scholar] [CrossRef] - Medvedeva, N.I.; Park, M.S.; Van Aken, D.C.; Medvedeva, J.E. First-principles study of Mn, Al and C distribution and their effect on stacking fault energies in fcc Fe. J. Alloy. Compd.
**2014**, 582, 475–482. [Google Scholar] [CrossRef] - Čížek, J.; Lukáč, F.; Procházka, I.; Kužel, R.; Jirásková, Y.; Janičkovič, D.; Anwand, W.; Brauer, G. Characterization of quenched-in vacancies in Fe-Al alloys. Phys. B
**2012**, 407, 2659–2664. [Google Scholar] [CrossRef] - Ipser, H.; Semenova, O.; Krachler, R. Intermetallic phases with D0(3)-structure: A statistical-thermodynamic model. J. Alloy. Compd.
**2002**, 338, 20–25. [Google Scholar] [CrossRef] - Lechermann, F.; Welsch, F.; Elsässer, C.; Ederer, C.; Fähnle, M.; Sanchez, J.; Meyer, B. Density-functional study of Fe
_{3}Al: LSDA versus GGA. Phys. Rev. B**2002**, 65, 132104. [Google Scholar] [CrossRef] - Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett.
**1996**, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed] - Connetable, D.; Maugis, P. First principle calculations of the kappa-Fe
_{3}AlC perovskite and iron-aluminium intermetallics. Intermetallics**2008**, 16, 345–352. [Google Scholar] [CrossRef] - Lechermann, F.; Fähnle, M.; Meyer, B.; Elsässer, C. Electronic correlations, magnetism, and structure of Fe-Al subsystems: An LDA+U study. Phys. Rev. B
**2004**, 69, 165116. [Google Scholar] [CrossRef] - Kellou, A.; Grosdidier, T.; Raulot, J.M.; Aourag, H. Atomistic study of magnetism effect on structural stability in Fe
_{3}Al and Fe_{3}AlX (X = H, B, C, N, O) alloys. Phys. Status Solidi B Basic Solid State Phys.**2008**, 245, 750–755. [Google Scholar] [CrossRef] - Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. B
**1964**, 136, B864–B871. [Google Scholar] [CrossRef] - Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. A
**1965**, 140, A1133–A1138. [Google Scholar] [CrossRef] - Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B
**1994**, 50, 17953–17979. [Google Scholar] [CrossRef][Green Version] - Perdew, J.P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B
**1992**, 45, 13244–13249. [Google Scholar] [CrossRef] - Vosko, S.H.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys.
**1980**, 58, 1200. [Google Scholar] [CrossRef] - Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B
**1993**, 47, 558–561. [Google Scholar] [CrossRef] - Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B
**1996**, 54, 11169–11186. [Google Scholar] [CrossRef] - Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B
**1999**, 59, 1758–1775. [Google Scholar] [CrossRef] - Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B
**1976**, 13, 5188–5192. [Google Scholar] [CrossRef] - Miháliková, I.; Slávik, A.; Friák, M.; Všianská, M.; Koutná, N.; Holec, D.; Šob, M. First-principles study of interface energies in Fe-Al-based superalloy nanocomposites. In Proceedings of the NANOCON 9th International Conference on Nanomaterials—Research & Application, Brno, Czech Republic, 18–20 October 2017; Tanger Ltd.: Ostrava, Czech Republic, 2018; pp. 69–74. [Google Scholar]
- Amara, H.; Fu, C.C.; Soisson, F.; Maugis, P. Aluminum and vacancies in α-iron: Dissolution, diffusion, and clustering. Phys. Rev. B
**2010**, 81, 174101. [Google Scholar] [CrossRef] - Zunger, A.; Wei, S.; Ferreira, L.; Bernard, J. Special quasirandom structures. Phys. Rev. Lett.
**1990**, 65, 353–356. [Google Scholar] [CrossRef][Green Version] - Oganov, A.R.; Glass, C.W. Crystal structure prediction using ab initio evolutionary techniques: Principles and applications. J. Chem. Phys.
**2006**, 124, 244704. [Google Scholar] [CrossRef][Green Version] - Lyakhov, A.O.; Oganov, A.R.; Stokes, H.T.; Zhu, Q. New developments in evolutionary structure prediction algorithm USPEX. Comput. Phys. Commun.
**2013**, 184, 1172–1182. [Google Scholar] [CrossRef] - Oganov, A.R.; Lyakhov, A.O.; Valle, M. How Evolutionary Crystal Structure Prediction Works—And Why. Acc. Chem. Res.
**2011**, 44, 227–237. [Google Scholar] [CrossRef] - Bose, S.K.; Kudrnovský, J.; Drchal, V.; Turek, I. Magnetism of mixed quaternary Heusler alloys: (Ni,T)
_{2}MnSn(T = Cu,Pd) as a case study. Phys. Rev. B**2010**, 82, 174402. [Google Scholar] [CrossRef] - Mayrhofer, P.H.; Fischer, F.D.; Boehm, H.J.; Mitterer, C.; Schneider, J.M. Energetic balance and kinetics for the decomposition of supersaturated Ti1-xAlxN. Acta Mater.
**2007**, 55, 1441–1446. [Google Scholar] [CrossRef] - Wu, L.; Chen, M.; Li, C.; Zhou, J.; Shen, L.; Wang, Y.; Zhong, Z.; Feng, M.; Zhang, Y.; Han, K.; et al. Ferromagnetism and matrix-dependent charge transfer in strained LaMnO
_{3}-LaCoO_{3}superlattices. Mater. Res. Lett.**2018**, 6, 501–507. [Google Scholar] [CrossRef] - Koutná, N.; Holec, D.; Friák, M.; Mayrhofer, P.H.; Šob, M. Stability and elasticity of metastable solid solutions and superlattices in the MoN–TaN system: First-principles calculations. Mater. Des.
**2018**, 144, 310–322. [Google Scholar] [CrossRef] - Jiang, M.; Xiao, H.Y.; Peng, S.M.; Yang, G.X.; Liu, Z.J.; Zu, X.T. A comparative study of low energy radiation response of AlAs, GaAs and GaAs/AlAs superlattice and the damage effects on their electronic structures. Sci. Rep.
**2018**, 8, 2012. [Google Scholar] [CrossRef][Green Version] - Wen, Y.N.; Gao, P.F.; Xia, M.G.; Zhang, S.L. Half-metallic ferromagnetism prediction in MoS
_{2}-based two-dimensional superlattice from first-principles. Mod. Phys. Lett. B**2018**, 32, 1850098. [Google Scholar] [CrossRef] - Friák, M.; Tytko, D.; Holec, D.; Choi, P.P.; Eisenlohr, P.; Raabe, D.; Neugebauer, J. Synergy of atom-probe structural data and quantum-mechanical calculations in a theory-guided design of extreme-stiffness superlattices containing metastable phases. New J. Phys.
**2015**, 17, 093004. [Google Scholar] [CrossRef][Green Version] - Dai, Q.; Eckern, U.; Schwingenschlog, U. Effects of oxygen vacancies on the electronic structure of the (LaVO3)(6)/SrVO3 superlattice: A computational study. New J. Phys.
**2018**, 20, 073011. [Google Scholar] [CrossRef] - Jiang, M.; Xiao, H.; Peng, S.; Qiao, L.; Yang, G.; Liu, Z.; Zu, X. First-Principles Study of Point Defects in GaAs/AlAs Superlattice: The Phase Stability and the Effects on the Band Structure and Carrier Mobility. Nanoscale Res. Lett.
**2018**, 13, 301. [Google Scholar] [CrossRef] - Chen, H.; Millis, A.J.; Marianetti, C.A. Engineering Correlation Effects via Artificially Designed Oxide Superlattices. Phys. Rev. Lett.
**2013**, 111, 116403. [Google Scholar] [CrossRef] - Mottura, A.; Janotti, A.; Pollock, T.M. A first-principles study of the effect of Ta on the superlattice intrinsic stacking fault energy of L1
_{2}-Co-3(Al,W). Intermetallics**2012**, 28, 138–143. [Google Scholar] [CrossRef] - Rosengaard, N.; Skriver, H. Ab-initio study of antiphase boundaries and stacking-faults in L1
_{2}and D0_{22}compounds. Phys. Rev. B**1994**, 50, 4848–4858. [Google Scholar] [CrossRef] - Torres-Pardo, A.; Gloter, A.; Zubko, P.; Jecklin, N.; Lichtensteiger, C.; Colliex, C.; Triscone, J.M.; Stephan, O. Spectroscopic mapping of local structural distortions in ferroelectric PbTiO3/SrTiO3 superlattices at the unit-cell scale. Phys. Rev. B
**2011**, 84, 220102. [Google Scholar] [CrossRef] - Chawla, V.; Holec, D.; Mayrhofer, P.H. Stabilization criteria for cubic AlN in TiN/AlN and CrN/AlN bi-layer systems. J. Phys. D Appl. Phys.
**2013**, 46, 045305. [Google Scholar] [CrossRef] - Cooper, V.R.; Rabe, K.M. Enhancing piezoelectricity through polarization-strain coupling in ferroelectric superlattices. Phys. Rev. B
**2009**, 79, 180101. [Google Scholar] [CrossRef] - Chen, B.; Zhang, Q.; Bernholc, J. Si diffusion in gaas and si-induced interdiffusion in gaas/alas superlattices. Phys. Rev. B
**1994**, 49, 2985–2988. [Google Scholar] [CrossRef] - Schmid, U.; Christensen, N.; Cardona, M.; Lukes, F.; Ploog, K. Optical anisotropy in GaAs/AlSs(110) superlattices. Phys. Rev. B
**1992**, 45, 3546–3551. [Google Scholar] [CrossRef] - Gibson, Q.D.; Schoop, L.M.; Weber, A.P.; Ji, H.; Nadj-Perge, S.; Drozdov, I.K.; Beidenkopf, H.; Sadowski, J.T.; Fedorov, A.; Yazdani, A.; et al. Termination-dependent topological surface states of the natural superlattice phase Bi
_{4}Se_{3}. Phys. Rev. B**2013**, 88, 081108. [Google Scholar] [CrossRef] - Park, C.; Chang, K. Structural and electronic-properties of GaP-AlP (001) superlattices. Phys. Rev. B
**1993**, 47, 12709–12715. [Google Scholar] [CrossRef] - Romanyuk, O.; Hannappel, T.; Grosse, F. Atomic and electronic structure of GaP/Si(111), GaP/Si(110), and GaP/Si(113) interfaces and superlattices studied by density functional theory. Phys. Rev. B
**2013**, 88, 115312. [Google Scholar] [CrossRef] - Abdulsattar, M.A. SiGe superlattice nanocrystal pure and doped with substitutional phosphorus single atom: Density functional theory study. Superlattices Microstruct.
**2011**, 50, 377–385. [Google Scholar] [CrossRef] - Botti, S.; Vast, N.; Reining, L.; Olevano, V.; Andreani, L. Ab initio and semiempirical dielectric response of superlattices. Phys. Rev. B
**2004**, 70, 045301. [Google Scholar] [CrossRef] - Rondinelli, J.M.; Spaldin, N.A. Electron-lattice instabilities suppress cuprate-like electronic structures in SrFeO
_{3}/OSrTiO_{3}superlattices. Phys. Rev. B**2010**, 81, 085109. [Google Scholar] [CrossRef] - Giorgetti, M.; della longa, S.; Benfatto, M. EXAFS and XANES simulations of Fe/Co hexacyanoferrate spectra by GNXAS and MXAN. J. Phys. Conf. Ser.
**2009**, 190, 012145. [Google Scholar] [CrossRef][Green Version] - Westre, T.E.; Cicco, A.; Filipponi, A.; Natoli, C.R.; Hedman, B.; Solomon, E.I.; Hodgson, K.O. Using GNXAS, a multiple-scattering EXAFS analysis, for determination of the FeNO angle in FeNO7 complexes. Phys. B Condens. Matter
**1995**, 208–209, 137–139. [Google Scholar] [CrossRef] - Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr.
**2011**, 44, 1272–1276. [Google Scholar] [CrossRef]

**Figure 1.**Schematic visualization of the 32-atom supercells used in our calculations: (

**a**) a general special quasi-random structure (SQS) model for the Fe-Al phase (with 18.75 at.% Al), (

**b**) an SQS model for the Fe-Al phase without any 1st nearest-neighbor (NN) Al-Al pairs, (

**c**) an SQS model for the Fe-Al phase without the 1st and 2nd NN Al-Al pairs and (

**d**) a 32-atom supercell of the Fe${}_{3}$Al intermetallics. The unrelaxed atomic positions are listed in Table A1 in the Appendix.

**Figure 2.**Schematic visualization of local atomic magnetic moments calculated for individual phases (see Figure 1): (

**a**–

**c**) are SQS models for the Fe-Al phase with different atomic arrangements and (

**d**) for the Fe${}_{3}$Al. The moments are visualized so that the diameters of the spheres reflect the magnitudes of the local magnetic moments (a few examples are in parts (

**b**,

**d**) in ${\mathsf{\mu}}_{\mathrm{B}}$). Magnetic moments of Al atoms are so small, less than 0.05 ${\mathsf{\mu}}_{\mathrm{B}}$, that they are shown only as blue dots.

**Figure 3.**Dependences of local magnetic moments of Fe atoms in all studied phases (shown in Figure 1) as functions of concentration of Al atoms in the 1st (

**a**) and the 2nd (

**b**) coordination shell, respectively.

**Figure 4.**Calculated dependences of the density of states (DOS) of the Fe atoms at the Fermi level ${E}_{\mathrm{F}}$ in the case of NM states as a function of the Al concentration in the 1st (

**a**) and the 2nd (

**b**) coordination shell, respectively. Part (

**c**) shows the DOS of the Fe atoms at the ${E}_{\mathrm{F}}$ in the case of NM states as a function of their local magnetic moments in the case of FM states.

**Figure 5.**The dependences of local magnetic moments of Fe atoms on the density of states of these atoms (A and B represent coefficients in a linear fit $y=A$ × $x+B$ and ${r}^{2}$ is the coefficient of determination): (

**a**) a general Fe-Al SQS, (

**b**) an SQS without the first NN Al-Al pairs, (

**c**) Fe-rich Fe${}_{3}$Al without the first and the second nearest neighbour Al-Al pairs, and (

**d**) Fe${}_{3}$Al.

**Figure 6.**Calculated total densities of states (TDOS) in the case of the 32-atom supercells as models for individual phases: figures (

**a**–

**c**) are SQS models for the Fe-Al phase with different atomic arrangements and figure (

**d**) for the Fe${}_{3}$Al intermetallic compound.

**Figure 7.**Visualization of nanocomposite supercells for the (001) interface plane. The figures show how the Fe${}_{3}$Al intermetallic compound is combined with different models of the Fe-Al phase with 18.75 at.% Al, in particular the general SQS (A2-like) model (

**a**), the SQS model without the 1st NN Al-Al pairs, B2-like, (

**b**) and the SQS without the 1st and 2nd NN Al-Al pairs, D0${}_{3}$-like (

**c**).

**Figure 8.**The same as in Figure 7 but for nanocomposite supercells with the (110) interface plane.

**Figure 9.**Differences in the magnitude of local magnetic moments of Fe atoms induced by the interfaces within the nanocomposites. They are visualized by the diameter of spheres representing individual Fe atoms (two are listed in subfigure (

**h**)). Gold (black) color of the spheres indicate positive (negative) changes. The sub-figures (

**a**,

**d**,

**g**) correspond to the nanocomposites shown in Figure 7a–c, respectively, the sub-figures (

**b**,

**e**,

**h**) to those in Figure 8a–c, respectively, and the sub-figures (

**c**,

**f**,

**i**) corresponds to the nanocomposites with the (1$\overline{1}$0) orientation of the interfaces (not shown). Please note that due to the fact that the differences are rather small, the scaling connecting the value of the difference and the diameter of the spheres is three times bigger than the scaling applied in Figure 2.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Miháliková, I.; Friák, M.; Jirásková, Y.; Holec, D.; Koutná, N.; Šob, M. Impact of Nano-Scale Distribution of Atoms on Electronic and Magnetic Properties of Phases in Fe-Al Nanocomposites: An Ab Initio Study. *Nanomaterials* **2018**, *8*, 1059.
https://doi.org/10.3390/nano8121059

**AMA Style**

Miháliková I, Friák M, Jirásková Y, Holec D, Koutná N, Šob M. Impact of Nano-Scale Distribution of Atoms on Electronic and Magnetic Properties of Phases in Fe-Al Nanocomposites: An Ab Initio Study. *Nanomaterials*. 2018; 8(12):1059.
https://doi.org/10.3390/nano8121059

**Chicago/Turabian Style**

Miháliková, Ivana, Martin Friák, Yvonna Jirásková, David Holec, Nikola Koutná, and Mojmír Šob. 2018. "Impact of Nano-Scale Distribution of Atoms on Electronic and Magnetic Properties of Phases in Fe-Al Nanocomposites: An Ab Initio Study" *Nanomaterials* 8, no. 12: 1059.
https://doi.org/10.3390/nano8121059