Hydrothermal Synthesis of CeO2-SnO2 Nanoflowers for Improving Triethylamine Gas Sensing Property
Abstract
:1. Introduction
2. Results and Discussion
2.1. Sample Characterization
2.2. Gas Sensing Performance
2.3. Gas Sensing Mechanism
3. Materials and Methods
3.1. Sample Preparation
3.2. Characterizations
3.3. Gas Sensor Fabrication and Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xu, H.Y.; Ju, D.X.; Li, W.R.; Zhang, J.; Wang, J.Q.; Cao, B.Q. Superior triethylamine sensing properties based on TiO2/SnO2 n-n heterojunction nanosheets directly grown on ceramic tubes. Sens. Actuators B Chem. 2016, 228, 634–642. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, W.; Dong, W.; Zhao, J.; Qiao, X.Q.; Hou, D.F.; Li, D.S.; Zhang, Q.; Feng, P.Y. Temperature-Controlled Synthesis of Porous CuO Particles with Different Morphologies for Highly Sensitive Detection of Triethylamine. Cryst. Growth Des. 2017, 17, 2158–2165. [Google Scholar] [CrossRef]
- Ju, D.; Xu, H.; Xu, Q.; Gong, H.; Qiu, Z.; Guo, J.; Zhang, J.; Cao, B. High triethylamine-sensing properties of NiO/SnO2 hollow sphere P-N heterojunction sensors. Sens. Actuators B Chem. 2015, 215, 39–44. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, L.; Zhao, H.; Chen, Y.; Yang, H. Synthesis and sensing properties of spherical flowerlike architectures assembled with SnO2 submicron rods. Sens. Actuators B Chem. 2012, 173, 643–651. [Google Scholar] [CrossRef]
- Cai, T.; Chen, L.; Ren, Q.; Cai, S.; Zhang, J. The biodegradation pathway of triethylamine and its biodegradation by immobilized arthrobacter protophormiae cells. J. Hazard. Mater. 2011, 186, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Ju, D.; Xu, H.; Qiu, Z.; Zhang, Z.; Xu, Q.; Zhang, J.; Wang, J.; Cao, B. Near Room Temperature, Fast-Response, and Highly Sensitive Triethylamine Sensor Assembled with Au-Loaded ZnO/SnO2 Core–Shell Nanorods on Flat Alumina Substrates, A.C.S. Appl. Mater. Interfaces 2015, 7, 19163–19171. [Google Scholar] [CrossRef] [PubMed]
- Filippo, E.; Manno, D.; Buccolieri, A.; Serra, A. Green synthesis of sucralose-capped silver nanoparticles for fast colorimetric triethylamine detection. Sens. Actuators B Chem. 2013, 178, 1–9. [Google Scholar] [CrossRef]
- Moore, W.M.; Edwards, R.J.; Bavda, L.T. An improved capillary gas chromatography method for triethylamine. Application to sarafloxacin hydrochloride and GnRH residual solvents testing. Anal. Lett. 1999, 32, 2603–2612. [Google Scholar] [CrossRef]
- Haskin, J.F.; Warren, G.W.; Priestley, L.J.; Yarborough, V.A. Gas Chromatography. Determination of Constituents in Study of Azeotropes. Anal. Chem. 1958, 30, 217–219. [Google Scholar] [CrossRef]
- Liu, C.H.J.; Lu, W.C. Optical amine sensor based on metallophthalocyanine. J. Chin. Inst. Eng. 2007, 38, 483–488. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.C.; Cao, X.H.; Yuan, M.Y.; Yang, M.J. A composite of polyelectrolyte-Grafted multi-walled carbon nanotubes and in situ polymerized polyaniline for the detection of low concentration triethylamine vapor. Nanotechnology 2008, 19, 15503–15507. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Song, H.J.; Hu, J.; Lv, Y.; Xu, K.L. A cataluminescence gas sensor for triethylamine based on nanosized LaF3-CeO2. Sens. Actuators B Chem. 2012, 169, 261–266. [Google Scholar] [CrossRef]
- Sun, P.; Cao, Y.; Liu, J.; Sun, Y.; Ma, J.; Lu, G. Dispersive SnO2 nanosheets: Hydrothermal synthesis and gas-sensing properties. Sens. Actuators B Chem. 2011, 156, 779–783. [Google Scholar] [CrossRef]
- Kim, S.J.; Hwang, I.S.; Choi, J.K.; Kang, Y.C.; Lee, J.H. Enhanced C2H5OH sensing characteristics of nano-porous In2O3 hollow spheres prepared by sucrose-mediated hydrothermal reaction. Sens. Actuators B Chem. 2011, 155, 512–518. [Google Scholar] [CrossRef]
- Xu, S.; Wang, Z.L. One-dimensional ZnO nanostructures: Solution growth and functional properties. Nano Res. 2011, 4, 1013–1098. [Google Scholar] [CrossRef] [Green Version]
- Niu, M.; Huang, F.; Cui, L.; Huang, P.; Yu, Y.; Wang, Y. Hydrothermal synthesis, structural characteristics, and enhanced photocatalysis of SnO2/a-Fe2O3 semiconductor nanoheterostructures. ACS Nano 2010, 4, 681–688. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.E.; Lin, C.Y.; Hsu, C.M. Fabrication of SnO2-TiO2 core-shell nanopillararray films for enhanced photocatalytic activity. Appl. Surf. Sci. 2017, 396, 393–399. [Google Scholar] [CrossRef]
- Roose, B.; Johansen, C.M.; Dupraz, K.; Jaouen, T.; Aebi, P.; Steiner, U.; Abate, A. A Ga-doped SnO2 mesoporous contact for UV stable highly efficient perovskite solar cells. J. Mater. Chem. A 2018, 6, 1850–1857. [Google Scholar] [CrossRef]
- Ashok, A.; Vijayaraghavan, S.N.; Unni, G.E.; Nair, S.V.; Shanmugam, M. On the Physics of Dispersive Electron Transport Characteristics in SnO2 Nanoparticle Based Dye Sensitized Solar Cells. Nanotechnology 2018, 29, 175401. [Google Scholar] [CrossRef]
- Zhao, K.; Zhang, L.; Xia, R.; Dong, Y.; Xu, W.; Niu, C.; He, L.; Yan, M.; Qu, L.; Mai, L. SnO2 quantum dots@graphene oxide as a high-rate and long-life anode material for lithium-ion batteries. Small 2016, 12, 588–594. [Google Scholar] [CrossRef]
- Shi, Y.H.; Ma, D.Q.; Wang, W.J.; Zhang, L.F.; Xu, X.H. A supramolecular self-assembly hydrogel binder enables enhanced cycling of SnO2-based anode for high-performance lithium-ion batteries. J. Mater. Sci. 2017, 52, 3545–3555. [Google Scholar] [CrossRef]
- Narjinary, M.; Rana, P.; Sen, A.; Pal, M. Enhanced and selective acetone sensing properties of SnO2-MWCNT nanocomposites: Promising materials for diabetes sensor. Mater. Des. 2017, 115, 158–164. [Google Scholar] [CrossRef]
- Cao, J.L.; Qin, C.; Wang, Y. Synthesis of g-C3N4 nanosheets decorated flower-like tin oxide composites and their improved ethanol gas sensing properties. J. Alloys Compd. 2017, 728, 1101–1109. [Google Scholar] [CrossRef]
- Yang, X.L.; Yu, Q.; Zhang, S.F.; Sun, P.; Lu, H.Y.; Yan, X.; Liu, F.M.; Zhou, X.; Liang, X.H.; Gao, Y.; et al. Highly sensitive and selective triethylamine gas sensor based on porous SnO2/Zn2SnO4 composites. Sens. Actuators B Chem. 2018, 266, 213–220. [Google Scholar] [CrossRef]
- Chen, W.; Zhou, Q.; Gao, T.; Su, X.; Wan, F. Pd-doped SnO2-based sensor detecting characteristic fault hydrocarbon gases in transformer oil. J. Nanomater. 2013, 2013, 1–9. [Google Scholar] [CrossRef]
- Kim, K.; Choi, K.; Jeong, H.; Kim, H.J.; Kim, H.P.; Lee, J. Highly sensitive and selective trimethylamine sensors using Ru-doped SnO2 hollow spheres. Sens. Actuators B Chem. 2012, 166, 733–738. [Google Scholar] [CrossRef]
- Wang, D.; Chu, X.; Gong, M. Gas-sensing properties of sensors based on single crystalline SnO2 nanorods prepared by a simple molten-salt method. Sens. Actuators B Chem. 2006, 117, 183–187. [Google Scholar] [CrossRef]
- Zhai, T.; Xu, H.Y.; Li, W.R.; Yu, H.Q.; Chen, Z.Q.; Wang, J.Q.; Cao, B.Q. Low-temperature in-situ growth of SnO2 nanosheets and its high triethylamine sensing response by constructing Au-loaded ZnO/SnO2 heterostructure. J. Alloys Compd. 2018, 737, 603–612. [Google Scholar] [CrossRef]
- Yan, S.; Liang, X.; Song, H.; Ma, S.; Lu, Y. Synthesis of porous CeO2-SnO2 nanosheets gas sensors with enhanced sensitivity. Ceram. Int. 2018, 44, 358–363. [Google Scholar] [CrossRef]
- Joy, N.A.; Nandasiri, M.I.; Rogers, P.H.; Jiang, W.; Varga, T.; Kuchibhatla, S.V.T.; Thevuthasan, S.; Carpenter, M.A. Selective plasmonic gas sensing: H2, NO2, and CO spectral discrimination by a single Au-CeO2 nanocomposite film. Anal. Chem. 2012, 84, 5025–5034. [Google Scholar] [CrossRef]
- Pourfayaz, F.; Khodadadi, A.; Mortazavi, Y.; Mohajerzadeh, S.S. CeO2 doped SnO2 sensor selective to ethanol in presence of CO, LPG and CH4. Sens. Actuators B Chem. 2005, 108, 172–176. [Google Scholar] [CrossRef]
- Jiang, Z.; Guo, Z.; Sun, B.; Jia, Y.; Li, M.Q.; Liu, J. Highly sensitive and selective bu-tanone sensors based on cerium-doped SnO2 thin films. Sens. Actuators B Chem. 2010, 145, 667–673. [Google Scholar] [CrossRef]
- Hamedani, N.F.; Mahjoub, A.R.; Khodadadi, A.A.; Mortazavi, Y. CeO2 doped ZnO flower-like nanostructure sensor selective to ethanol in presence of CO and CH4. Sens. Actuators B Chem. 2012, 169, 67–73. [Google Scholar] [CrossRef]
- Motaung, D.E.; Mhlongo, G.H.; Makgwane, P.R.; Dhonge, B.P.; Cummings, F.R.; Swart, H.C.; Ray, S.S. Ultra-High Sensitive and Selective H2, Gas Sensor Manifested by Interface of n-n Heterostructure of CeO2-SnO2 Nanoparticles. Sens. Actuators B Chem. 2018, 254, 984–995. [Google Scholar] [CrossRef]
- Han, D.; Song, P.; Zhang, S.; Zhang, H.H.; Wang, Q.X. Enhanced methanol gas-sensing performance of Ce-doped In2O3 porous nanospheres prepared by hydrothermal method. Sens. Actuators B Chem. 2015, 216, 488–496. [Google Scholar] [CrossRef]
- Xiao, Y.; Yang, Q.; Wang, Z.; Zhang, R.; Gao, Y.; Sun, P.; Sun, Y.; Lu, G.Y. Improvement of NO2 gas sensing performance based on discoid tin oxide modified by reduced graphene oxide. Sens. Actuators B Chem. 2016, 227, 419–426. [Google Scholar] [CrossRef]
- Yu, H.Q.; Li, W.R.; Han, R.; Zhai, T.; Xu, H.Y.; Chen, Z.Q.; Wu, X.W.; Wang, J.Q.; Cao, B.Q. Enhanced triethylamine sensing properties by fabricating Au@SnO2/α-Fe2O3 core-shell nanoneedles directly on alumina tubes. Sens. Actuators B Chem. 2018, 262, 70–78. [Google Scholar]
- Li, Y.; Luo, N.; Sun, G.; Zhang, B.; Ma, G.Z.; Jin, H.H.; Wang, Y.; Cao, J.L.; Zhang, Z.Y. Facile synthesis of ZnFe2O4/α-Fe2O3, porous microrods with enhanced TEA-sensing performance. J. Alloys Compd. 2018, 737, 255–262. [Google Scholar] [CrossRef]
- Liu, F.; Yang, Z.; He, J.; You, R.; Wang, J.; Li, S.Q.; Lu, H.Y.; Liang, X.S.; Sun, P.; Yan, X.; Chuai, X.H.; Lu, G.Y. Ultrafast-response Stabilized Zirconia-Based Mixed Potential Type Triethylamine Sensor Utilizing CoMoO4 Sensing Electrode. Sens. Actuators B Chem. 2018, 272, 433–440. [Google Scholar] [CrossRef]
- Zito, C.A.; Perfecto, T.M.; Volanti, D.P. Porous CeO2 nanospheres for a room temperature triethylamine sensor under high humidity conditions. New J. Chem. 2018, 42, 15954–15961. [Google Scholar] [CrossRef]
- Wang, J.; Yu, L.; Wang, H.; Ruan, S.; Lj, J.J.; Wu, F. Preparation and Triethylamine Sensing Properties of Ce-Doped In2O3 Nanofibers. Acta Phys. Chim. Sin. 2010, 26, 3101–3105. [Google Scholar]
- Liu, S.R.; Guan, M.Y.; Li, X.Z.; Guo, Y. Light irradiation enhanced triethylamine gas sensing materials based on ZnO/ZnFe2O4 composites. Sens. Actuators B Chem. 2016, 236, 350–357. [Google Scholar] [CrossRef]
- Bai, S.; Liu, C.; Luo, R.; Chen, A. Metal organic frameworks-derived sensing material of SnO2/NiO composites for detection of triethylamine. Appl. Surf. Sci. 2018, 437, 304–313. [Google Scholar] [CrossRef]
- Franke, M.E.; Koplin, T.J.; Simon, U. Metal and metal oxide nanoparticles in chemiresistors: Does the nanoscale matter? Small 2006, 2, 36–50. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Du, J.; Zhao, R.; Wang, H.; Yao, H. Facile synthesis of hexagonal brick-shaped SnO2 and its gas sensing toward triethylamine. J. Environ. Chem. Eng. 2013, 1, 1380–1384. [Google Scholar] [CrossRef]
- Gong, Y.; Wang, Y.; Sun, G.; Jia, T.; Jia, L.; Zhang, F.; Lin, L.; Zhang, B.; Cao, J.; Zhang, Z. Carbon nitride decorated ball-flower like Co₃O₄ hybrid composite: Hydrothermal synthesis and ethanol gas sensing application. Nanomaterials 2018, 8, 132. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Gong, Y.; Wang, Y.; Zhang, B.; Zhang, H.; Sun, G.; Hari, B.; Zhang, Z. Cocoon-like ZnO decorated graphitic carbon nitride nanocomposite: Hydrothermal synthesis and ethanol gas sensing application. Mater. Lett. 2017, 198, 76–80. [Google Scholar] [CrossRef]
Materials | TEA Concentration (ppm) | Temperature(°C) | Response(Ra/Rg) | Ref. |
---|---|---|---|---|
SnO2 | 200 | 350 | 5.9 | [4] |
Au@ZnO/SnO2 | 200 | 300 | 160 | [28] |
Au@SnO2/α-Fe2O3 | 200 | 300 | 63 | [37] |
ZnFe2O4/α-Fe2O3 | 200 | 305 | 65 | [38] |
CoMoO4 | 200 | 600 | 110 | [39] |
CeO2 | 100 | Room temperature | 4.67 | [40] |
Ce-doped In2O3 | 200 | 130 | 61.9 | [41] |
SC-5 | 200 | 310 | 252.2 | this work |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, D.; Wang, Y.; Cao, J.; Zhang, Z. Hydrothermal Synthesis of CeO2-SnO2 Nanoflowers for Improving Triethylamine Gas Sensing Property. Nanomaterials 2018, 8, 1025. https://doi.org/10.3390/nano8121025
Xue D, Wang Y, Cao J, Zhang Z. Hydrothermal Synthesis of CeO2-SnO2 Nanoflowers for Improving Triethylamine Gas Sensing Property. Nanomaterials. 2018; 8(12):1025. https://doi.org/10.3390/nano8121025
Chicago/Turabian StyleXue, Dongping, Yan Wang, Jianliang Cao, and Zhanying Zhang. 2018. "Hydrothermal Synthesis of CeO2-SnO2 Nanoflowers for Improving Triethylamine Gas Sensing Property" Nanomaterials 8, no. 12: 1025. https://doi.org/10.3390/nano8121025
APA StyleXue, D., Wang, Y., Cao, J., & Zhang, Z. (2018). Hydrothermal Synthesis of CeO2-SnO2 Nanoflowers for Improving Triethylamine Gas Sensing Property. Nanomaterials, 8(12), 1025. https://doi.org/10.3390/nano8121025