Dopamine Assisted One-Step Pyrolysis of Glucose for the Preparation of Porous Carbon with A High Surface Area
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis of Porous Carbon
2.3. Characterization
3. Results and Discussion
3.1. Synthesis of Porous Carbon
3.2. The Effect of Dopamine on Porous Carbon
3.3. Electrochemical Performance of Porous Carbon
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Shen, F.; Liu, J.; Zhang, Z.; Dong, Y.; Yang, Y.; Wu, D. Oxygen-rich porous carbon derived from biomass for mercury removal: An experimental and theoretical study. Langmuir 2018, 34, 12049–12057. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Huang, H.; Yu, Y.; Shi, J.; He, C.; Albilali, R.; Pan, H. Template-free synthesis of hierarchical porous carbon with controlled morphology for CO2 efficient capture. Chem. Eng. J. 2018, 353, 584–594. [Google Scholar] [CrossRef]
- Hao, G.-P.; Li, W.-C.; Qian, D.; Lu, A.-H. Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture. Adv. Mater. 2010, 22, 853–857. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Attia, N.F.; Jung, M.; Lee, M.E.; Lee, K.; Chung, J.; Oh, H. Sustainable nanoporous carbon for CO2, CH4, N2, H2 adsorption and CO2/CH4 and CO2/N2 separation. Energy 2018, 158, 9–16. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, P.; Liu, L.; Zhang, Y.; Yang, J.; Zeng, Z.; Deng, S. Controllable synthesis of bifunctional porous carbon for efficient gas-mixture separation and high-performance supercapacitor. Chem. Eng. J. 2018, 348, 57–66. [Google Scholar] [CrossRef]
- Li, J.; Zhou, X.; Shang, N.; Feng, C.; Gao, S.; Wang, C. Nitrogen-riched porous carbon supported pd-nanoparticles as an efficient catalyst for the transfer hydrogenation of alkenes. New J. Chem. 2018. [Google Scholar] [CrossRef]
- Wang, G.; Dong, W.; Ma, P.; Yan, C.; Zhang, W.; Liu, J. Interconnected nitrogen and sulfur co-doped graphene-like porous carbon nanosheets with high electrocatalytic activity as counter electrodes for dye-sensitized and quantum dot-sensitized solar cells. Electrochim. Acta 2018, 290, 273–281. [Google Scholar] [CrossRef]
- Tian, J.; Wu, W.; Tang, Z.; Wu, Y.; Burns, R.; Tichnell, B.; Liu, Z.; Chen, S. Oxygen reduction reaction and hydrogen evolution reaction catalyzed by Pd-Ru nanoparticles encapsulated in porous carbon nanosheets. Catalysts 2018, 8, 329. [Google Scholar] [CrossRef]
- Li, X.-C.; She, F.-S.; Shen, D.; Liu, C.-P.; Chen, L.-H.; Li, Y.; Deng, Z.; Chen, Z.-H.; Wang, H.-E. Coherent nanoscale cobalt/cobalt oxide heterostructures embedded in porous carbon for the oxygen reduction reaction. RSC Adv. 2018, 8, 28625–28631. [Google Scholar] [CrossRef]
- Jia, S.; Zang, J.; Li, W.; Tian, P.; Zhou, S.; Cai, H.; Tian, X.; Wang, Y. A novel synthesis of prussian blue nanocubes/biomass-derived nitrogen-doped porous carbon composite as a high-efficiency oxygen reduction reaction catalyst. Electrochim. Acta 2018, 289, 56–64. [Google Scholar] [CrossRef]
- Wang, M.; Xia, X.; Zhong, Y.; Wu, J.; Xu, R.; Yao, Z.; Wang, D.; Tang, W.; Wang, X.; Tu, J. Porous carbon hosts for lithium-sulfur batteries. Chem. Eur. J. 2018. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wang, Z.; Li, Y.; Dong, K.; Shao, J.; Luo, S.; Liu, Y.; Qi, X. In situ double-template fabrication of boron-doped 3d hierarchical porous carbon network as anode materials for li-and na-ion batteries. Appl. Surf. Sci. 2019, 464, 422–428. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Shi, J.; Pan, A.; Jiang, F.; Liang, S.; Cao, G. S-doped porous carbon nanospheres confined sns with enhanced electrochemical performance for sodium-ion batteries. J. Mater. Chem. A 2018, 6. [Google Scholar] [CrossRef]
- Hu, L.; Zhu, Q.; Wu, Q.; Li, D.; An, Z.; Xu, B. Natural biomass-derived hierarchical porous carbon synthesized by in-situ hard template coupled with naoh activation for ultra-high rate supercapacitors. ACS Sustain. Chem. Eng. 2018. [Google Scholar] [CrossRef]
- Qie, L.; Chen, W.; Xu, H.; Xiong, X.; Jiang, Y.; Zou, F.; Hu, X.; Xin, Y.; Zhang, Z.; Huang, Y. Synthesis of functionalized 3d hierarchical porous carbon for high-performance supercapacitors. Energ. Environ. Sci. 2013, 6, 2497–2504. [Google Scholar] [CrossRef]
- Chen, L.-F.; Zhang, X.-D.; Liang, H.-W.; Kong, M.; Guan, Q.-F.; Chen, P.; Wu, Z.-Y.; Yu, S.-H. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 2012, 6, 7092–7102. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Shioyama, H.; Akita, T.; Xu, Q. Metal-organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 2008, 130, 5390–5391. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, J.; Hyeon, T. Recent progress in the synthesis of porous carbon materials. Adv. Mater. 2006, 18, 2073–2094. [Google Scholar] [CrossRef]
- Fang, B.; Binder, L. A modified activated carbon aerogel for high-energy storage in electric double layer capacitors. J. Power Sources 2006, 163, 616–622. [Google Scholar] [CrossRef]
- Liang, C.; Hong, K.; Guiochon, G.A.; Mays, J.W.; Dai, S. Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers. Angew. Chem. Int. Ed. 2004, 43, 5785–5789. [Google Scholar] [CrossRef] [PubMed]
- Lukens, W.W.; Stucky, G.D. Synthesis of mesoporous carbon foams templated by organic colloids. Chem. Mater. 2002, 14, 1665–1670. [Google Scholar] [CrossRef]
- Wang, C.; O’Connell, M.J.; Chan, C.K. Facile one-pot synthesis of highly porous carbon foams for high-performance supercapacitors using template-free direct pyrolysis. ACS Appl. Mater. Inter. 2015, 7, 8952–8960. [Google Scholar] [CrossRef] [PubMed]
- Lv, W.; Zhang, C.; Li, Z.; Yang, Q.-H. Self-assembled 3d graphene monolith from solution. J. Phys. Chem. Lett. 2015, 6, 658–668. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, Y.; Zhi, C.; Wang, X.; Tang, D.; Xu, Y.; Weng, Q.; Jiang, X.; Mitome, M.; Golberg, D.; et al. Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors. Nat. Commun. 2013, 4, 2905. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.-F.; Wang, X.-B.; Dai, P.; Li, X.; Weng, Q.; Wang, X.; Tang, D.-M.; Tang, J.; Bando, Y.; Golberg, D. High-throughput fabrication of strutted graphene by ammonium-assisted chemical blowing for high-performance supercapacitors. Nano Energy 2015, 16, 81–90. [Google Scholar] [CrossRef]
- Zhu, C.; Fu, S.; Xu, B.Z.; Song, J.; Shi, Q.; Engelhard, M.H.; Li, X.; Beckman, S.P.; Sun, J.; Du, D. Sugar blowing-induced porous cobalt phosphide/nitrogen-doped carbon nanostructures with enhanced electrochemical oxidation performance toward water and other small molecules. Small 2017, 13, 1700796. [Google Scholar] [CrossRef] [PubMed]
- Fechler, N.; Wohlgemuth, S.-A.; Jäker, P.; Antonietti, M. Salt and sugar: Direct synthesis of high surface area carbon materials at low temperatures via hydrothermal carbonization of glucose under hypersaline conditions. J. Mater. Chem. A 2013, 1, 9418–9421. [Google Scholar] [CrossRef]
- Wei, L.; Nitta, N.; Yushin, G. Lithographically patterned thin activated carbon films as a new technology platform for on-chip devices. ACS Nano 2013, 7, 6498–6506. [Google Scholar] [CrossRef] [PubMed]
- Chang, B.; Yin, H.; Zhang, X.; Zhang, S.; Yang, B. Chemical blowing strategy synthesis of nitrogen-rich porous graphitized carbon nanosheets: Morphology, pore structure and supercapacitor application. Chem. Eng. J. 2017, 312, 191–203. [Google Scholar] [CrossRef]
- Strubel, P.; Thieme, S.; Biemelt, T.; Helmer, A.; Oschatz, M.; Brückner, J.; Althues, H.; Kaskel, S. ZnO hard templating for synthesis of hierarchical porous carbons with tailored porosity and high performance in lithium-sulfur battery. Adv. Funct. Mater. 2015, 25, 287–297. [Google Scholar] [CrossRef]
- Lee, H.; Dellatore, S.M.; Miller, W.M.; Messersmith, P.B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426–430. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Luo, H.; Mahurin, S.M.; Dai, S.; Liu, R.; Hou, X.; Dai, S. Adsorption of rare earth ions using carbonized polydopamine nano carbon shells. J. Rare Earth 2016, 34, 77–82. [Google Scholar] [CrossRef]
- Yan, J.; Lu, H.; Huang, Y.; Fu, J.; Mo, S.; Wei, C.; Miao, Y.-E.; Liu, T. Polydopamine-derived porous carbon fiber/cobalt composites for efficient oxygen reduction reactions. J. Mater. Chem. A 2015, 3, 23299–23306. [Google Scholar] [CrossRef]
- Liu, C.; Wang, J.; Li, J.; Luo, R.; Shen, J.; Sun, X.; Han, W.; Wang, L. Controllable synthesis of functional hollow carbon nanostructures with dopamine as precursor for supercapacitors. ACS Appl. Mater. Interface 2015, 7, 18609–18617. [Google Scholar] [CrossRef] [PubMed]
- Gong, W.; Chen, W.; He, J.; Tong, Y.; Liu, C.; Su, L.; Gao, B.; Yang, H.; Zhang, Y.; Zhang, X. Substrate-independent and large-area synthesis of carbon nanotube thin films using zno nanorods as template and dopamine as carbon precursor. Carbon 2015, 83, 275–281. [Google Scholar] [CrossRef]
- Yu, X.; Fan, H.; Liu, Y.; Shi, Z.; Jin, Z. Characterization of carbonized polydopamine nanoparticles suggests ordered supramolecular structure of polydopamine. Langmuir 2014, 30, 5497–5505. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Zhao, C.; Kong, J.; Wu, H.; Zhou, D.; Lu, X. Dopamine-assisted one-pot synthesis of zinc ferrite-embedded porous carbon nanospheres for ultrafast and stable lithium ion batteries. Chem. Commun. 2014, 50, 14597–14600. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Shen, L.; Yin, K.; Ji, J.; Wang, J.; Wang, X.; Zhang, X. Facile synthesis of n-doped carbon-coated li4ti5o12 microspheres using polydopamine as a carbon source for high rate lithium ion batteries. J. Mater. Chem. A 2013, 1, 7270–7276. [Google Scholar] [CrossRef]
- Kong, J.; Yee, W.A.; Yang, L.; Wei, Y.; Phua, S.L.; Ong, H.G.; Ang, J.M.; Li, X.; Lu, X. Highly electrically conductive layered carbon derived from polydopamine and its functions in SnO2-based lithium ion battery anodes. Chem. Commun. 2012, 48, 10316–10318. [Google Scholar] [CrossRef] [PubMed]
- Mallakpour, S.; Hatami, M.; Ensafi, A.A.; Karimi-Maleh, H. Synthesis and characterization of novel dopamine-derivative: Application of modified multi-wall carbon nanotubes paste electrode for electrochemical investigation. Chin. Chem. Lett. 2011, 22, 185–188. [Google Scholar] [CrossRef]
- Liu, R.; Mahurin, S.M.; Li, C.; Unocic, R.R.; Idrobo, J.C.; Gao, H.; Pennycook, S.J.; Dai, S. Dopamine as a carbon source: The controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites. Angew. Chem. Int. Ed. 2011, 50, 6799–6802. [Google Scholar] [CrossRef] [PubMed]
- Bokobza, L.; Bruneel, J.-L.; Couzi, M. Raman spectroscopic investigation of carbon-based materials and their composites. Comparison between carbon nanotubes and carbon black. Chem. Phys. Lett. 2013, 590, 153–159. [Google Scholar] [CrossRef]
- Yin, C.; Tao, C.A.; Cai, F.; Song, C.; Gong, H.; Wang, J. Effects of activation temperature on the deoxygenation, specific surface area and supercapacitor performance of graphene. Carbon 2016, 109, 558–565. [Google Scholar] [CrossRef]
- Tao, C.A.; Zou, X.; Hu, Z.; Liu, H.; Wang, J. Chemically functionalized graphene/polymer nanocomposites as light heating platform. Polym. Compos. 2016, 37, 1350–1358. [Google Scholar] [CrossRef]
- Tao, C.A.; Wang, J.; Qin, S.; Lv, Y.; Long, Y.; Zhu, H.; Jiang, Z. Fabrication of pH-sensitive graphene oxide—drug supramolecular hydrogels as controlled release systems. J. Mater. Chem. 2012, 22, 24856–24861. [Google Scholar] [CrossRef]
- Xie, L.; Sun, G.; Su, F.; Guo, X.; Kong, Q.; Li, X.; Huang, X.; Wan, L.; Song, W.; Li, K.; et al. Hierarchical porous carbon microtubes derived from willow catkins for supercapacitor applications. J. Mater. Chem. A 2016, 4, 1637–1646. [Google Scholar] [CrossRef]
- Chen, J.; Xu, J.; Zhou, S.; Zhao, N.; Wong, C.-P. Nitrogen-doped hierarchically porous carbon foam: A free-standing electrode and mechanical support for high-performance supercapacitors. Nano Energy 2016, 25, 193–202. [Google Scholar] [CrossRef]
Samples | SBET (m2/g) | Vtotal (cm3/g) | Average Pore Size (nm) | N (%) | C (%) | H (%) | Yield (%) |
---|---|---|---|---|---|---|---|
PC-0 | 1599 | 0.71 | 1.78 | 1.196 | 73.03 | 2.679 | 49.7 |
PC-1 | 1605 | 0.68 | 1.69 | 1.261 | 73.27 | 2.563 | 51.4 |
PC-5 | 2593 | 1.67 | 2.58 | 1.423 | 75.73 | 2.507 | 65.7 |
PC-10 | 2026 | 0.90 | 1.77 | 1.429 | 75.48 | 2.309 | 58.2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, H.; Tao, C.-a.; Li, Y.; Chen, X.; Huang, J.; Wang, J. Dopamine Assisted One-Step Pyrolysis of Glucose for the Preparation of Porous Carbon with A High Surface Area. Nanomaterials 2018, 8, 854. https://doi.org/10.3390/nano8100854
Xiao H, Tao C-a, Li Y, Chen X, Huang J, Wang J. Dopamine Assisted One-Step Pyrolysis of Glucose for the Preparation of Porous Carbon with A High Surface Area. Nanomaterials. 2018; 8(10):854. https://doi.org/10.3390/nano8100854
Chicago/Turabian StyleXiao, Hanbo, Cheng-an Tao, Yujiao Li, Xianzhe Chen, Jian Huang, and Jianfang Wang. 2018. "Dopamine Assisted One-Step Pyrolysis of Glucose for the Preparation of Porous Carbon with A High Surface Area" Nanomaterials 8, no. 10: 854. https://doi.org/10.3390/nano8100854
APA StyleXiao, H., Tao, C.-a., Li, Y., Chen, X., Huang, J., & Wang, J. (2018). Dopamine Assisted One-Step Pyrolysis of Glucose for the Preparation of Porous Carbon with A High Surface Area. Nanomaterials, 8(10), 854. https://doi.org/10.3390/nano8100854