Solvothermal Synthesis of a Hollow Micro-Sphere LiFePO4/C Composite with a Porous Interior Structure as a Cathode Material for Lithium Ion Batteries
Abstract
:1. Introduction
2. Results and Discussion
2.1. Microstructure
2.2. Electrochemical Performances
3. Materials and Methods
3.1. Synthesis Procedure
3.2. Characterization
3.3. Electrochemical Performance
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Padhi, A.K.; Nanjundaswamy, K.S.; Goodenough, J.B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 1997, 144, 1188–1194. [Google Scholar] [CrossRef]
- Yamada, A.; Chung, S.C.; Hinokuma, K. Optimized LiFePO4 for lithium battery cathodes. J. Electrochem. Soc. 2001, 148, A224–A229. [Google Scholar] [CrossRef]
- Kang, B.; Ceder, G. Battery materials for ultrafast charging and discharging. Nature 2009, 458, 190–193. [Google Scholar] [CrossRef] [PubMed]
- Padhi, A.K.; Nanjundaswamy, K.S.; Masquelier, C.; Okada, S.; Goodenough, J.B. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J. Electrochem. Soc. 1997, 144, 1609–1613. [Google Scholar] [CrossRef]
- Chung, S.Y.; Bloking, J.T.; Chiang, Y.M. Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater. 2002, 1, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Y.; Hosono, E.; Wang, K.; Zhou, H. The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction metho. Angew. Chem. 2008, 47, 7461–7465. [Google Scholar] [CrossRef] [PubMed]
- Xiang, H.; Zhang, D.; Jin, Y.; Chen, C.; Wu, J.; Wang, H. Hydrothermal synthesis of ultra-thin LiFePO4 platelets for Li-ion batteries. J. Mater. Sci. 2011, 46, 4906–4912. [Google Scholar] [CrossRef]
- Yang, J.; Wang, J.; Wang, D.; Li, X.; Geng, D.; Liang, G.; Gauthier, M.; Li, R.; Sun, X. 3D porous LiFePO4/graphene hybrid cathodes with enhanced performance for Li-ion batteries. J. Power Sources 2012, 208, 340–344. [Google Scholar] [CrossRef]
- Gaberscek, M.; Dominko, R.; Jamnik, J. Is small particle size more important than carbon coating? An example study on LiFePO4 cathodes. Electrochem. Commun. 2007, 9, 2778–2783. [Google Scholar] [CrossRef]
- Julien, C.M.; Mauger, A.; Zaghib, K. Surface effects on electrochemical properties of nano-sized LiFePO4. J. Mater. Chem. 2011, 21, 9955–9968. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, B.; Park, J.; Kim, W.S.; Kim, H.S.; Wang, G.X. Morphology control and electrochemical properties of nanosize LiFePO4 cathode material synthesized bi co-precipitation combined with in situ polymerization. J. Alloys Compd. 2011, 509, 1040–1044. [Google Scholar] [CrossRef]
- Drezen, T.; Kwon, N.H.; Bowen, P.; Teerlinck, I.; Isono, M.; Exnar, I. Effect of particle size on LiMnPO4 cathodes. J. Power Sources 2007, 174, 949–953. [Google Scholar] [CrossRef]
- Dimesso, L.; Forster, C.; Jaegermann, W.; Khanderi, J.P.; Tempel, H.; Popp, A.; Engstler, J.; Schneider, J.J.; Sarapulova, A.; Mikhailova, D.L.; et al. Developments in nanostructured LiMPO4 (M = Fe, Co, Ni, Mn) composites based on three dimensional carbon architecture. Chem. Soc. Rev. 2012, 41, 5068–5080. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sun, X. Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries. Energy Environ. Sci. 2012, 5, 5163–5185. [Google Scholar] [CrossRef]
- Wang, G.X.; Yang, L.; Chen, Y.; Wang, J.Z.; Bewlay, S.; Liu, H.K. An investigation of polypyrrolr-LiFePO4 composite cathode materials for lithium-ion batteries. Electrochim. Acta 2005, 50, 4649–4654. [Google Scholar] [CrossRef]
- Wu, Y.; Wen, Z.; Li, J. Hierarchical carbon-coated LiFePO4 nanoplate microspheres with high electrochemical performance for Li-ion batteries. Adv. Mater. 2011, 23, 1126–1129. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Cao, Q.; Fu, L.J.; Li, C.; Wu, Y.P.; Wu, H.Q. Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries. Electrochem. Commun. 2006, 8, 1553–1557. [Google Scholar] [CrossRef]
- Yang, J.; Bai, Y.; Qing, C.; Zhang, W. Electrochemical performances of Co-doped LiFePO4/C obtained by hydrothermal method. J. Alloys Compd. 2011, 509, 9010–9014. [Google Scholar] [CrossRef]
- Shenouda, A.Y.; Liu, H.K. Studies on electrochemical behavior of zinc-doped LiFePO4 for lithium battery positive electrode. J. Alloys Compd. 2009, 477, 498–503. [Google Scholar] [CrossRef]
- Jin, Y.; Yang, C.P.; Rui, X.H.; Cheng, T.; Chen, C.H. V2O3 modified LiFePO4/C composite with improved electrochemical performance. J. Power Sources 2011, 196, 5623–5630. [Google Scholar] [CrossRef]
- Hu, Y.; Yao, J.; Zhao, Z.; Zhu, M.; Li, Y.; Jin, H.; Zhao, H.; Wang, J. ZnO-doped LiFePO4 cathode material for lithium-ion battery fabricated by hydrothermal method. Mater. Chem. Phys. 2013, 141, 835–841. [Google Scholar] [CrossRef]
- Arico, A.S.; Bruce, P.; Scrosati, B.; Tarascon, J.M.; Schalkwijk, W.V. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Qu, Y.; Guo, R. La0.6Sr0.4CoO3−δ modified LiFePO4/C composite cathodes with improved electrochemical performances. Electrochim. Acta 2012, 67, 152–158. [Google Scholar] [CrossRef]
- Salah, A.A.; Mauger, A.; Zaghib, K.; Goodenough, J.B.; Ravet, N.; Gauthier, M.; Gendron, F.; Julien, C.M. Reduction Fe3+ of impurities in LiFePO4 from pyrolysis of organic precursor used for carbon deposition. J. Electrochem. Soc. 2006, 153, A1692–A1701. [Google Scholar] [CrossRef]
- Li, H.; Zhou, H. Enhancing the performances of Li-ion batteries by carbon-coating: Present and future. Chem. Commun. 2012, 48, 1201–1217. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.S.; Myung, S.T.; Sun, Y.K. Microwave synthesis of spherical Li[Ni0.4Co0.2Mn0.4]O2 powders as a positive electrode material for lithium batteries. Chem. Mater. 2007, 19, 2727–2729. [Google Scholar] [CrossRef]
- Park, Y.; Roh, K.C.; Shin, W.; Lee, J.W. Novel morphology-controlled synthesis of homogeneous LiFePO4 for Li-ion batteries using an organic phosphate source. RSC Adv. 2013, 3, 14263–14266. [Google Scholar] [CrossRef]
- Park, Y.; Shin, W.; Lee, J.W. Synthesis of hollow spherical LiFePO4 by a novel route using organic phosphate. CrystEngComm 2012, 14, 4612–4617. [Google Scholar] [CrossRef]
- Yang, S.; Hu, M.; Xi, L.; Ma, R.; Dong, Y.; Chung, C.Y. Solvothermal synthesis of monodisperse LiFePO4 micro hollow spheres as high performance cathode material for lithium ion batteries. ACS Appl. Mater. Interfaces 2013, 5, 8961–8967. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Bruce, P.G. Mesoporous LiFePO4 as a cathode material for rechargeable lithium ion batteries. Electrochem. Commun. 2012, 17, 60–62. [Google Scholar] [CrossRef]
- Huang, Z.D.; Oh, S.W.; He, Y.B.; Zhang, B.; Yang, Y.; Mai, Y.W.; Kim, J.K. Porous C-LiFePO4-C composite microspheres with a hierarchical conductive architecture as a high performance cathode for lithium ion batteries. J. Mater. Chem. 2012, 22, 19643–19645. [Google Scholar] [CrossRef]
- Lee, M.H.; Kim, J.Y.; Song, H.K. A hollow sphere secondary structure of LiFePO4 nanoparticles. Chem. Commun. 2010, 46, 6795–6797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.H.; Kim, T.H.; Kim, Y.S.; Park, J.S.; Song, H.K. Optimized evolution of a secondary structure of LiFePO4: Balancing between shape and impurities. J. Mater. Chem. 2012, 22, 8228–8234. [Google Scholar] [CrossRef]
- Cho, M.Y.; Kim, K.B.; Lee, J.W.; Kim, H.; Kim, H.; Kang, K.; Roh, K.C. Defect-free solvothermally assisted synthesis of microspherical mesoporous LiFePO4/C. RSC Adv. 2013, 3, 3421–3427. [Google Scholar] [CrossRef]
- Sun, C.; Rajasekhara, S.; Goodenough, J.B.; Zhou, F. Monodisperse porous LiFePO4 microspheres for a high power Li-ion battery cathode. J. Am. Chem. Soc. 2011, 133, 2132–2135. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Wu, X.L.; Yang, C.P.; Lee, J.S.; Kim, J.; Guo, Y.G. Self-assembled LiFePO4/C nano/microspheres by using phytic acid as phosphorus source. J. Phys. Chem. C 2012, 116, 5019–5024. [Google Scholar] [CrossRef]
- Yao, J.; Tjandra, W.; Chen, Y.Z.; Tam, K.C.; Ma, J.; Soh, B. Hydroxyapatite nanostructure material derived using cationic surfactant as a template. J. Mater. Chem. 2003, 13, 3053–3057. [Google Scholar] [CrossRef]
- Lee, M.H.; Kim, T.H.; Kim, Y.S.; Song, H.K. Precipitation revisited: Shape control of LiFePO4 nanoparticles by combinatorial precipitation. J. Phys. Chem. C 2011, 115, 12255–12259. [Google Scholar] [CrossRef]
- Belharouak, I.; Johnson, C.; Amine, K. Synthesis and electrochemical analysis of vapor-deposited carbon-coated LiFePO4. Electrochem. Commun. 2005, 7, 983–988. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, W.; Li, P.; Fu, Y.; Ma, X. A simple solvothermal route to synthesize graphene-modified LiFePO4 cathode for high power lithium ion batteries. J. Power Sources 2012, 210, 47–53. [Google Scholar] [CrossRef]
- Dathar, G.K. P.; Sheppard, D.; Stevenson, K.J.; Henkelman, G. Calculations of Li-ion diffusion in olivine phosphates. Chem. Mater. 2011, 23, 4032–4037. [Google Scholar] [CrossRef]
- Jin, B.; Jin, E.M.; Park, K.H.; Gu, H.B. Electrochemical properties of LiFePO4-multiwalled carbon nanotubes composite cathode materials for lithium polymer battery. Electrochem. Commun. 2008, 10, 1537–1540. [Google Scholar] [CrossRef]
- Meng, H.; Zhou, P.; Zhang, Z.; Tao, Z.; Chen, J. Preparation and characterization of LiNi0.8Co0.15Al0.05O2 with high cycling stability by using AlO2− as Al source. Ceram. Int. 2017, 43, 3885–3892. [Google Scholar] [CrossRef]
- Bi, J.; Zhang, T.; Wang, K.; Zhong, B.; Luo, G. Controllable synthesis of Li3PO4 hollow nanospheres for the preparation of high performance LiFePO4 cathode material. Particuology 2016, 24, 142–150. [Google Scholar] [CrossRef]
- Xiao, P.; Lai, M.O.; Lu, L. Hollow microspherical LiFePO4/C synthesized from a novel multidentate phosphonate complexing agent. RSC Adv. 2013, 3, 5127–5130. [Google Scholar] [CrossRef]
Surfactant | Size/Primary Particle Size | Initial Capacity (mAh g−1, 0.1 C) | Cyclic Performance (mAh g−1, 10 C) | Reference |
---|---|---|---|---|
CTAB | 1~3 /100 nm | 163 | 118 | this work |
- | 200 nm | 151 | 124 | [44] |
TRITON H-66 | 30 /100–200 nm | - | - | [28] |
TRITON H-66 | 2 /100–400 nm | 139 | 96 | [27] |
- | 2 | 158 | 101, 20 C, 2000th | [29] |
CTAB | 240 nm/30–50 nm | 135 | 103 | [38] |
EDTMP | 1–5 /20 nm | 166 | 97, 20 C/80, 30 C | [45] |
CTAB | 420 nm | 140 | 133 | [32] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhang, J.; Li, Y.; Hu, Y.; Li, W.; Zhu, M.; Hu, P.; Chou, S.; Wang, G. Solvothermal Synthesis of a Hollow Micro-Sphere LiFePO4/C Composite with a Porous Interior Structure as a Cathode Material for Lithium Ion Batteries. Nanomaterials 2017, 7, 368. https://doi.org/10.3390/nano7110368
Liu Y, Zhang J, Li Y, Hu Y, Li W, Zhu M, Hu P, Chou S, Wang G. Solvothermal Synthesis of a Hollow Micro-Sphere LiFePO4/C Composite with a Porous Interior Structure as a Cathode Material for Lithium Ion Batteries. Nanomaterials. 2017; 7(11):368. https://doi.org/10.3390/nano7110368
Chicago/Turabian StyleLiu, Yang, Jieyu Zhang, Ying Li, Yemin Hu, Wenxian Li, Mingyuan Zhu, Pengfei Hu, Shulei Chou, and Guoxiu Wang. 2017. "Solvothermal Synthesis of a Hollow Micro-Sphere LiFePO4/C Composite with a Porous Interior Structure as a Cathode Material for Lithium Ion Batteries" Nanomaterials 7, no. 11: 368. https://doi.org/10.3390/nano7110368
APA StyleLiu, Y., Zhang, J., Li, Y., Hu, Y., Li, W., Zhu, M., Hu, P., Chou, S., & Wang, G. (2017). Solvothermal Synthesis of a Hollow Micro-Sphere LiFePO4/C Composite with a Porous Interior Structure as a Cathode Material for Lithium Ion Batteries. Nanomaterials, 7(11), 368. https://doi.org/10.3390/nano7110368