Impact of 3–Aminopropyltriethoxysilane-Coated Iron Oxide Nanoparticles on Menaquinone-7 Production Using B. subtilis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of Iron Oxide Nanoparticles Coated with APTES
2.2. Interaction of B. subtilis Cells with IONs@APTES
2.3. Effect if IONs@APTES on MK–7 Production
2.4. Effect of IONs@APTES on B. subtilis Growth
2.5. Effect of IONs@APTES on MK–7 Yield
2.6. Monitoring the Production of MK–7 in the Presence f IONs@APTES
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Iron Oxide Nanoparticles Surface Functionalized with APTES
3.3. Characterization of Iron Oxide Nanoparticles Coated with APTES
3.4. Growth and MK–7 Production of B. Subtilis Cells in the Presence of IONs@APTES
3.5. MK–7 Extraction
3.6. Menaquinone Analysis by High-Performance Liquid Chromatography (HPLC)
3.7. Sample Preparation for SEM
3.8. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tsukamoto, Y.; Ichise, H.; Kakuda, H.; Yamaguchi, M. Intake of Fermented Soybean (Natto) Increases Circulating Vitamin K2 (Menaquinone-7) and γ-Carboxylated Osteocalcin Concentration in Normal Individuals. J. Bone Miner. Metab. 2000, 18, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Cranenburg, E.C.; Schurgers, L.J.; Vermeer, C. Vitamin K: The Coagulation Vitamin that Became Omnipotent. Thromb. Haemost. 2007, 98, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Knapen, M.; Schurgers, L.; Vermeer, C. Vitamin K2 Supplementation Improves Hip Bone Geometry and Bone Strength Indices in Postmenopausal Women. Osteoporos. Int. 2007, 18, 963–972. [Google Scholar] [CrossRef] [PubMed]
- Knapen, M.; Braam, L.A.; Drummen, N.E.; Bekers, O.; Hoeks, A.; Vermeer, C. Menaquinone-7 Supplementation Improves Arterial Stiffness in Healthy Postmenopausal Women: Double-Blind Randomized Clinical Trial. Thromb. Haemost. 2015, 113, 1135–1144. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Yamada, Y.; Ohtani, Y.; Mitsui, N.; Murasawa, H.; Araki, S. Production of Menaquinone (Vitamin K 2)-7 by Bacillus subtilis. J. Biosci. Bioeng. 2001, 91, 16–20. [Google Scholar] [CrossRef]
- Berenjian, A.; Mahanama, R.; Kavanagh, J.; Dehghani, F. Vitamin K Series: Current Status and Future Prospects. Crit. Rev. Biotechnol. 2015, 35, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Ebrahiminezhad, A.; Varma, V.; Yang, S.; Ghasemi, Y.; Berenjian, A. Synthesis and Application of Amine Functionalized Iron Oxide Nanoparticles on Menaquinone-7 Fermentation: A Step towards Process Intensification. Nanomaterials 2016, 6, 1. [Google Scholar] [CrossRef] [PubMed]
- Sirkar, K.K.; Luo, R.G.; Xu, Y.; Dai, X.-P. Method and Apparatus for Isolation and Purification of Biomolecules. U.S. Patent 6,986,847 B2, 17 January 2006. [Google Scholar]
- Ebrahiminezhad, A.; Varma, V.; Yang, S.; Berenjian, A. Magnetic Immobilization of Bacillus subtilis natto Cells for Menaquinone-7 Fermentation. Appl. Microbiol. Biotechnol. 2016, 100, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Ansari, F.; Grigoriev, P.; Libor, S.; Tothill, I.E.; Ramsden, J.J. DBT Degradation Enhancement by Decorating Rhodococcus erythropolis IGST8 with Magnetic Fe3O4 Nanoparticles. Biotechnol. Bioeng. 2009, 102, 1505–1512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranmadugala, D.; Ebrahiminezhad, A.; Manley-Harris, M.; Ghasemi, Y.; Berenjian, A. Iron Oxide Nanoparticles in Modern Microbiology and Biotechnology. Crit. Rev. Microbiol. 2017, 43, 493–507. [Google Scholar]
- Ranmadugala, D.; Ebrahiminezhad, A.; Manley-Harris, M.; Ghasemi, Y.; Berenjian, A. The Effect of Iron Oxide Nanoparticles on Bacillus subtilis Biofilm, Growth and Viability. Process Biochem. 2017, 62, 231–240. [Google Scholar] [CrossRef]
- Ebrahiminezhad, A.; Rasoul-Amini, S.; Kouhpayeh, A.; Davaran, S.; Barar, J.; Ghasemi, Y. Impacts of Amine Functionalized Iron Oxide Nanoparticles on HepG2 Cell Line. Curr. Nanosci. 2015, 11, 113–119. [Google Scholar] [CrossRef]
- Ebrahiminezhad, A.; Ghasemi, Y.; Rasoul-Amini, S.; Barar, J.; Davaran, S. Impact of amino-acid coating on the synthesis and characteristics of iron-oxide nanoparticles (IONs). Bull. Korean Chem. Soc. 2012, 33, 3957–3962. [Google Scholar] [CrossRef]
- Ebrahiminezhad, A.; Najafipour, S.; Kouhpayeh, A.; Berenjian, A.; Rasoul-Amini, S.; Ghasemi, Y. Facile Fabrication of Uniform Hollow Silica Microspheres Using a Novel Biological Template. Colloids Surf. B 2014, 118, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Ebrahiminezhad, A.; Bagheri, M.; Taghizadeh, S.-M.; Berenjian, A.; Ghasemi, Y. Biomimetic Synthesis of Silver Nanoparticles Using Microalgal Secretory Carbohydrates as a Novel Anticancer and Antimicrobial. Adv. Nat. Sci. Nanosci. Nanotechnol. 2016, 7, 1–8. [Google Scholar] [CrossRef]
- Ebrahiminezhad, A.; Barzegar, Y.; Ghasemi, Y.; Berenjian, A. Green Synthesis and Characterization of Silver Nanoparticles Using Alcea rosea flower Extract as a New Generation of Antimicrobials. Chem. Ind. Biochem. Eng. Q. 2017, 23, 31–37. [Google Scholar] [CrossRef]
- Ebrahiminezhad, A.; Berenjian, A.; Ghasemi, Y. Template Free Synthesis of Natural Carbohydrates Functionalised Fluorescent Silver Nanoclusters. IET Nanobiotechnol. 2016, 10, 120–123. [Google Scholar] [CrossRef] [PubMed]
- Ebrahiminezhad, A.; Davaran, S.; Rasoul-Amini, S.; Barar, J.; Moghadam, M.; Ghasemi, Y. Synthesis, Characterization and Anti-Listeria Monocytogenes Effect of Amino Acid Coated Magnetite Nanoparticles. Curr. Nanosci. 2012, 8, 868–874. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, X.-M.; Xue, Z.-L.; Hu, L.-X.; Zhang, N.-J.; Wang, Z.; Yang, J.-W.; Cheng, Q.; Chen, M.-H.; Zhang, Z.-Z. The Change of the State of Cell Membrane can Enhance the Synthesis of Menaquinone in Escherichia coli. World J. Microbiol. Biotechnol. 2017, 33, 52. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Yamada, Y.; Ohtani, Y.; Mitsui, N.; Murasawa, H.; Araki, S. Efficient Production of Menaquinone (vitamin K2) by a Menadione-Resistant Mutant of Bacillus subtilis. J. Ind. Microbiol. Biotechnol. 2001, 26, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Liu, H.; Wang, L.; Dai, J.; Liu, Y.; Liu, H.; Zhao, G.; Wang, P.; Zheng, Z. Enhanced Production of Vitamin K2 from Bacillus subtilis (natto) by Mutation and Optimization of the Fermentation Medium. Braz. Arch. Biol. Technol. 2014, 57, 606–612. [Google Scholar]
- Luo, M.-M.; Ren, L.-J.; Chen, S.-L.; Ji, X.-J.; Huang, H. Effect of Media Components and Morphology of Bacillus natto on Menaquinone-7 Synthesis in Submerged Fermentation. Biotechnol. Bioprocess Eng. 2016, 21, 777–786. [Google Scholar] [CrossRef]
- Ebrahiminezhad, A.; Ghasemi, Y.; Rasoul-Amini, S.; Barar, J.; Davaran, S. Preparation of Novel Magnetic Fluorescent Nanoparticles Using Amino Acids. Colloids Surf. B 2013, 102, 534–539. [Google Scholar] [CrossRef] [PubMed]
- Ebrahiminezhad, A.; Rasoul-Amini, S.; Davaran, S.; Barar, J.; Ghasemi, Y. Impacts of Iron Oxide Nanoparticles on the Invasion Power of Listeria monocytogenes. Curr. Nanosci. 2014, 10, 382–388. [Google Scholar] [CrossRef]
- Gholami, A.; Rasoul-Amini, S.; Ebrahiminezhad, A.; Abootalebi, N.; Niroumand, U.; Ebrahimi, N.; Ghasemi, Y. Magnetic Properties and Antimicrobial Effect of Amino and Lipoamino Acid Coated Iron Oxide Nanoparticles. Minerva Biotechnol. 2016, 28, 177–186. [Google Scholar]
- Gholami, A.; Rasoul-amini, S.; Ebrahiminezhad, A.; Seradj, S.H.; Ghasemi, Y. Lipoamino Acid Coated Superparamagnetic Iron Oxide Nanoparticles Concentration and Time Dependently Enhanced Growth of Human Hepatocarcinoma Cell Line (Hep-G2). J. Nanomater. 2015, 16, 150. [Google Scholar] [CrossRef]
- Ebrahimi, N.; Rasoul-Amini, S.; Ebrahiminezhad, A.; Ghasemi, Y.; Gholami, A.; Seradj, H. Comparative Study on Characteristics and Cytotoxicity of Bifunctional Magnetic-Silver Nanostructures: Synthesized Using Three Different Reducing Agents. Acta Metall. Sin. 2016, 29, 326–334. [Google Scholar] [CrossRef]
- Ebrahimi, N.; Rasoul-Amini, S.; Niazi, A.; Erfani, N.; Moghadam, A.; Ebrahiminezhad, A.; Ghasemi, Y. Cytotoxic and Apoptotic Effects of Three Types of Silver-Iron Oxide Binary Hybrid Nanoparticles. Curr. Pharm. Biotechnol. 2016, 17, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Berenjian, A.; Mahanama, R.; Talbot, A.; Biffin, R.; Regtop, H.; Valtchev, P.; Kavanagh, J.; Dehghani, F. Efficient Media for High Menaquinone-7 Production: Response Surface Methodology Approach. New Biotechnol. 2011, 28, 665–672. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ranmadugala, D.; Ebrahiminezhad, A.; Manley-Harris, M.; Ghasemi, Y.; Berenjian, A. Impact of 3–Aminopropyltriethoxysilane-Coated Iron Oxide Nanoparticles on Menaquinone-7 Production Using B. subtilis. Nanomaterials 2017, 7, 350. https://doi.org/10.3390/nano7110350
Ranmadugala D, Ebrahiminezhad A, Manley-Harris M, Ghasemi Y, Berenjian A. Impact of 3–Aminopropyltriethoxysilane-Coated Iron Oxide Nanoparticles on Menaquinone-7 Production Using B. subtilis. Nanomaterials. 2017; 7(11):350. https://doi.org/10.3390/nano7110350
Chicago/Turabian StyleRanmadugala, Dinali, Alireza Ebrahiminezhad, Merilyn Manley-Harris, Younes Ghasemi, and Aydin Berenjian. 2017. "Impact of 3–Aminopropyltriethoxysilane-Coated Iron Oxide Nanoparticles on Menaquinone-7 Production Using B. subtilis" Nanomaterials 7, no. 11: 350. https://doi.org/10.3390/nano7110350
APA StyleRanmadugala, D., Ebrahiminezhad, A., Manley-Harris, M., Ghasemi, Y., & Berenjian, A. (2017). Impact of 3–Aminopropyltriethoxysilane-Coated Iron Oxide Nanoparticles on Menaquinone-7 Production Using B. subtilis. Nanomaterials, 7(11), 350. https://doi.org/10.3390/nano7110350