High Performance Li4Ti5O12/Si Composite Anodes for Li-Ion Batteries
Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174, USA
*
Author to whom correspondence should be addressed.
Academic Editor: Xueliang (Andy) Sun
Nanomaterials 2015, 5(3), 1469-1480; https://doi.org/10.3390/nano5031469
Received: 6 July 2015 / Revised: 18 August 2015 / Accepted: 26 August 2015 / Published: 28 August 2015
(This article belongs to the Special Issue Nanostructured Materials for Li-Ion Batteries and Beyond)
Improving the energy capacity of spinel Li4Ti5O12 (LTO) is very important to utilize it as a high-performance Li-ion battery (LIB) electrode. In this work, LTO/Si composites with different weight ratios were prepared and tested as anodes. The anodic and cathodic peaks from both LTO and silicon were apparent in the composites, indicating that each component was active upon Li+ insertion and extraction. The composites with higher Si contents (LTO:Si = 35:35) exhibited superior specific capacity (1004 mAh·g−1) at lower current densities (0.22 A·g−1) but the capacity deteriorated at higher current densities. On the other hand, the electrodes with moderate Si contents (LTO:Si = 50:20) were able to deliver stable capacity (100 mAh·g−1) with good cycling performance, even at a very high current density of 7 A·g−1. The improvement in specific capacity and rate performance was a direct result of the synergy between LTO and Si; the former can alleviate the stresses from volumetric changes in Si upon cycling, while Si can add to the capacity of the composite. Therefore, it has been demonstrated that the addition of Si and concentration optimization is an easy yet an effective way to produce high performance LTO-based electrodes for lithium-ion batteries.
View Full-Text
Keywords:
: lithium titanate; silicon; rate capability; energy capacity; composite
▼
Show Figures
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
MDPI and ACS Style
Chen, C.; Agrawal, R.; Wang, C. High Performance Li4Ti5O12/Si Composite Anodes for Li-Ion Batteries. Nanomaterials 2015, 5, 1469-1480. https://doi.org/10.3390/nano5031469
AMA Style
Chen C, Agrawal R, Wang C. High Performance Li4Ti5O12/Si Composite Anodes for Li-Ion Batteries. Nanomaterials. 2015; 5(3):1469-1480. https://doi.org/10.3390/nano5031469
Chicago/Turabian StyleChen, Chunhui; Agrawal, Richa; Wang, Chunlei. 2015. "High Performance Li4Ti5O12/Si Composite Anodes for Li-Ion Batteries" Nanomaterials 5, no. 3: 1469-1480. https://doi.org/10.3390/nano5031469
Find Other Styles
Search more from Scilit