Lanthanide-Doped Cs2ZrCl6 Perovskite Nanocrystals for Multimode Anti-Counterfeiting Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Synthesis of Cs2ZrCl6 and Ln3+-Doped Cs2ZrCl6 Nanocrystals
2.3. Materials’ Characterizations
2.4. Fabrication of Security Pattern
3. Results and Discussion
3.1. Structural and Morphological Properties of Tb3+-Doped Cs2ZrCl6 NCs
3.2. Optical Properties of Ln3+-Doped Cs2ZrCl6 NCs
3.3. Anti-Counterfeit Application of Ln3+-Doped Cs2ZrCl6 NCs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| PL | Photoluminescence. |
| PLE | Photoluminescence. |
| UV | Ultraviolet. |
| NCs | Nanocrystals. |
| MCs | Microcrystals. |
| LHP | Lead halide perovskites. |
| STEs | Self-trapping excitons. |
| TEM | Transmission electron microscopy. |
| HRTEM | High-resolution transmission electron microscopy. |
| XRD | X-ray diffraction. |
| EDS | Energy-dispersive spectrometer. |
| XPS | X-ray photoelectron spectroscopy. |
| SEM | Scanning Electron Microscope. |
| ET | Energy transfer. |
| PDMS | Polydimethylsiloxane. |
References
- Ying, W.; Nie, J.; Fan, X.; Xu, S.; Gu, J.; Liu, S. Dual-Wavelength Responsive Broad Range Multicolor Upconversion Luminescence for High-Capacity Photonic Barcodes. Adv. Opt. Mater. 2021, 9, 2100197. [Google Scholar] [CrossRef]
- Ding, M.; Dong, B.; Lu, Y.; Yang, X.; Yuan, Y.; Bai, W.; Wu, S.; Ji, Z.; Lu, C.; Zhang, K.; et al. Energy Manipulation in Lanthanide-Doped Core–Shell Nanoparticles for Tunable Dual-Mode Luminescence toward Advanced Anti-Counterfeiting. Adv. Mater. 2020, 32, 2002121. [Google Scholar] [CrossRef]
- Li, X.; Wang, H.; Chen, J.; Tian, Y.; Xiang, C.; Liu, W.; Zhou, Z.; Cui, J.; Chen, X. Visible-Light-Driven Photoswitchable Fluorescent Polymers for Photorewritable Pattern, Anti-Counterfeiting, and Information Encryption. Adv. Funct. Mater. 2023, 33, 2303765. [Google Scholar] [CrossRef]
- Zheng, Y.; Jiang, C.; Ng, S.H.; Lu, Y.; Han, F.; Bach, U.; Gooding, J.J. Unclonable Plasmonic Security Labels Achieved by Shadow-Mask-Lithography-Assisted Self-Assembly. Adv. Mater. 2016, 28, 2330–2336. [Google Scholar] [CrossRef]
- Wang, H.Q.; Tang, Y.; Huang, Z.Y.; Wang, F.Z.; Qiu, P.F.; Zhang, X.; Li, C.H.; Li, Q. A Dual-Responsive Liquid Crystal Elastomer for Multi-Level Encryption and Transient Information Display. Angew. Chem. Int. Ed. 2023, 62, e202313728. [Google Scholar] [CrossRef]
- Lou, D.; Sun, Y.; Li, J.; Zheng, Y.; Zhou, Z.; Yang, J.; Pan, C.; Zheng, Z.; Chen, X.; Liu, W. Double Lock Label Based on Thermosensitive Polymer Hydrogels for Information Camouflage and Multilevel Encryption. Angew. Chem. Int. Ed. 2022, 61, e202117066. [Google Scholar] [CrossRef]
- Chen, R.; Feng, D.; Chen, G.; Chen, X.; Hong, W. Re-Printable Chiral Photonic Paper with Invisible Patterns and Tunable Wettability. Adv. Funct. Mater. 2021, 31, 2009916. [Google Scholar] [CrossRef]
- Zuo, M.; Zou, S.; Gao, Y.; Zhou, D.; Zhang, K.; Li, X.; Ma, H.; Li, B.; Huang, W. A Spatiotemporal Cascade Platform for Multidimensional Information Encryption and Anti-Counterfeiting Mechanisms. Adv. Opt. Mater. 2024, 12, 2302146. [Google Scholar] [CrossRef]
- He, Z.; Liu, Z.; Liu, B.; Wang, K.; Dong, X.; Zhang, Z.; Chen, C.; Wang, M.; Liu, J.; Huang, W. Thermally-induced phase fusion and color switching in ionogels for multilevel information encryption. Chem. Eng. J. 2024, 479, 147544. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, N.; Tian, H.; Guo, J.; Wei, Y.; Chen, H.; Miao, Y.; Zou, W.; Pan, K.; He, Y.; et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 2018, 562, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.; Xing, J.; Quan, L.N.; de Arquer, F.P.G.; Gong, X.; Lu, J.; Xie, L.; Zhao, W.; Zhang, D.; Yan, C.; et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 2018, 562, 245–248. [Google Scholar] [CrossRef]
- Veldhuis, S.A.; Boix, P.P.; Yantara, N.; Li, M.; Sum, T.C.; Mathews, N.; Mhaisalkar, S.G. Perovskite Materials for Light-Emitting Diodes and Lasers. Adv. Mater. 2016, 28, 6804–6834. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Wang, J.-X.; Li, Y.; Huang, H.; Wang, J.; Shi, T.; Deng, Y.; Yuan, Q.; He, R.; Chu, P.K.; et al. Multilevel Information Encryption Based on Thermochromic Perovskite Microcapsules via Orthogonal Photic and Thermal Stimuli Responses. ACS Nano 2024, 18, 10874–10884. [Google Scholar] [CrossRef]
- Shi, L.; Meng, L.; Jiang, F.; Ge, Y.; Li, F.; Wu, X.G.; Zhong, H. In Situ Inkjet Printing Strategy for Fabricating Perovskite Quantum Dot Patterns. Adv. Funct. Mater. 2019, 29, 1903648. [Google Scholar] [CrossRef]
- Chen, M.; Hu, S.; Zhou, Z.; Huang, N.; Lee, S.; Zhang, Y.; Cheng, R.; Yang, J.; Xu, Z.; Liu, Y.; et al. Three-Dimensional Perovskite Nanopixels for Ultrahigh-Resolution Color Displays and Multilevel Anticounterfeiting. Nano Lett. 2021, 21, 5186–5194. [Google Scholar] [CrossRef]
- Ma, C.; Zhang, M.; Zhang, J.; Liao, J.; Sun, H.; Ji, D.; Pang, R.; Zhang, H.; Liu, J.; Liu, S. Highly Luminescent and Stable Perovskite Quantum Dots Films for Light-Emitting Devices and Information Encryption. Adv. Funct. Mater. 2024, 34, 2316717. [Google Scholar] [CrossRef]
- Peng, M.; Zhang, F.; Tian, L.; You, L.; Wu, J.; Wen, N.; Zhang, Y.; Wu, Y.; Gan, F.; Yu, H.; et al. Modified Fabrication of Perovskite-Based Composites and Its Exploration in Printable Humidity Sensors. Polymers 2022, 14, 4354. [Google Scholar] [CrossRef]
- Akkerman, Q.A.; Rainò, G.; Kovalenko, M.V.; Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 2018, 17, 394–405. [Google Scholar] [CrossRef]
- Infante, I.; Manna, L. Are There Good Alternatives to Lead Halide Perovskite Nanocrystals? Nano Lett. 2020, 21, 6–9. [Google Scholar] [CrossRef]
- Sun, J.; Yang, J.; Lee, J.I.; Cho, J.H.; Kang, M.S. Lead-Free Perovskite Nanocrystals for Light-Emitting Devices. J. Phys. Chem. Lett. 2018, 9, 1573–1583. [Google Scholar] [CrossRef]
- Fan, Q.; Biesold-McGee, G.V.; Ma, J.; Xu, Q.; Pan, S.; Peng, J.; Lin, Z. Lead-Free Halide Perovskite Nanocrystals: Crystal Structures, Synthesis, Stabilities, and Optical Properties. Angew. Chem. Int. Ed. 2019, 59, 1030–1046. [Google Scholar] [CrossRef]
- Tang, H.; Xu, Y.; Hu, X.; Hu, Q.; Chen, T.; Jiang, W.; Wang, L.; Jiang, W. Lead-Free Halide Double Perovskite Nanocrystals for Light-Emitting Applications: Strategies for Boosting Efficiency and Stability. Adv. Sci. 2021, 8, 2004118. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yang, B.; Chen, J.; Wei, D.; Zheng, D.; Kong, Q.; Deng, W.; Han, K. Efficient Thermally Activated Delayed Fluorescence from All-Inorganic Cesium Zirconium Halide Perovskite Nanocrystals. Angew. Chem. Int. Ed. 2020, 59, 21925–21929. [Google Scholar] [CrossRef]
- Abfalterer, A.; Shamsi, J.; Kubicki, D.J.; Savory, C.N.; Xiao, J.; Divitini, G.; Li, W.; Macpherson, S.; Gałkowski, K.; MacManus-Driscoll, J.L.; et al. Colloidal Synthesis and Optical Properties of Perovskite-Inspired Cesium Zirconium Halide Nanocrystals. ACS Mater. Lett. 2020, 2, 1644–1652. [Google Scholar] [CrossRef]
- Stroyuk, O.; Raievska, O.; Hauch, J.; Brabec, C.J. Doping/Alloying Pathways to Lead-Free Halide Perovskites with Ultimate Photoluminescence Quantum Yields. Angew. Chem. Int. Ed. 2023, 62, e202212668. [Google Scholar] [CrossRef]
- Lu, C.-H.; Biesold-McGee, G.V.; Liu, Y.; Kang, Z.; Lin, Z. Doping and ion substitution in colloidal metal halide perovskite nanocrystals. Chem. Soc. Rev. 2020, 49, 4953–5007. [Google Scholar] [CrossRef]
- Pan, G.; Bai, X.; Yang, D.; Chen, X.; Jing, P.; Qu, S.; Zhang, L.; Zhou, D.; Zhu, J.; Xu, W.; et al. Doping Lanthanide into Perovskite Nanocrystals: Highly Improved and Expanded Optical Properties. Nano Lett. 2017, 17, 8005–8011. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yang, B.; Chen, J.; Zheng, D.; Tang, Z.; Deng, W.; Han, K. Colloidal Synthesis and Tunable Multicolor Emission of Vacancy-Ordered Cs2HfCl6 Perovskite Nanocrystals. Laser Photonics Rev. 2021, 16, 2100439. [Google Scholar] [CrossRef]
- Adhikari, M.; Shrivastava, N.; McClain, S.T.; Adhikari, C.M.; Guzelturk, B.; Khanal, R.; Gautam, B.; Luo, Z. Luminescence from Self-Trapped Excitons and Energy Transfers in Vacancy-Ordered Hexagonal Halide Perovskite Cs2HfF6 Doped with Rare Earths for Radiation Detection. Adv. Opt. Mater. 2022, 10, 2201374. [Google Scholar] [CrossRef]
- Fang, C.; Yang, J.; Zhou, G.; Zhang, Z.; Mao, Y.; Yun, X.; Liu, L.; Xu, D.; Li, X.; Zhou, J. Energy transfer from self-trapped excitons to rare earth ions in Cs2ZrCl6 perovskite variants. J. Mater. Chem. C 2023, 11, 1095–1102. [Google Scholar] [CrossRef]
- Liu, Y.; Yun, R.; Yang, H.; Sun, W.; Li, Y.; Lu, H.; Zhang, L.; Li, X. Lattice doping of lanthanide ions in Cs2ZrCl6 nanocrystals enabling phase transition and tunable photoluminescence. Mater. Horiz. 2024, 11, 5341–5351. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Han, K.; Li, Z.; Yue, H.; Fu, X.; Wang, X.; Xia, Z.; Song, S.; Feng, J.; Zhang, H. Multiple Energy Transfer Channels in Rare Earth Doped Multi-Exciton Emissive Perovskites. Adv. Sci. 2024, 11, 2307354. [Google Scholar] [CrossRef]
- Ju, M.-G.; Chen, M.; Zhou, Y.; Garces, H.F.; Dai, J.; Ma, L.; Padture, N.P.; Zeng, X.C. Earth-Abundant Nontoxic Titanium(IV)-based Vacancy-Ordered Double Perovskite Halides with Tunable 1.0 to 1.8 eV Bandgaps for Photovoltaic Applications. ACS Energy Lett. 2018, 3, 297–304. [Google Scholar] [CrossRef]
- Chen, Q.; Ma, X.; Dong, G.; Yan, H. Mechanochemical synthesis of Sb3+-doped Cs2ZrCl6 double perovskites for excitation-wavelength-responsive trimodal luminescence and high-level anti-counterfeiting. RSC Adv. 2025, 15, 26800–26806. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Rong, X.; Li, M.; Molokeev, M.S.; Zhao, J.; Xia, Z. Incorporating Rare-Earth Terbium(III) Ions into Cs2AgInCl6:Bi Nanocrystals toward Tunable Photoluminescence. Angew. Chem. Int. Ed. 2020, 59, 11634–11640. [Google Scholar] [CrossRef]
- Cai, T.; Wang, J.; Li, W.; Hills-Kimball, K.; Yang, H.; Nagaoka, Y.; Yuan, Y.; Zia, R.; Chen, O. Mn2+/Yb3+ Codoped CsPbCl3 Perovskite Nanocrystals with Triple-Wavelength Emission for Luminescent Solar Concentrators. Adv. Sci. 2020, 7, 2001317. [Google Scholar] [CrossRef]
- Liu, M.; Zhong, G.; Yin, Y.; Miao, J.; Li, K.; Wang, C.; Xu, X.; Shen, C.; Meng, H. Aluminum-Doped Cesium Lead Bromide Perovskite Nanocrystals with Stable Blue Photoluminescence Used for Display Backlight. Adv. Sci. 2017, 4, 1700335. [Google Scholar] [CrossRef]
- Donker, H.; Smit, W.M.A.; Blasse, G. On the luminescence of Te4+ in A2ZrCl6 (A = Cs, Rb) and A2ZrCl6 (A = Cs, Rb, K). J. Phys. Chem. Solids 1989, 50, 603–609. [Google Scholar] [CrossRef]
- Xiong, G.; Yuan, L.; Jin, Y.; Wu, H.; Li, Z.; Qu, B.; Ju, G.; Chen, L.; Yang, S.; Hu, Y. Aliovalent Doping and Surface Grafting Enable Efficient and Stable Lead-Free Blue-Emitting Perovskite Derivative. Adv. Opt. Mater. 2020, 8, 2000779. [Google Scholar] [CrossRef]
- Saeki, K.; Fujimoto, Y.; Koshimizu, M.; Yanagida, T.; Asai, K. Comparative study of scintillation properties of Cs2HfCl6 and Cs2ZrCl6. Appl. Phys. Express 2016, 9, 042602. [Google Scholar] [CrossRef]
- Burger, A.; Rowe, E.; Groza, M.; Morales Figueroa, K.; Cherepy, N.J.; Beck, P.R.; Hunter, S.; Payne, S.A. Cesium hafnium chloride: A high light yield, non-hygroscopic cubic crystal scintillator for gamma spectroscopy. Appl. Phys. Lett. 2015, 107, 143505. [Google Scholar] [CrossRef]
- Jacob, L.A.; Sisira, S.; Mani, K.P.; Thomas, K.; Alexander, D.; Biju, P.R.; Unnikrishnan, N.V.; Joseph, C. A new potential green-emitting erbium-activated α-Na3Y(VO4)2 nanocrystals for UV-excitable single-phase pc-WLED applications. SN Appl. Sci. 2020, 2, 1076. [Google Scholar] [CrossRef]
- Li, S.; Luo, J.; Liu, J.; Tang, J. Self-Trapped Excitons in All-Inorganic Halide Perovskites: Fundamentals, Status, and Potential Applications. J. Phys. Chem. Lett. 2019, 10, 1999–2007. [Google Scholar] [CrossRef]
- Zhou, B.; Muhammad, Y.; Ding, D.; Liu, Z.; Hu, H.; Wang, Y.; Zhong, H.; Shi, Y.; Li, H. Dexter Energy Transfer in Zero-Dimensional Inorganic Metal Halides for Obtaining Near-Unity PLQY via Sb3+/Mn2+ Codoping. J. Phys. Chem. C 2024, 128, 571–579. [Google Scholar] [CrossRef]
- Chen, B.; Guo, Y.; Wang, Y.; Liu, Z.; Wei, Q.; Wang, S.; Rogach, A.L.; Xing, G.; Shi, P.; Wang, F. Multiexcitonic Emission in Zero-Dimensional Cs2ZrCl6:Sb3+ Perovskite Crystals. J. Am. Chem. Soc. 2021, 143, 17599–17606. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wu, Y.; Juan, Z.; Sun, X.; Zhang, W.; Zeng, H.; Li, X. Efficient, Stable, and Tunable Cold/Warm White Light from Lead-Free Halide Double Perovskites Cs2Zr1-xTexCl6. Adv. Opt. Mater. 2021, 9, 2100815. [Google Scholar] [CrossRef]
- Yin, J.; Brédas, J.-L.; Bakr, O.M.; Mohammed, O.F. Boosting Self-Trapped Emissions in Zero-Dimensional Perovskite Heterostructures. Chem. Mater. 2020, 32, 5036–5043. [Google Scholar] [CrossRef]
- Wang, F.; Deng, R.; Wang, J.; Wang, Q.; Han, Y.; Zhu, H.; Chen, X.; Liu, X. Tuning upconversion through energy migration in core–shell nanoparticles. Nat. Mater. 2011, 10, 968–973. [Google Scholar] [CrossRef]
- Seth, S.; Samanta, A. Photoluminescence of Zero-Dimensional Perovskites and Perovskite-Related Materials. J. Phys. Chem. Lett. 2017, 9, 176–183. [Google Scholar] [CrossRef]
- Li, M.; Xia, Z. Recent progress of zero-dimensional luminescent metal halides. Chem. Soc. Rev. 2021, 50, 2626–2662. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
You, L.; Wang, Q.; Liao, Y.; Zhu, X.; Ding, K.; Chen, X. Lanthanide-Doped Cs2ZrCl6 Perovskite Nanocrystals for Multimode Anti-Counterfeiting Application. Nanomaterials 2026, 16, 68. https://doi.org/10.3390/nano16010068
You L, Wang Q, Liao Y, Zhu X, Ding K, Chen X. Lanthanide-Doped Cs2ZrCl6 Perovskite Nanocrystals for Multimode Anti-Counterfeiting Application. Nanomaterials. 2026; 16(1):68. https://doi.org/10.3390/nano16010068
Chicago/Turabian StyleYou, Longbin, Qixin Wang, Yuting Liao, Xiaotian Zhu, Keyuan Ding, and Xian Chen. 2026. "Lanthanide-Doped Cs2ZrCl6 Perovskite Nanocrystals for Multimode Anti-Counterfeiting Application" Nanomaterials 16, no. 1: 68. https://doi.org/10.3390/nano16010068
APA StyleYou, L., Wang, Q., Liao, Y., Zhu, X., Ding, K., & Chen, X. (2026). Lanthanide-Doped Cs2ZrCl6 Perovskite Nanocrystals for Multimode Anti-Counterfeiting Application. Nanomaterials, 16(1), 68. https://doi.org/10.3390/nano16010068

