Highly Efficient and Stable Quantum Dot Light-Emitting Diodes Employing Sputtered SnO2 Layer as Electron Transport Layers
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of Green QDs
2.2. Deposition of SnO2 Layer by the Sputtering Method
2.3. Fabrication of the Inverted QLEDs
2.4. Characterizations
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, Q.; Wang, Y.A.; Li, L.S.; Wang, D.; Zhu, T.; Xu, J.; Yang, C.; Li, Y. Bright, multicoloured light-emitting diodes based on quantum dots. Nat. Photonics 2007, 1, 717–722. [Google Scholar] [CrossRef]
- Dabbousi, B.O.; Rodriguez-Viejo, J.; Mikulec, F.V.; Heine, J.R.; Mattoussi, H.; Ober, R.; Jensen, K.F.; Bawendi, M.G. (CdSe)ZnS core–shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 1997, 101, 9463–9475. [Google Scholar] [CrossRef]
- Cao, W.; Xiang, C.; Yang, Y.; Chen, Q.; Chen, L.; Yan, X.; Qian, L. Highly stable QLEDs with improved hole injection via quantum dot structure tailoring. Nat. Commun. 2018, 9, 2608. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.S.; Lee, E.K.; Joo, W.J.; Jang, E.; Kim, T.H.; Lee, S.J.; Kwon, S.J.; Han, J.Y.; Kim, B.K.; Choi, B.L.; et al. High-performance crosslinked colloidal quantum-dot light-emitting diodes. Nat. Photonics 2009, 3, 341–345. [Google Scholar] [CrossRef]
- Shirasaki, Y.; Supran, G.J.; Bawendi, M.G.; Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics 2013, 7, 13–23. [Google Scholar] [CrossRef]
- Tu, N.; Lee, S. Large-emitting-area quantum dot light-emitting diodes fabricated by an all-solution process. Int. J. Mol. Sci. 2023, 24, 14350. [Google Scholar] [CrossRef]
- Tian, D.; Ma, H.; Huang, G.; Gao, M.; Cai, F.; Fang, Y.; Li, C.; Jiang, X.; Wang, A.; Wang, S.; et al. A review on quantum dot light-emitting diodes: From materials to applications. Adv. Opt. Mater. 2023, 11, 2201965. [Google Scholar] [CrossRef]
- Talapin, D.; Steckel, J. Quantum dot light-emitting devices. MRS Bull. 2013, 38, 685–691. [Google Scholar] [CrossRef]
- Bai, R.; Wang, C.; Ramzan, M.; Chang, S.; Zhong, H. Progress in blue colloidal quantum dots for display applications. J. Inf. Disp. 2025, 26, 95–107. [Google Scholar] [CrossRef]
- Alexandrov, A.; Zvaigzne, M.; Lypenko, D.; Nabiev, I.; Samokhvalov, P. Al-, Ga-, Mg-, or Li-doped zinc oxide nanoparticles as electron transport layers for quantum dot light-emitting diodes. Sci. Rep. 2020, 10, 7496. [Google Scholar] [CrossRef]
- Chrzanowski, M.; Kuchowicz, M.; Szukiewicz, R.; Sitarek, P.; Misiewicz, J.; Podhorodecki, A. Enhanced efficiency of quantum dot light-emitting diode by sol–gel derived Zn1−xMgxO electron transport layer. Org. Electron. 2020, 80, 105656. [Google Scholar] [CrossRef]
- Chrzanowski, M.; Zatryb, G.; Sitarek, P.; Podhorodecki, A. Effect of air exposure of ZnMgO nanoparticle electron transport layer on efficiency of quantum-dot light-emitting diodes. ACS Appl. Mater. Interfaces 2021, 13, 20305–20312. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Lee, M.; Seo, H.; Shin, D.; Hahm, D.; Bae, W.K.; Kim, J.; Kwak, J. Efficient and stable InP quantum-dot light-emitting diodes formed by premixing 2-hydroxyethyl methacrylate into ZnMgO. J. Mater. Chem. C 2024, 12, 7270–7277. [Google Scholar] [CrossRef]
- Oh, S.; Choi, J.; Park, J.; Choi, Y.K.; Park, T.; Ali, A.; Ahn, J.; Kim, J.; Oh, S.J. Surface passivation engineering for stable optoelectronic devices via hydroxyl-free ZnMgO nanoparticles. Nano Converg. 2025, 12, 28. [Google Scholar] [CrossRef]
- Chen, M.; Chen, X.; Ma, W.; Sun, X.; Wu, L.; Lin, X.; Yang, Y.; Li, R.; Shen, D.; Chen, Y.; et al. Highly stable SnO2-based quantum-dot light-emitting diodes with the conventional device structure. ACS Nano 2022, 16, 9631–9639. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, S. Efficient and stable quantum-dot light-emitting diodes enabled by tin oxide multifunctional electron transport layer. Adv. Opt. Mater. 2022, 10, 2102404. [Google Scholar] [CrossRef]
- Zhao, J.; Man, Z.; Wang, S.; Hao, C.; Yu, Z.; Li, X.; Tang, A. Enhanced performance of quantum dot light-emitting diodes enabled by zirconium doped SnO2 as electron transport layers. Opt. Lett. 2024, 49, 1896–1899. [Google Scholar] [CrossRef]
- Gao, J.; Liu, M.; Shi, X.; Pan, D. Ligand-assisted solvothermal precipitation synthesis of quantum-sized SnO2 nanoparticles and their application in quantum dot light-emitting diodes. New J. Chem. 2024, 48, 8631–8637. [Google Scholar] [CrossRef]
- Lin, K.R.; Lin, B.-Y.; Ding, W.-C.; Lee, C.-Y.; Chen, C.-H.; Kuo, Y.-P.; Chen, P.-Y.; Lu, H.-H.; Chiu, T.-L.; Lee, J.-H. Inverted green quantum-dot light-emitting diode with sputtered ZnO as the electron transporting layer. In Proceedings of the Advances in Display Technologies XI, Online, 6–11 March 2021; SPIE: Bellingham, WA, USA, 2021; Volume 11708, p. 117080R. [Google Scholar]
- Kim, B.; Kim, J. Large-area quantum dot light-emitting diodes employing sputtered Zn0.85Mg0.15O electron transport material. Electron. Mater. Lett. 2024, 20, 140–149. [Google Scholar] [CrossRef]
- Gago, R.; Prucnal, S.; Azpeitia, J.; Esteban-Mendoza, D.; Jiménez, I. Soft X-ray absorption study of sputtered tin oxide films. J. Alloys Compd. 2022, 902, 163768. [Google Scholar] [CrossRef]
- Polydorou, E.; Zeniou, A.; Tsikritzis, D.; Soultati, A.; Sakellis, I.; Gardelis, S.; Papadopoulos, T.A.; Briscoe, J.; Palilis, L.C.; Kennou, S.; et al. Surface passivation effect by fluorine plasma treatment on ZnO for efficiency and lifetime improvement of inverted polymer solar cells. J. Mater. Chem. A 2016, 4, 11844–11858. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; Ji, W. Efficient quantum-dot light-emitting diodes based on solvent-annealed SnO2 electron-transport layers. ACS Appl. Electron. Mater. 2023, 5, 537–543. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, Y.; Zhao, Y.; Chen, X.; Li, Z.; Li, H.; Wang, H.; Gong, X. Quantum dot light-emitting diodes with external quantum efficiency exceeding 30% enabled by a crown ether-modified electron transport layer. ACS Appl. Mater. Interfaces 2025, 17, 48483–48491. [Google Scholar] [CrossRef]
- Cheemadan, S.; Kumar, M.S. Effect of substrate temperature and oxygen partial pressure on RF sputtered NiO thin films. Mater. Res. Express 2018, 5, 046401. [Google Scholar] [CrossRef]









Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Choi, J.; Kim, J. Highly Efficient and Stable Quantum Dot Light-Emitting Diodes Employing Sputtered SnO2 Layer as Electron Transport Layers. Nanomaterials 2026, 16, 31. https://doi.org/10.3390/nano16010031
Choi J, Kim J. Highly Efficient and Stable Quantum Dot Light-Emitting Diodes Employing Sputtered SnO2 Layer as Electron Transport Layers. Nanomaterials. 2026; 16(1):31. https://doi.org/10.3390/nano16010031
Chicago/Turabian StyleChoi, Jaehwi, and Jiwan Kim. 2026. "Highly Efficient and Stable Quantum Dot Light-Emitting Diodes Employing Sputtered SnO2 Layer as Electron Transport Layers" Nanomaterials 16, no. 1: 31. https://doi.org/10.3390/nano16010031
APA StyleChoi, J., & Kim, J. (2026). Highly Efficient and Stable Quantum Dot Light-Emitting Diodes Employing Sputtered SnO2 Layer as Electron Transport Layers. Nanomaterials, 16(1), 31. https://doi.org/10.3390/nano16010031

